Download Mn 2 +

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Optical control of an individual spin
L.Besombes
Y.Leger
H. Boukari
D.Ferrand
H.Mariette
J. FernandezRossier
CEA-CNRS team « Nanophysique et Semi-conducteurs »
Institut Néel, CNRS Grenoble, FRANCE
Department of applied physics, University of Alicante, SPAIN
Introduction
Ultimate semiconductor spintronic device: Single magnetic ion / individual carriers
-Control of the interaction between a single magnetic atom and
an individual carrier.
(spin injection, spin transfer)
-Manipulation of an individual spin (memory, quantum computing)
II-VI Semi-Magnetic semiconductor QDs
Magnetic doping (Mn: S=5/2)
Localized carriers
…Towards a single spin memory.
Theoretical proposals
Transport: A single QD containing a Mn
atom could be use as a spin filter
Qu et al. Phys. Rev. B74, 25308 (2006)
Nano-magnetism : electrical control of the
magnetism.
Hawrylak et al. Phys. Rev. Lett. 95, 217206 (2005)
Memories : writing and reading of the spin state
of a single Mn atom.
A.O. Govorov et al., Phys. Rev. B 71, 035338 (2005)
Outline
1. Probing the spin state of a single Magnetic atom
- II-VI magnetic self assembled QDs
- Carriers-Mn exchange interaction
- Importance of QD structural parameters on the spin detection
(Shape anisotropy, valence band mixing)
2. Carrier controlled Mn spin splitting
- Anisotropy of the hole-Mn interaction
- Charge tunable Mn-doped QDs
3. Carriers and Mn spin dynamics
Individual CdTe/ZnTe QDs
UHV-AFM image of CdTe QDs on ZnTe.
Micro-spectroscopy.
6,5 MLs
QDs density: 5.109 cm-2
TEM image of CdTe QDs on ZnTe.
PL Intensity (arb. units)
d  20 m
 50meV
100 m
d  0,5 m
 50eV
d  0,25 m
Size: d=15nm, h=3nm
(Lz<<Lx,Ly)
1950
2000
Energy (meV)
2050
2100
Optical transitions in an individual QD
B=0
B=0
Jz=+1
e: spin 1/2
h: anisotropic (Jz=3/2)
e
h
Jz= -1
 0  1meV
Jz= - 2
e
h
Jz= +2
G.S.
s-
s+
Optical selection rules:
Sz= -1/2
s+
Sz= +1/2
e
s-
z
Jz= +3/2
Jz= -3/2
Jz= +1/2
Jz= -1/2
hh
lh
Gated charged quantum dots
 Transfer of holes from the surface states: p type
doping of the QDs.
V
p-ZnTe
CdTe
Electrical control of the charge.
Mn doped II-VI QDs
Cd: 3d10 4s2
Mn: 3d5 4s2
hn
Cd
Te
2-3 nm
Mn
•Mn remplace Cd: Mn2+
•Mn2+ S=5/2, 2S+1=6
Electron: σ = 1/2
Exchange interaction:
•Mn - electron J e

I
•Mn - hole
Jh

I
10-15 nm
 

M I  Se ( x I )
 

M I  Sh ( x I )
Hole: jZ = ±3/2
Mn atom: S = 5/2
Emission of Mn-doped individual QDs
The presence of a single
magnetic atom
completely control
the emission structure.
Measurement of the
exchange interaction
energy of the electron,
hole, Mn
Phys Rev Lett. 93, 207403 (2004)
Heavy-hole exciton / Mn exchange coupling
Ie- Mn (s z .Sz  1 / 2(s  .S-  s - .S ))
Exchange constant:
s-d, a>0
p-d, b<0
Ih - Mn ( jz .Sz  1 / 2( j .S-  j- .S ))
Mn2+
X
X+Mn2+
e
Jz = -1 h
Jz  1
Heavy hole
exciton
e
Jz = +1 h
-5/2
+5/2
-3/2
+3/2
-1/2
+1/2
+1/2
-1/2
-3/2
+3/2
e
Jz = -1 h
Jz   2
Mn2+
+5/2
Jz = +1
e
h
-5/2
Sz = ±5/2, ±3/2, ±1/2
Heavy-hole exciton / Mn exchange coupling
Ie- Mn (s z .Sz  1 / 2(s  .S-  s - .S ))
1 photon (energy, polar) = 1 Mn spin projection
Ih - Mn ( jz .Sz  1 / 2( j .S-  j- .S ))
X
X+Mn2+
-5/2 +5/2
…
Jz  1
…
+5/2 -5/2
Heavy hole
exciton
Jz   2
s-
Mn2+
s+
 Overall splitting controlled by Ie-Mn and Ih-Mn .
Mn-doped individual QDs under magnetic field
 Magnetic field dependent PL
intensity distribution.
NMn=0
NMn=1
Polarization of the Mn spin distribution
e
h
e
h
Mn2+
Mn spin polarization
Jz = +1
Jz = -1
e
h
Mn2+
e
h
Mn2+
s-
Mn2+
TLatt  5K
Teff=12K
s+
Mn spin
conservation
Boltzmann distribution of the
Mn-Exciton system:
gMn=2
B
Mn2+
B
Teff  Tlattice
Statistic Mn spin distribution
Resonant excitation
B=0T
Complex excited states fine structure
Selection of Mn spin distribution
and
spin conservation during the lifetime of the exciton.
Carriers-Mn exchange coupling
Exp.
Th.
Effective spin Hamiltonian:
Ih - Mn jz .Sz
 
I e- Mn s .S
 

Ie- hs. j

geμBσ z Bz  ghμB jz Bz

g Mn μBS z B z

B 2
- X-Mn Overlap
- QD shape
- Strain distribution
-1
0
1
Energy (meV)
2
Detection condition: Exciton-Mn overlap
1.3 meV
Ie-Mn in a flat parabolic potential:
Decrease of
X-Mn overlap
L z  3nm
d  26nm
Exchange integrals controlled by the overlap with the Mn atom.
Detection condition: Structural parameters
QD1
Heavy-hole + Mn
QD2
Influence of the QD shape
QD3
Influence of the valence
band mixing
Sz= +- 1/2
Jz=+ - 3/2
Jz=+ - 1/2
Phys Rev Lett. 95, 047403 (2005)
e
hh
lh
Phys Rev B. 72, 241309(R) (2005)
Valence band mixing in strained induced QDs
 Inhomogeneous relaxation of strain in a strained induced QD (Bir & Pikus Hamiltonian):
|3/2> |1/2> |-1/2> |-3/2>
E
1/2
-1/2
-3/2
3/2
1/2
-1/2
k
~
~
<3/2| j - |-3/2> = 0
via cross components because
I h-Mn  j .S -  j- .S    0
~
|3/2> = c1 |3/2>+ c2 |-1/2>
c1>>c2
~
|-3/2> = c3 |-3/2>+ c4 |1/2>
c3>>c4
3 1
2
1
,- 
0  
-1 
2 2
3
3
3 3
,-  - 1 
2 2
Influence of valence band mixing
I h-Mn ( jz .S z  e lh ( j .S -  j- .S  ))
elh : Heavy-light hole
mixing efficiency
X
Possibility to flip
~
from jz= +3/2
~
to
-/3/2
via light holes
Effective h-Mn interaction term
in the Heavy hole Subspace
e
h
e
h
Allows simultaneous hole-Mn spin flip
Jz  1
Jz   2
X+Mn2+
Influence of valence band mixing
I h-Mn ( jz .S z  e lh ( j .S -  j- .S  ))
Exp.
elh : Heavy-light hole
mixing efficiency
Possibility to flip
~
from jz= +3/2
~
to
-/3/2
via light holes
Effective h-Mn interaction term
in the Heavy hole Subspace
e
h
Th.
e
h
Allows simultaneous hole-Mn spin flip
Emission of “non-radiative” exciton states
Phys Rev B. 72, 241309(R) (2005)
X-Mn in transverse B field
«0»
001
B┴
«-1 »
«+1 »
Voigt
001
B//
Voigt:
Complex fine structure…
Suppression of the hole Mn
exchange interaction
Faraday
Faraday:
Zero field structure is conserved
Phys Rev B. 72, 241309(R) (2005)
1. Probing the spin state of a single Magnetic atom
- II-VI magnetic self assembled QDs
- Carriers-Mn exchange interaction
- Importance of QD structural parameters on the spin detection
(Shape anisotropy, valence band mixing)
2. Carrier controlled Mn spin splitting
- Anisotropy of the hole-Mn interaction
- Charge tunable Mn-doped QDs
3. Carriers and Mn spin dynamics
Biexciton in a Mn-doped QD
X
X2
e
h
e
h
Increase of the excitation density
Increase of the number of carriers
in the QD.
Formation of the biexciton
(binding energy 11meV)
Similar fine structure for the exciton
and the biexciton
.
.
.
Carrier controlled Mn spin splitting
X2 (J=0)
σ+
X, J=±1
σG.S.
Optical control of the magnetization:
- One exciton splits the Mn spin levels
- With two excitons, the exchange interaction
vanishes…
Phys Rev B. 71, 161307(R) (2005)
Gated charged Mn-doped quantum dots
e
h
e
h
Charge tunable sungle Mn-doped QDs allow us to probe
independantly the interactions
between electron and Mn or hole and Mn
Phys Rev Lett. 97, 107401 (2006)
Variation of hole-Mn exchange interaction
e
h
e
h
Ie-Mn = 40 μeV
Ih-Mn(X+) = 95 μeV
Ih-Mn(X) = 150 μeV
Ih-Mn(X-) = 170 μeV
♦ The hole confinement is influenced by the Coulomb attraction
X+, Mn
X, Mn
e
Mn
h
X-, Mn
Increasing the hole-Mn overlap
by injecting electrons in the QD
X+, Mn hardly resolved
Negatively charged exciton in a Mn doped QD
•Isotropic e-Mn interaction
•Anisotropic h-Mn interaction
e
h

-
5
  
2

5
  
2
Ih- Mn ( jz .S z )
Initial state:
1 h + 1 Mn
e
h

5
  
2
-
5
  
2
J=2
Final state:
1 e + 1 Mn
J=3
Optical recombination of the charged exciton
-
♦ Optical transitions between:
i  Sz
Mn
f  Sz
Mn


e

Jz=-1
j
e z h
e
Proportional to the overlap:
J, J z S z , 
Eigenstates of He-Mn
5
  
2
s-
J=2
J=3
Optical recombination of the charged exciton

1 
5
6




2
6

3,2 

1 
3
5
  1
 
 5
2
2
6

3,1 

1 
1
3
  2
 
 4
2
2
6

3,0

1 
3
1
2


4



2
2
6

3,-2 

1 
5
3
  5 
 12
2
6

3,-3 

5
  
2
1

1 
1
1
  3
 
 32
2
6

3,-1 
5
  
2
Probability
3,3 
-
s

1 
5
 
 62
6

J=2
J=3
s-
Energy
Optical recombination of the charged exciton

1 
3
5
 - 5
 
 1
2
2
6

2, 1 

1 
1
3
2


4




2
2
6

2,0 

1 
1
1
3

3




2
2
6

2,-1 

1 
3
1
4

2



2
2
6


1 
5
3
2,-2 
5

1



2
2
6

5
  
2

5
  
2
1
s
s-

J=2
J=3

5
  
2
-
5
  
2
Probability
2,2 
-
Energy
Optical recombination of the charged exciton
-
5
  
2

5
  
2
s
s-

e-Mn: isotropic
h-Mn: anisotropic
J=2
J=3

5
  
2
-
5
  
2
Probability
1
Energy
Charged exciton in a single QD: Influence of VBM
I h-Mn ( jz .S z  e lh ( j .S -  j- .S  ))
e
h

Initial state:
1 h + 1 Mn
(+3/2,-1/2)
(-3/2,+1/2)
J=2
Final state:
1 e + 1 Mn
J=3
Phys Rev Lett. 97, 107401 (2006)
Charged exciton in a single QD: Influence of VBM
I h-Mn ( jz .S z  e lh ( j .S -  j- .S  ))
e
h

Initial state:
1 h + 1 Mn
(+3/2,-1/2)
(-3/2,+1/2)
J=2
Final state:
1 e + 1 Mn
J=3
Negatively / Positively charged Mn-doped QDs
♦ X-, Mn
♦ X+, Mn
♦ Reversed initial
and final states
e, Mn
h, Mn
e, Mn
J=2
J=3
h, Mn
Energy
Gated controlled magnetic anisotropy
ST
Heisenberg
Mz
Free
Ising
hh
Q=-1
Q=0
Q=+1
Mn+1h= Nano-Magnet
1. Probing the spin state of a single Magnetic atom
- II-VI magnetic self assembled QDs
- Carriers-Mn exchange interaction
- Importance of QD structural parameters on the spin detection
(Shape anisotropy, valence band mixing)
2. Carrier controlled Mn spin splitting
- Anisotropy of the hole-Mn interaction
- Charge tunable Mn-doped QDs
3. Carriers and Mn spin dynamics
Spin dynamics vs photon statistics
1 Mn atom Sz
If Sz(t=0) = -5/2
P (Sz = -5/2)
1
-5/2
-5/2
+5/2
…
…
+5/2
-5/2
s-
s+
?
~1/6
0
t
Photon statistics ?
1 photon (σ, E)
1 Mn spin state
Correlation measurement on single QDs
Whole PL autocorrelation
PL int (arb. units)
Single emitter statistics :
Select a QD with
a large splitting
to spectrally isolate
a Mn spin state
2036
2037 2038 2039
Energy (meV)
2040
Use of a SIL
to increase the signal
Antibunching: The QDs cannot emit
two photons with a given energy
at the same time
Single Mn spin dynamics
Auto Correlation
on one line
in one polarization
s+, -5/2)
E
X
X+Mn2+
8 ns
PL int (arb. units)
Jz  1
τX-Mn
Jz   2
2036
2037 2038 2039
Energy (meV)
2040
One Mn spin
projection
t
Photon bunching at short delay
Single Mn spin dynamics
Power dependence
Auto Correlation
on one line
in one polarization
σ+
P0
E
X
X+Mn2+
2 x P0
PL int (arb. units)
Jz  1
τX-Mn
Jz   2
3 x P0
2036
2037 2038 2039
Energy (meV)
2040
One Mn spin
projection
Mixing between
Mn spin relaxation time
and
X-Mn spin relaxation time
Single Mn spin dynamics
Polarization Cross-Correlation
σ+
σ-
PL int (arb. units)
Direct evidence of
the spin transfer
-5/2
+5/2
…
…
+5/2
-5/2
s-
2036
2037 2038 2039
Energy (meV)
s+
2040
One Mn spin
projection
Influence of magnetic field?...To be continued…
Summary
 Optical probing of a single carrier/single magnetic atom interaction.
- The exchange coupling is controlled by the carrier / Mn overlap.
- BUT, real self assembled QDs:
- Shape anisotropy
- Valence band mixing
 Hole-Mn complex is highly anisotropic
but non-negligeable effects of heavy-light hole mixing
 Charged single Mn-doped QDs: Change the magnetic properties
of the Mn with a single carrier.
 Photon statistics reveals a complex spin dynamics.
…. Store information on a single spin?
Related documents