Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Machine learning in neuroscience Bojan Mihaljevic, Luis Rodriguez-Lujan Computational Intelligence Group School of Computer Science, Technical University of Madrid 2015 IEEE Iberian Student Branch Congress April 24th , Madrid B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 1 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 2 / 48 Computational Intelligence Group At Artificial Intelligence Department, School of Computer Science Since 2008 2 full professors, 1 associate professor, 1 post-doc, and 11 PhD students B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 3 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 4 / 48 A useful tool http://en.wikipedia.org/wiki/File:No-spam.png http://commons.wikimedia.org/wiki/File:Logo_Youtube.svg B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 5 / 48 Data-driven Learn from data what you cannot program (well) explicitly Large amounts of data these days Typically, we assume data comes as attribute values X1 1.40 -0.31 -0.01 X2 A B B X3 10003 2039 7383 X4 -24 21 70 X5 D C U Goal: learn some function over X Related terms: data mining, pattern recognition, data science... B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 6 / 48 Tasks Classification (discrete target variable) Regression (real-valued target variable) Clustering (hidden discrete target variable) Others: collaborative filtering, market basket analysis, etc. B. Mihaljevic, L. Rodriguez-Lujan (UPM) http://commons.wikimedia.org/ wiki/File:Social_Red.jpg Apr, 2015 7 / 48 Multiple models Some of them: P(x, c) = P(c)P(x1 |c)P(x2 |c)P(x3 |c)P(x4 |c)P(x5 |c) Naive Bayes k nearest neighbors p(c | x, w) = Ber (y | sigm(xT x)) Logistic regression Hastie, T., Tibshirani, R., Friedman, J., (2009). The elements of statistical learning (Vol. 2, No. 1). New York: Springer B. Mihaljevic, L. Rodriguez-Lujan (UPM) Decision tree Apr, 2015 8 / 48 Toolbox Many different tools to extract models from data Optimization (often heuristic) I I Combinatorial Continuous Information theory Probability theory and statistics I Inherent uncertainty (e.g., noise; prediction confidence) ... B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 9 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 10 / 48 Underpinning: conditional independence Many random variables: intractable distributions I 20 binary variables mean 220 − 1 parameters in the joint distribution Fortunately, some variables are sometimes independent of others I E.g., if I know that it is very warm, then knowing that it is summer might not make it more likely that many people will be on the beach Factor a joint distribution into smaller local ones P(X1 , X2 , X3 . . . , Xn ) = P(X1 )P(X2 | X1 )P(X3 , . . . , Xn | X1 , X2 ) B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 11 / 48 Representation Directed acyclic graph I I Nodes = variables Arcs encode conditional independencies A local distribution for each parents’ values combination P(x) = Qn i=1 P(xi | pa(xi )) Can greatly reduce number of parameters http://commons.wikimedia.org/wiki/File:SimpleBayesNet.svg B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 12 / 48 Inference B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 13 / 48 Inference B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 14 / 48 Some research topics Learning from data I I I NP-hard in the general case Conditional-independence tests Structure scoring (optimization) Inference I I I NP-complete in the general case Exact Approximate Classifiers I Specialized learning algorithms ”Non-standard” local probability distributions I I I Hybrid networks Mixtures of polynomials Directional variables B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 15 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 16 / 48 Directional statistics Deal with directions, axes, rotations Cannot be studied as regular real-valued variables. Periodicity Real world data: Wind, animal behaviour, neuroscience, ... B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 17 / 48 Representation and methods Different ways to represent directional data Directional probability distributions B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 18 / 48 Research topics in CIG Bayesian networks I I I I I Different local distributions Multi-dimensional classifiers Learning classifiers Big Data ... Heuristic optimization I I Multi-objetive Estimation of distribution algorithms (probabilistic evolutionary) Applications I I I Neuroscience Scientometrics Bioinformatics B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 19 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 20 / 48 Projects and collaborations Projects Collaborations Companies B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 21 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 22 / 48 The brain Scientific study of the nervous system. Molecular and cellular neuroscience We do not study the brain at macro level (yet)... ... but on a micro scale: Neurons 100 billion neurons in the brain 180.000 kilometers of wiring (myelinated white fibers) B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 23 / 48 Neurons Three main parts: Soma, dendrites and axon Neurons communicate with each other using electro-chemical signals Significant differences between neurons B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 24 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 25 / 48 ’Gardener’ Classification There is an accepted catalogue of neuron types and names But lack of a consistent terminology Every neuroanatomist has is own classification scheme B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 26 / 48 Towards a consensus in naming Learning from the experts Gather data from 42 experts Learn a model (Bayesian network) for each expert B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 27 / 48 Towards a consensus in naming Differences among experts Six clusters of experts (Bayesian network clustering) B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 28 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 29 / 48 Morphological simulation Denditric trees Why so different denditric tree shapes? Determine interconnectivity and functional roles B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 30 / 48 Morphological simulation Variables More than 40 variables Evidence and construction variables B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 31 / 48 Morphological simulation B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 32 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 33 / 48 Soma spatial characterization Descriptors based on the level curves of a level set function Hybrid Gaussian and angular Bayesian network B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 34 / 48 Spines Related with brain functions like learning and memory 3D active contours to repair fragmented spines Hybrid spatial DBN B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 35 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 36 / 48 Main idea Degree-constrained minimum spanning tree Degree constraints Restrict the role of the nodes in the tree to root, intermediate or leaf node Novel permutation-based representation to encode forests of DRCMST B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 37 / 48 Example 20 points where we are interested in building a forest of three trees B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 38 / 48 Application to Neuroscience Applied to optimal neuronal wiring B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 39 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 40 / 48 Medical applications Medical decision support systems: Neonatal jaundice treatment B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 41 / 48 Other applications DNA microarray analysis Immunology Alzheimer Parkinson B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 42 / 48 Outline 1 Introduction 2 Methods Machine learning Bayesian networks Directional statistics 3 Applications Introduction to neuroscience Neuron classification Morphological simulation Soma and spines DRCMST Other applications 4 Future work B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 43 / 48 Integration B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 44 / 48 BN & Big data B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 45 / 48 Big data in neuroscience Functional Magnetic Resonance Imaging (fMRI) Single Photon Emission Computed Tomography (SPECT) B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 46 / 48 Contact us! Summer School 2015 Computational Intelligence Group [email protected] [email protected] http://cig.fi.upm.es B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 47 / 48 Machine learning in neuroscience Bojan Mihaljevic, Luis Rodriguez-Lujan Computational Intelligence Group School of Computer Science, Technical University of Madrid 2015 IEEE Iberian Student Branch Congress April 24th , Madrid B. Mihaljevic, L. Rodriguez-Lujan (UPM) Apr, 2015 48 / 48