Download pps2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Weakly nonlocal fluid mechanics
Peter Ván
Budapest University of Technology and Economics,
Department of Chemical Physics
– One component fluid mechanics - quantum (?)
fluids
– Quantum potential
• Why Fisher information?
– Two component fluid mechanics – sand (?)
– Conclusions
Why nonequilibrium thermodynamics?
Thermodynamics
Thermodynamics
Thermodynamics (?)



science of temperature
science of macroscopic
energy changes
general framework of any
macroscopic (?)
continuum (?)
theories
General framework:
– fundamental balances
– objectivity - frame indifference
– Second Law
reversibility – special limit
Phenomenology – minimal or no microscopic information
universality
Second Law
– “super-principle”
– valid for all kind of dynamics
– like symmetries
Beyond local equilibrium – memory and inertia
Beyond local state
– nonlocality
weak
– short range - not gravity
– higher order gradients
Non-equilibrium thermodynamics
a    ja  a
basic balances
– basic state:
– constitutive state:
– constitutive functions:
a  (, v,...)
a
C  (a, a , a,...)
ja (C)
weakly nonlocal
Second law:
s(C)    js (C)  s  0
(universality)
Constitutive theory
Method: Liu procedure, Lagrange-Farkas multipliers
Special: irreversible thermodynamics
Origin of quantum mechanics:
motivation – interpretation – derivation (?)
Is there any?
(Holland, 1993)
– optical analogy
– standard (probability)
– stochastic
– quantized solutions
– de Broglie – Bohm
– de Broglie-Bohm
– stochastic
– hydrodynamic
– Kaniadakis
Justified by the
consequences.
– Frieden-Plastino
(Fisher based)
– Points of views
– Hall-Reginatto
“The Theory of Everything.” – Equivalent
(Laughlin-Pines, 2000)
(for a single particle)
Schrödinger equation:


i

  V ( x)
t
2m
iS


R
e
Madelung transformation:
2
    v  0
 : R
2

v : S
m
de Broglie-Bohm form:
v  (U QM  V )
Hydrodynamic form:
v    PQM   V
 R
 2
2m R
2
U QM
Fundamental questions in quantum mechanics:
– Why we need variational principles?
(What is the physics behind?)
– Why we need a wave function?
(What is the physics behind?)
– Where is frame invariance (objectivity)?
One component weakly nonlocal fluid
(, v ) basic state
    v  0
C ((,,, v,,
v) , v, v)
v    P(C)  0 Cwnl
constitutive state
s(C)   js (C)  0
s(C), js (C), P(C)
constitutive functions
Liu procedure (Farkas’s lemma):
2
2
v v
ss((, ,vv, ) )se (se (), ) 
2 2
js   v  P  ...
r
P reversible pressure
2


1


2
s   P       s  s I   s  : v  0
2
2



Pv  P  P r
Potential form:
  P  UQ
r
U Q    ( se )    (   se )
Euler-Lagrange form
Variational origin
Schrödinger-Madelung fluid
(Fisher entropy)
2
 SchM    v 2

 
sSchM (  , v,  )  
2  2 
2
r
SchM
P
1
2   
2
   I    

8


   eiv
Bernoulli
equation
Schrödinger equation
Landau fluid
sLan (  ,  )   Lan
r
Lan
P
  Lan
( ) 2
2
2
2

I    
2
2

1
 
U Lan   Lan     
2
2 
Alternate fluid
s Alt (  ,  )   Alt
( )
2

 Alt
2

P 
 (I    )     
4
r
Alt
 Alt
U Alt  

2
Korteweg fluids:
r
Kor
P


  p     ( ) I       
2
2
Origin of quantum potential – weakly nonlocal statistics:
Unique under physically reasonable conditions.
– Extensivity (mean, density)
– Isotropy

s(  ,  )  s (  , ( ) 2 )
– Additivity
s( 12 , D( 12 ))  s( 1 , 1 )  s( 2 , 2 )
( )

2
s (  , ( ) )  
 k ln 
2
2

Fisher
Boltzmann-Gibbs-Shannon
Extreme Physical Information (EPI) principle (Frieden, 1998)
–
Mass-scale invariance (particle interpretation)
s( ,  )  s(  ,  )
Two component weakly nonlocal fluid
  1 1  2 2  
  0
    v  0
v    P(C)  0
s(C)    js (C)  0
 density of the solid component

volume distribution function
( , , v ) basic state
C  ( ,  , ,  , v, v)
constitutive state
s(C), js (C), P(C)
constitutive functions
Constraints:
(1), (1), (2), (2), (3)
  s  1 ,
  s  2 ,
Liu equations
 s  3 ,
 s  4 ,
 vs  5 ,
 vs  0,
(  js  5  P)s  0,
(  js  5    P)s  0,
( v js  4I  5   v P)s  0.
 s  0,
  s  0,
 s  0,
     s  0.
isotropic, second order
Solution:
v2
( )2
s(, , , , v)  se (, )  m(, )
 (, )
2
2
js (C )   m( ,  ) v  P(C )  j1 ( ,  , v).
 (mv) : P  (     sI) : v  0
Simplification:
p
m  1, j1 (, , v)  0,  se   2 .

Entropy inequality:


()2
  P  (p   
)I      : v  0
2


Pr
Coulomb-Mohr
P  P r  P v  Lv
isotropy: Navier-Stokes like + ...
Properties
1 Other models:
a) Goodman-Cowin
P r  (p  ()2  2)I  2  
    h  
b) Navier-Stokes type:
configurational force balance
 
somewhere
2 Coulomb-Mohr
N : n  P r  n
S : P r  N
S 2  (N  t ) 2  s 2
s   ( )
2
  

t  p  
  ( ) 2
 2

 1

t  p  1    (ln  )  s
 2

S
unstable
s
t
stable
N
Conclusions
− Weakly nonlocal statistical physics
− Universality (Second Law – super-principle)
− independent of interpretation
− independent of micro details
phenomenological background behind any
statistical-kinetic theory (Kaniadakis - kinetic,
Frieden-Plastino - maxent)
− Method - more theories/models
− Material stability
Thermodynamics = theory of material stability
e.g. phase transitions (gradient systems?)
What about quantum mechanics?
– There is a meaning of dissipation.
– There is a family of equilibrium (stationary) solutions.
v0
U SchM  U  E  const.
– There is a thermodynamic Ljapunov function:
 v 2 1    2

  U  E dV
L(  , v)      
 2 2  2 



semidefinite in a gradient (Soboljev ?) space
Related documents