Download A topological characterization of ordinals: van Dalen and Wattel

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Fundamental group wikipedia , lookup

Continuous function wikipedia , lookup

Covering space wikipedia , lookup

3-manifold wikipedia , lookup

Brouwer fixed-point theorem wikipedia , lookup

Grothendieck topology wikipedia , lookup

General topology wikipedia , lookup

Transcript
A topological characterization of ordinals: van
Dalen and Wattel revisited
Chris Good and Kyriakos Papadopoulos
School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
Abstract
We revisit van Dalen and Wattelโ€™s characterization of linearly ordered topological
spaces in terms of nests of open sets and use this to give a topological characterization of ordinals. In particular we characterize ๐œ”1 .
Key words: Nests, LOTS, linearly ordered topological spaces, GO spaces,
generalized ordered spaces, ordinals, ๐œ”1
AMS subject classi๏ฌcation: 54F05, 06B30, 06F30
1
Nests and ordered spaces
If < is a linear on a space then the order topology on ๐‘‹ is the topology
generated by the collection of <-intervals. If ๐‘‹ is given the order topology, then
the resulting space is called a linearly ordered topological space, or LOTS. A
subspace of a LOTS is known as a generalized order, or GO, space (equivalently
๐‘‹ has a topology ๏ฌner than the order topology and each point has a local base
of order convex sets).
LOTS, GO spaces and ordinals with their order topology are naturally occurring topological objects and are canonical building blocks for topological
examples.
The problem of characterizing arbitrary LOTS and GO spaces topologically
was solved by van Dalen and Wattel [12]. Previously a number of characterization of particular LOTS had been given (there are, for example, characterizations of โ„š, [0, 1], โ„โˆ’โ„š, compact LOTS). For a survey of such characterizations
see [9]. For a general survey of LOTS and GO spaces see for example [7].
Email addresses: [email protected] (Chris Good), (Kyriakos Papadopoulos).
Preprint submitted to Topology and its Applications
3 December 2010
In this paper we look again at van Dalen and Wattelโ€™s characterization from
a more order-theoretic point of view. Motivated in particular by Reedโ€™s โ€˜misnomed intersection topologyโ€™ (see [10] and also [13], [4] and [6]), we ask whether
it it possible to characterize ordinal spaces in purely topological terms. There
are other essentially internal characterizations of certain ordinals and subspaces of ordinals due to Baker [1], van Douwen [14], Purisch [8], for example.
However, these tend not to be as general or so simply stated as our own. There
are also external characterizations in terms of selections, see for example [5],
[3], [2].
De๏ฌnition 1 Let ๐‘‹ be a set and โ„’ โŠ† ๐’ซ(๐‘‹). โ„’ is said to be ๐‘‡0 -separating
if and only if for each ๐‘ฅ โˆ•= ๐‘ฆ in ๐‘‹ there is some ๐‘ โˆˆ โ„’ such that either
๐‘ฅ โˆˆ ๐ฟ โˆ•โˆ‹ ๐‘ฆ or ๐‘ฆ โˆˆ ๐ฟ โˆ•โˆ‹ ๐‘ฅ. โ„’ is said to be ๐‘‡1 -separating if and only if for each
๐‘ฅ โˆ•= ๐‘ฆ in ๐‘‹ there are ๐‘ and ๐‘€ in โ„’ such that ๐‘ฅ โˆˆ ๐‘ โˆ•โˆ‹ ๐‘ฆ and ๐‘ฆ โˆˆ ๐‘€ โˆ•โˆ‹ ๐‘ฅ.
De๏ฌnition 2 Let ๐‘‹ be a set and let โ„’ โŠ† ๐’ซ(๐‘‹). The order โŠฒโ„’ is de๏ฌned by
declaring ๐‘ฅ โŠฒโ„’ ๐‘ฆ if and only if ๐‘ฅ โˆˆ ๐ฟ โˆ•โˆ‹ ๐‘ฆ, for some ๐ฟ โˆˆ โ„’.
De๏ฌnition 3 Let ๐‘‹ be a set and let โ„’ โŠ† ๐’ซ(๐‘‹). โ„’ is said to be a nest if and
only if โ„’ is linearly ordered by inclusion.
There is obviously a close link between nests and linear orders.
Theorem 4 Let ๐‘‹ be a set and โ„’ โŠ† ๐’ซ(๐‘‹).
(1) If โ„’ is a nest, then โŠฒโ„’ is a transitive order.
(2) โ„’ is a nest if and only if for every ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, either ๐‘ฅ = ๐‘ฆ, ๐‘ฅ โˆ•โŠฒโ„’ ๐‘ฆ or
๐‘ฆ โˆ•โŠฒโ„’ ๐‘ฅ.
(3) โ„’ is ๐‘‡0 -separating if and only if for every ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, either ๐‘ฅ = ๐‘ฆ, ๐‘ฅ โŠฒโ„’ ๐‘ฆ
or ๐‘ฆ โŠฒโ„’ ๐‘ฅ.
(4) โ„’ is a ๐‘‡0 -separating nest if and only if โŠฒโ„’ is a linear order.
PROOF. (1) is immediate from the de๏ฌnition of โŠฒโ„’ .
For (2), suppose ๏ฌrst that โ„’ is a nest. If ๐‘ฅ โˆ•= ๐‘ฆ and both ๐‘ฅโŠฒโ„’ ๐‘ฆ and ๐‘ฆโŠฒโ„’ ๐‘ฅ,
then there are ๐‘€ and ๐‘ in โ„’ such that ๐‘ฅ โˆˆ ๐‘€ โˆ•โˆ‹ ๐‘ฆ and ๐‘ฆ โˆˆ ๐‘ โˆ•โˆ‹ ๐‘ฅ, so that ๐‘€
is not a subset of ๐‘ and ๐‘ is not a subset of ๐‘€ , contradicting the fact that โ„’
is a nest. Conversely, suppose that ๐‘€ and ๐‘ are elements of โ„’. If ๐‘€ is not a
subset of ๐‘ and ๐‘ is not a subset of ๐‘ , then are ๐‘ฅ โˆˆ ๐‘€ โˆ’ ๐‘ and ๐‘ฆ โˆˆ ๐‘ โˆ’ ๐‘€ ,
so that both ๐‘ฅโŠฒโ„’ ๐‘ฆ and ๐‘ฆโŠฒโ„’ ๐‘ฅ.
For (3), if โ„’ is ๐‘‡0 -separating and ๐‘ฅ โˆ•= ๐‘ฆ, then there is ๐‘ โˆˆ โ„’ such that
either ๐‘ฅ โˆˆ ๐‘ โˆ•โˆ‹ ๐‘ฆ, so that ๐‘ฅโŠฒโ„’ ๐‘ฆ, or ๐‘ฆ โˆˆ ๐‘ โˆ•โˆ‹ ๐‘ฅ, so that ๐‘ฆโŠฒโ„’ ๐‘ฅ. Conversely, if
๐‘ฅ โˆ•= ๐‘ฆ, then without loss of generality ๐‘ฅโŠฒโ„’ ๐‘ฆ, so that there is ๐‘ โˆˆ โ„’ such that
๐‘ฅ โˆˆ ๐‘ โˆ•โˆ‹ ๐‘ฆ.
2
(4) now follows from (1), (2) and (3). โ–ก
{
}
Note that if ๐‘‹ = {0, 1, 2} and ๐’ฉ = {0}, {1}, {2} , then โŠฒ๐’ฉ is transitive but
not a linear order.
Theorem 5 Let ๐‘‹ be a set. Suppose that โ„’ and โ„› are two nests on ๐‘‹. โ„’ โˆช โ„›
is ๐‘‡1 -separating if and only if โ„’ and โ„› are both ๐‘‡0 -separating and โŠฒโ„’ = โŠณโ„› .
PROOF. Suppose that โ„’ โˆช โ„› is ๐‘‡1 -separating. If ๐‘ฅ โˆ•= ๐‘ฆ, then there are ๐‘
and ๐‘€ in โ„’ โˆช โ„› such that ๐‘ฅ โˆˆ ๐‘ โˆ•โˆ‹ ๐‘ฆ and ๐‘ฆ โˆˆ ๐‘€ โˆ•โˆ‹ ๐‘ฅ. Without loss of
generality ๐‘ โˆˆ โ„’ and, since โ„’ is a nest, ๐‘€ โˆˆ
/ โ„’ so ๐‘€ โˆˆ โ„›. Hence ๐‘ฅโŠฒโ„’ ๐‘ฆ and
๐‘ฆโŠฒโ„› ๐‘ฅ. Since ๐‘ฅ and ๐‘ฆ were arbitrary, it follows that โ„’ and โ„› are ๐‘‡0 -separating
and that โŠฒโ„’ = โŠณโ„› .
Conversely, suppose that โ„’ and โ„› are two ๐‘‡0 -separating nests such that โŠฒโ„’ =
โŠณโ„› . If ๐‘ฅ โˆ•= ๐‘ฆ, then there is ๐ฟ โˆˆ โ„’ such that, without loss of generality,
๐‘ฅ โˆˆ ๐ฟ โˆ•โˆ‹ ๐‘ฆ. Hence ๐‘ฅโŠฒโ„’ ๐‘ฆ so that ๐‘ฆโŠฒโ„› ๐‘ฅ, which implies that there is some
๐‘… โˆˆ โ„› such that ๐‘ฆ โˆˆ ๐‘… โˆ•โˆ‹ ๐‘ฅ. Hence โ„’ โˆช โ„› is ๐‘‡1 -separating. โ–ก
Let โ„’ and โ„› be two nests whose union is ๐‘‡1 -separating. Topologically speaking, if the elements of โ„’ and โ„› are open sets, it is relatively simple to show
that the order-topology generated by โŠฒโ„’ is coarser than the topology on ๐‘‹.
As we shall see in Theorem 10, the following notion of interlocking, due to van
Dalen and Wattel [12], is the key idea in ensuring that the topology induced
by the order โŠฒโ„’ coincides with the topology generated by the subbase โ„’ โˆช โ„›.
De๏ฌnition 6 Let ๐‘‹ be a set and โ„’ โŠ† ๐’ซ(๐‘‹). We say that โ„’ is interlocking
โˆฉ
โˆช
if and only if, for each ๐ฟ โˆˆ โ„’, ๐ฟ = {๐‘ โˆˆ โ„’ : ๐ฟ โŠŠ ๐‘ } implies ๐ฟ = {๐‘ โˆˆ
โ„’ : ๐‘ โŠŠ ๐ฟ}.
The next two propositions clarify the relationship between an interlocking nest
and the properties of its induced order.
Lemma 7 Let ๐‘‹ be a set and โ„’ be a ๐‘‡0 -separating nest on ๐‘‹.
โˆฉ
(1) ๐ฟ = {๐‘€ โˆˆ โ„’ : ๐ฟ โŠŠ ๐‘€ } if and only if ๐‘‹ โˆ’ ๐ฟ has no โŠฒโ„’ -minimal
element.
โˆช
(2) ๐ฟ = {๐‘€ โˆˆ โ„’ : ๐‘€ โŠŠ ๐ฟ} if and only if ๐ฟ has no โŠฒโ„’ -maximal element.
PROOF. By Theorem 4, โŠฒโ„’ is a linear order on ๐‘‹. For (1), if ๐‘ฅ is the โŠฒโ„’ minimal element of ๐‘‹ โˆ’ ๐ฟ, then for all ๐‘€ โˆˆ โ„’ such that ๐ฟ โŠŠ ๐‘€ , ๐‘ฅ โˆˆ ๐‘€ , so
โˆฉ
that ๐ฟ โˆ•= {๐‘€ โˆˆ โ„’ : ๐ฟ โŠŠ ๐‘€ }. Conversely, if ๐‘‹ โˆ’ ๐ฟ has no minimal element,
3
then for all ๐‘ฅ โˆˆ
/ ๐ฟ, there is some ๐‘ฆโŠฒโ„’ ๐‘ฅ such that ๐‘ฆ โˆˆ
/ ๐ฟ. Since โ„’ is a ๐‘‡0 separating nest, there is some ๐‘€ โˆˆ โ„’ such that ๐‘ฆ โˆˆ ๐‘€ โˆ•โˆ‹ ๐‘ฅ. Since ๐‘ฆ โˆˆ ๐‘€ โˆ’ ๐ฟ,
โˆฉ
โˆฉ
๐ฟ โŠŠ ๐‘€ , so that ๐‘ฅ โˆˆ
/ {๐‘€ โˆˆ โ„’ : ๐ฟ โŠŠ ๐‘€ } and ๐ฟ = {๐‘€ โˆˆ โ„’ : ๐ฟ โŠŠ ๐‘€ }. (1)
follows. The proof of (2) is exactly similar. โ–ก
It is immediate from De๏ฌnition 6, that a collection โ„’ is interlocking if and only
โˆช
โˆฉ
if, for all ๐ฟ โˆˆ โ„’, either ๐ฟ = {๐‘ โˆˆ โ„’ : ๐‘ โŠŠ ๐ฟ} or ๐ฟ โˆ•= {๐‘ โˆˆ โ„’ : ๐ฟ โŠŠ ๐‘ }.
Theorem 4 and Lemma 7 therefore imply the following.
Theorem 8 Let ๐‘‹ be a set and let โ„’ be a ๐‘‡0 -separating nest on ๐‘‹. The
following are equivalent:
(1) โ„’ is interlocking;
(2) for each ๐ฟ โˆˆ โ„’, if ๐ฟ has a โŠฒโ„’ -maximal element, then ๐‘‹ โˆ’ ๐ฟ has a
โŠฒโ„’ -minimal element;
(3) for all ๐ฟ โˆˆ โ„’, either ๐ฟ has no โŠฒโ„’ -maximum element or ๐‘‹ โˆ’ ๐ฟ has a
โŠฒโ„’ -minimal element. โ–ก
Lemma 9 Let < be a linear order on ๐‘‹. Let
{
โ„’< = (โˆ’โˆž, ๐‘Ž) : ๐‘Ž โˆˆ ๐‘‹
}
and
{
}
โ„›< = (๐‘Ž, โˆž) : ๐‘Ž โˆˆ ๐‘‹ .
Then โ„’< and โ„›< are ๐‘‡0 separating, interlocking nests such that โ„’ โˆช โ„› is ๐‘‡1 separating and โŠฒโ„’ = โŠณโ„› =<. Moreover โ„’ โˆช โ„› forms a subbase of order open
sets for the order topology on ๐‘‹.
PROOF. Clearly โ„’ and โ„› are ๐‘‡0 -separating nests whose union is ๐‘‡1 -separating.
By Theorem 5, โŠฒโ„’ = โŠณโ„› . If ๐‘ฅ < ๐‘ฆ, then ๐ฟ = (โˆ’โˆž, ๐‘ฆ) โˆˆ โ„’ and ๐‘ฅ โˆˆ ๐ฟ โˆ•โˆ‹ ๐‘ฆ, so
that ๐‘ฅโŠฒโ„’ ๐‘ฆ. On the other hand if ๐‘ฅโŠฒโ„’ ๐‘ฆ, then for some ๐‘ง โˆˆ ๐‘‹, ๐‘ฅ โˆˆ (โˆ’โˆž, ๐‘ง) โˆ•โˆ‹ ๐‘ฆ,
so that ๐‘ฅ < ๐‘ง and ๐‘ง < ๐‘ฆ, which implies that ๐‘ฅ < ๐‘ฆ. It remains to show that
โ„’ and โ„› are interlocking. Suppose that ๐ฟ = (โˆ’โˆž, ๐‘Ž) โˆˆ โ„’ has a <-maximal
element ๐‘š. Then ๐‘š < ๐‘Ž and if ๐‘š < ๐‘ฅ โ‰ค ๐‘Ž, ๐‘ฅ = ๐‘Ž, so that ๐‘Ž is the <-minimal
element of ๐‘‹ โˆ’ ๐ฟ. By Theorem 8, then, โ„’ is interlocking. That โ„› is interlocking follows by the same argument. By de๏ฌnition of the order topology induced
by < on ๐‘‹, โ„’ โˆช โ„› forms a subbase of order open sets. โ–ก
We are now in a position to give a slightly di๏ฌ€erent, more direct, proof of van
Dalen and Wattelโ€™s characterization of GO and LOTS.
Theorem 10 (van Dalen & Wattel) Let ๐‘‹ be a space with topology ๐’ฏ .
Suppose that
(1) If โ„’ and โ„› are two nests of open sets whose union is ๐‘‡1 -separating, then
every โŠฒโ„’ -order open set is open in ๐‘‹.
4
(2) ๐‘‹ is a GO space if and only if there are two nests โ„’ and โ„› of open sets
whose union is ๐‘‡1 -separating and forms a subbase for ๐’ฏ .
(3) ๐‘‹ is a LOTS if and only if there are two interlocking nests โ„’ and โ„› of
open sets whose union is ๐‘‡1 -separating and forms a subbase for ๐’ฏ .
โˆช
PROOF. Clearly, for any ๐‘Ž โˆˆ ๐‘‹, the โŠฒโ„’ -interval (โˆ’โˆž, ๐‘Ž) = {๐ฟ โˆˆ โ„’ : ๐‘Ž โˆˆ
/
โˆช
๐ฟ} and the โŠฒโ„’ -interval (๐‘Ž, โˆž) = {๐‘… โˆˆ โ„› : ๐‘Ž โˆˆ
/ ๐‘…}. It follows immediately
that, if the sets in โ„’ and โ„›, are open in ๐‘‹, then every order-open set is open
in ๐‘‹, so that (1) holds.
For (3), if ๐‘‹ is a LOTS with linear order <, then the existence of two such
nests follows by Lemma 9. Conversely, suppose that there are two interlocking
nests โ„’ and โ„› of open sets whose union is ๐‘‡1 -separating and forms a subbase
for the topology on ๐‘‹. By Theorem 4, โŠฒโ„’ is a linear order on ๐‘‹ and by (1),
every order open set is open. It remains to show that every open set is orderopen. Since โ„’ โˆช โ„› forms a subbase for the topology ๐’ฏ , and โ„’ and โ„› are both
nests, every ๐‘ˆ โˆˆ ๐’ฏ can be written as a union of sets of the form ๐ฟ โˆฉ ๐‘…, where
๐ฟ โˆˆ โ„’ and ๐‘… โˆˆ โ„›. It su๏ฌƒces, then, to show that each ๐ฟ โˆˆ โ„’ and each ๐‘… โˆˆ โ„›
is order-open. So suppose that ๐ฟ โˆˆ โ„’. If โ„’ has no โŠฒโ„’ -maximal element, then
there is some ๐ด โŠ† ๐ฟ that is co๏ฌnal in ๐ฟ with respect to the order โŠฒโ„’ . But
โˆช
then ๐ฟ = ๐‘Žโˆˆ๐ด (โˆ’โˆž, ๐‘Ž), so that ๐ฟ is order open. On the other hand, if ๐ฟ
does have a maximal element ๐‘š, then, since โ„’ is interlocking, ๐‘‹ โˆ’ ๐ฟ has a
minimal element ๐‘šโ€ฒ and ๐ฟ = (โˆ’โˆž, ๐‘š] = (โˆ’โˆž, ๐‘šโ€ฒ ) is also order open. That
each ๐‘… โˆˆ โ„› is order open follows in exactly the same way.
To see that (2) holds, if ๐‘‹ is a GO space then ๐‘‹ โŠ† ๐‘Œ for some LOTS ๐‘Œ .
Since ๐‘Œ is a LOTS, it has two interlocking nests of open sets, โ„’ and โ„›,
whose union forms a ๐‘‡1 -separating subbase for the topology on ๐‘Œ . Setting
โ„’โ€ฒ = {๐ฟ โˆฉ ๐‘‹ : ๐ฟ โˆˆ โ„’} and โ„›โ€ฒ = {๐‘… โˆฉ ๐‘‹ : ๐‘… โˆˆ โ„›}, we obtain two nest of
sets open in ๐‘‹ whose union is forms a ๐‘‡1 -separating subbase for the topology
on ๐‘‹. For the converse, suppose that the space ๐‘‹ has two nests โ„’ and โ„›
whose union forms a ๐‘‡1 -separating subbase for ๐‘‹. We will construct a LOTS
๐‘Œ such that ๐‘‹ is a subspace of ๐‘Œ . Let โ„’โˆ— be the set of all ๐ฟ in โ„’ such that
๐ฟ has a โŠฒโ„’ -maximal element but ๐‘‹ โˆ’ ๐ฟ has no โŠฒโ„’ -minimal element. Let
โ„›โˆ— be the set of all ๐‘… in โ„› such that ๐‘… has a โŠฒโ„› -maximal element (i.e.
a โŠฒโ„’ -minimal element) but ๐‘‹ โˆ’ ๐‘… has no โŠฒโ„› -minimal element (i.e. a โŠฒโ„’ maximal element). For each ๐ฟ โˆˆ โ„’โˆ— , let ๐‘ฅ๐ฟ denote the โŠฒโ„’ -maximal element
of ๐ฟ and, for each ๐‘… in โ„›โˆ— , let ๐‘ฆ๐‘… denote the โŠฒโ„’ -minimal element of ๐‘…. For
โˆ’
each ๐ฟ โˆˆ โ„’โˆ— and ๐‘… โˆˆ โ„›โˆ— , choose distinct points ๐‘ฅ+
๐ฟ and ๐‘ฆ๐‘… not in ๐‘‹. Let
โˆ’
โˆ—
โˆ—
๐‘Œ = ๐‘‹ โˆช {๐‘ฅ+
๐ฟ : ๐ฟ โˆˆ โ„’ } โˆช {๐‘ฆ๐‘… : ๐‘… โˆˆ โ„› }, de๏ฌne ๐œ‹ : ๐‘Œ โ†’ ๐‘‹ by
โŽง
๏ฃด
๏ฃด
โŽจ๐‘ฅ
๐œ‹(๐‘ฅ) = ๏ฃด๐‘ฅ๐ฟ
๏ฃด
โŽฉ
๐‘ฆ๐‘…
5
if ๐‘ฅ โˆˆ ๐‘‹,
if ๐‘ฅ = ๐‘ฅ+
๐ฟ,
โˆ’
if ๐‘ฅ = ๐‘ฆ๐‘… .
and de๏ฌne the linear order < on ๐‘Œ by declaring ๐‘ฅ < ๐‘ฆ if and only if either
โˆ’
๐œ‹(๐‘ฅ) โˆ•= ๐œ‹(๐‘ฆ) and ๐œ‹(๐‘ฅ)โŠฒโ„’ ๐œ‹(๐‘ฆ), or ๐‘ฅ = ๐‘ฅ๐ฟ and ๐‘ฆ = ๐‘ฅ+
๐ฟ , or ๐‘ฅ = ๐‘ฆ๐‘… and ๐‘ฆ = ๐‘ฆ๐‘… .
Clearly ๐‘‹ โŠ† ๐‘Œ and the restriction of < to ๐‘‹ is equal to โŠฒโ„’ . It remains to
show that the topology ๐’ฏ on ๐‘‹ coincides with the subspace topology on ๐‘‹
inherited from the order topology on ๐‘Œ . As in the argument for (3), since โ„’โˆชโ„›
is a subbase for ๐’ฏ consisting of two nests, every ๐‘ˆ in ๐’ฏ can be written as a
union of sets of the form ๐ฟ โˆฉ ๐‘…, where ๐ฟ โˆˆ โ„’ and ๐‘… โˆˆ โ„›. It su๏ฌƒces therefore
to show that every ๐ฟ โˆˆ โ„’ and ๐‘… โˆˆ โ„› can be written as the intersection of
an order-open set with ๐‘‹. If ๐ฟ โˆˆ
/ โ„’โ€ฒ , then ๐ฟ = ๐‘‹ โˆฉ ๐œ‹ โˆ’1 (๐ฟ) and ๐œ‹ โˆ’1 (๐ฟ) is
order-open. On the other hand, if ๐ฟ is in โ„’โ€ฒ with โŠฒโ„’ -maximal element ๐‘ฅ๐ฟ ,
then ๐ฟ = ๐‘‹ โˆฉ (โˆ’โˆž, ๐‘ฅ+
๐ฟ ). The argument for ๐‘… โˆˆ โ„› is the same. โ–ก
As van Dalen and Wattel point out [12], if ๐‘‹ is a compact space and the two
nests โ„’ and โ„› form a ๐‘‡1 -separating subbase for ๐‘‹, then both โ„’ and โ„› are
interlocking, corresponding to the fact that a compact GO space is LOTS. In
fact more is true.
Theorem 11 Let ๐‘‹ be a space and let โ„’ and โ„› be two nests of open sets
whose union forms a ๐‘‡1 -separating subbase for ๐‘‹. Suppose that โ„’ has the
property that for all ๐ฟ โˆˆ โ„’ there is a compact set ๐ถ such that ๐ฟ โŠ† ๐ถ,
(1) โ„’ is interlocking.
(2) If โ„› is not interlocking, then this is only because there is a singleton
โˆฉ
๐‘…0 โˆˆ โ„› such that ๐‘…0 = {๐‘… โˆˆ โ„› : ๐‘…0 โŠŠ ๐‘…}.
PROOF. Suppose that โ„’ is not interlocking. By Theorem 8, there is some
โˆฉ
๐ฟ โˆˆ โ„’ such that ๐ฟ has a โŠฒโ„’ -maximal element ๐‘ฅ๐ฟ , but ๐ฟ = {๐‘€ โˆˆ โ„’ : ๐ฟ โŠŠ
๐‘€ }. Choose ๐‘ โˆˆ โ„’ and a compact set ๐ถ such that ๐ฟ โŠŠ ๐‘ โŠ† ๐ถ. There is
an in๏ฌnite decreasing subset โ„ณ of {๐‘€ โˆˆ โ„’ : ๐ฟ โŠŠ ๐‘€ โŠ† ๐‘ โŠ† ๐ถ} such that
โˆฉ
โ„ณ = ๐ฟ. Since โ„’ โˆช โ„› is ๐‘‡1 -separating, for each ๐‘€ and ๐‘€ โ€ฒ in โ„ณ such that
๐‘€ โŠŠ ๐‘€ โ€ฒ , there is ๐‘ฅ๐‘€ โˆˆ ๐‘€ , ๐‘ฆ๐‘€ โˆˆ ๐‘€ โ€ฒ and ๐‘… โˆˆ โ„› such that ๐‘ฅ๐‘€ โˆˆ
/ ๐‘…โˆฉ๐‘€
โ€ฒ
and ๐‘ฆ๐‘€ โˆˆ ๐‘… โˆฉ ๐‘€ . But then there is an in๏ฌnite increasing subset ๐’ฎ of โ„› that
covers ๐‘‹ โˆ’ ๐ฟ. It follows that {๐ฟ} โˆช ๐’ฎ is an open cover of ๐ถ with no ๏ฌnite
subcover. This contradiction proves (1).
Suppose now that โ„› is not interlocking, so that for some ๐‘… โˆˆ โ„›, ๐‘… has a
โˆฉ
โŠฒโ„’ -minimal element ๐‘ฅ๐‘… but ๐‘… = {๐‘† โˆˆ โ„› : ๐‘… โŠŠ ๐‘†}. If ๐‘… is not a singleton
(and thus the least element of โ„›), then there is some ๐‘ฆ โˆˆ ๐‘… such that ๐‘ฅ๐‘… โŠฒโ„’ ๐‘ฆ.
Let ๐‘€ โˆˆ โ„’ be such that ๐‘ฅ๐‘… โˆˆ ๐‘€ โˆ•โˆ‹ ๐‘ฆ and let ๐ถ be a compact set such that
๐‘€ โŠ† ๐ถ. Then as for (1), {๐‘…} โˆช {๐ฟ โˆˆ โ„’ : ๐ฟ โˆฉ ๐‘… = โˆ…} is a cover of ๐ถ by sets
open in ๐‘‹ that has no ๏ฌnite subcover. โ–ก
The next corollary now follows easily from Theorems 10 and 11. In fact it is
6
not much harder to argue locally to see that a locally compact GO space is a
LOTS.
Corollary 12 If ๐‘‹ is compact GO space, then ๐‘‹ is a LOTS.
โ–ก
Suppose that โ„’ an ๐’ฉ are two nests and โŠฒโ„’ =โŠฒ๐’ฉ . How do โ„’ and ๐’ฉ relate?
Proposition 13 Let ๐‘‹ be a set and let โ„’ โŠ† ๐’ซ(๐‘‹).
(1) If โ„’ โŠ† โ„’โˆช and each element of โ„’โˆช is a union of elements from โ„’, in
particular if โ„’โˆช is the closure of โ„’ under arbitrary unions, then โŠฒโ„’ =โŠฒโ„’โˆช .
(2) If โ„’ โŠ† โ„’โˆฉ and each element of โ„’โˆฉ is an intersection of elements from โ„’,
in particular if โ„’โˆฉ is the closure of โ„’ under arbitrary intersections, then
โŠฒโ„’ =โŠฒโ„’โˆฉ .
(3) If โ„’ is an interlocking nest, โ„’ โŠ† โ„’โˆช and each element of โ„’โˆช is a union
of elements from โ„’, then โ„’โˆช is an interlocking
nest.
{
}
(4) If โ„’ is a ๐‘‡0 -separating nest and โ„’โ€ฒ = (โˆ’โˆž, ๐‘Ž) : ๐‘Ž โˆˆ ๐‘‹ , is nest leftin๏ฌnite open โŠฒโ„’ -intervals, then ๐‘๐ฟโ€ฒ is an interlocking nest and โŠฒโ„’ =โŠฒ๐‘๐ฟโ€ฒ
PROOF. For (1) and (2) note ๏ฌrst that, if ๐ฟ โˆˆ โ„’, then ๐ฟ is in both โ„’โˆช and
โ„’โˆฉ , so that ๐‘ฅ โŠฒโ„’โˆช ๐‘ฆ and ๐‘ฅ โŠฒโ„’โˆฉ ๐‘ฆ, whenever ๐‘ฅโŠฒโ„’ ๐‘ฆ. If ๐‘ฅ โŠฒโ„’โˆช ๐‘ฆ, then for some
โˆช
โ„ณ โŠ† โ„’, ๐‘ฅ โˆˆ โ„ณ โˆ•โˆ‹ ๐‘ฆ, so that for any ๐‘€ โˆˆ โ„ณ, ๐‘ฅ โˆˆ ๐‘€ โˆ•โˆ‹ ๐‘ฆ and ๐‘ฅโŠฒโ„’ ๐‘ฆ. If
โˆฉ
๐‘ฅ โŠฒโ„’โˆฉ ๐‘ฆ, then for some โ„ณ โŠ† โ„’, ๐‘ฅ โˆˆ โ„ณ โˆ•โˆ‹ ๐‘ฆ, so that for some ๐‘€ โˆˆ โ„ณ,
๐‘ฅ โˆˆ ๐‘€ โˆ•โˆ‹ ๐‘ฆ and ๐‘ฅโŠฒโ„’ ๐‘ฆ.
(3) is immediate from the De๏ฌnition 6. (4) is routine given the proof of Lemma
9. โ–ก
Let < be the usual order on โ„. Recall that the Sorgenfrey {Line is โ„ with
}
the topology generated by the base of half open <-intervals (๐‘Ž, ๐‘] : ๐‘Ž < ๐‘ .
{
}
{
}
Clearly the two nests โ„’ = (โˆ’โˆž, ๐‘Ž] : ๐‘Ž โˆˆ โ„ and โ„› = (๐‘Ž, โˆž) : ๐‘Ž โˆˆ โ„ form
a ๐‘‡1 -separating subbase for the Sorgenfrey line. โ„› is interlocking but โ„’ is not
interlocking. On the other hand, <= โŠฒโ„’ . The Michael is formed from the real
line by de๏ฌning the topology of the reals by declaring each irrational to be
isolated. The nests
{
}
{
๐’ฉ = (โˆ’โˆž, ๐‘ž) : ๐‘ž โˆˆ โ„š โˆช (โˆ’โˆž, ๐‘Ÿ] : ๐‘Ÿ โˆˆ
/โ„š
}
and
{
}
{
}
โ„ณ = (๐‘ž, โˆž) : ๐‘ž โˆˆ โ„š โˆช [๐‘Ÿ, โˆž) : ๐‘Ÿ โˆˆ
/โ„š
form a ๐‘‡1 -separating
subbase }for the Michael Line. Notice that the nests โ„’,
{
๐’ฉ and ๐’ฌ = (โˆ’โˆž, ๐‘ž) : ๐‘ž โˆˆ โ„š are all distinct, indeed โ„’ and ๐’ฌ are disjoint,
7
yet all three generate the usual order on โ„.
2
Nests and well-orders
In this section we turn our attention to ordinal spaces.
Recall that a topological space ๐‘‹ is said to be scattered if and only if every
subset ๐ด โŠ† ๐‘‹ has an isolated point. ๐‘‹ is said to be right-separated if and
only if there is a well-order on ๐‘‹ for which initial segments are open [11].
De๏ฌnition 14 A collection โ„’ โŠ† ๐’ซ(๐‘‹) scatters ๐‘‹ if and only if for every
non-empty subset ๐ด of ๐‘‹, there is some ๐ฟ โˆˆ โ„’ such that โˆฃ๐ด โˆฉ ๐ฟโˆฃ = 1.
The following lemma is obvious.
Lemma 15 Let ๐‘‹ be a space. The following are equivalent.
(1) ๐‘‹ is scattered,
(2) ๐‘‹ is right separated.
(3) ๐‘‹ is scattered by a nest of open subsets.
โ–ก
Theorem 16 Let ๐‘‹ be a set and โ„’ be a nest. The following are equivalent:
(1)
(2)
(3)
(4)
โ„’ scatters ๐‘‹.
โŠฒโ„’ is a well order.
โ„’ is ๐‘‡0 -separating and well-ordered by โŠ†.
โ„’ is ๐‘‡0 -separating and, for every subset ๐ด of ๐‘‹, there is an ๐‘Ž โˆˆ ๐ด such
that for any ๐‘ฅ โˆˆ ๐ด and any ๐ฟ โˆˆ โ„’, if ๐‘ฅ โˆˆ ๐ฟ, then ๐‘Ž โˆˆ ๐ฟ.
PROOF. (1) implies (2): If ๐ด is a subset of ๐‘‹ and ๐ฟ โˆฉ ๐ด = {๐‘Ž}, then ๐‘Ž is
clearly the โŠฒโ„’ -least element of ๐ด.
(2) implies (3): Since โŠฒโ„’ is a linear order, โ„’ is ๐‘‡0 -separating by Theorem 4.
Suppose that ๐ฟ1 โŠ‹ ๐ฟ2 โŠ‹ ๐ฟ3 โŠ‹ . . . is an in๏ฌnite decreasing chain in โ„’. Then
there are points ๐‘ฅ๐‘– โˆˆ ๐ฟ๐‘– โˆ’ ๐ฟ๐‘–+1 , which form an in๏ฌnite decreasing โŠฒโ„’ -chain,
contradicting (2).
(3) implies (4): Suppose that ๐ด is a subset of ๐‘‹. Let ๐ฟ be the โŠ†-least element
of โ„’ such that ๐ฟ โˆฉ ๐ด is non-empty. Since โ„’ is ๐‘‡0 -separating and well-ordered
by โŠ†, ๐ฟ โˆฉ ๐ด = {๐‘Ž} for some ๐‘Ž. Then, if ๐‘€ โˆˆ โ„’ and ๐‘Ž โˆ•= ๐‘ฅ โˆˆ ๐ด โˆฉ ๐‘€ , ๐ฟ โŠ† ๐‘€ ,
so that ๐‘Ž โˆˆ ๐‘€ .
(4) implies (1): Let ๐ด be a subset of ๐‘‹. Let ๐‘Ž be the point furnished by (4) for
8
๐ด and let ๐‘ be the point furnished by (4) for ๐ด โˆ’ {๐‘Ž}. Since โ„’ is ๐‘‡0 separating,
there is ๐ฟ โˆˆ โ„’ which ๐‘‡0 -separates ๐‘Ž and ๐‘. By (4), ๐‘Ž โˆˆ ๐ฟ if ๐‘ โˆˆ ๐ฟ, so ๐‘Ž โˆˆ ๐ฟ โˆ•โˆ‹ ๐‘.
If ๐‘ฅ โˆ•= ๐‘Ž and ๐‘ฅ โˆˆ ๐ฟ, then ๐‘ โˆˆ ๐ฟ, so ๐ฟ โˆฉ ๐ด = {๐‘Ž}. โ–ก
Theorem 17 Let ๐‘‹ be a set. Let โ„’ and โ„› be two nests on ๐‘‹ that are ๐‘‡0 separating.
(1) Suppose that for all ๐ด โŠ† ๐‘‹, there is some ๐‘Ž โˆˆ ๐ด such that, if ๐‘Ž โˆˆ ๐‘… โˆˆ โ„›,
then ๐ด โŠ† ๐‘…. Then โŠณโ„› is a well-order and โ„› is well-ordered by โŠ‡.
(2) Suppose that โ„’ โˆช โ„› ๐‘‡1 -separates ๐‘‹. โ„’ is well-ordered by โŠ† if and only if
โ„› is well-ordered by โŠ‡.
PROOF. Clearly, if ๐ด is a subset of ๐‘‹, and ๐‘Ž is as in the statement of the
theorem, then ๐‘Ž is the โŠฒโ„› -maximal, hence โŠณโ„› -minimal, element of ๐ด. Hence
(1) holds. (2) is immediate by Theorem 5 โ–ก
Lemma 18 Let ๐‘‹ be a set and let โ„’ and โ„› be subsets of ๐’ซ(๐‘‹). Suppose that
โ„’ scatters ๐‘‹.
(1) โ„’ is ๐‘‡0 -separating.
(2) If โ„’ is a nest, then โ„’ is interlocking.
(3) If โ„’ and โ„› are nests of open sets whose union ๐‘‡1 -separates ๐‘‹, then there
is a subset โ„ณ of โ„’ that ๐‘‡0 -separates and scatters ๐‘‹ consisting of clopen
sets.
PROOF. For (1), given ๐‘ฅ โˆ•= ๐‘ฆ, there is ๐ฟ โˆˆ โ„’ such that ๐ฟ โˆฉ {๐‘ฅ, ๐‘ฆ} is a
singleton.
For (2), pick ๐ฟ โˆˆ โ„’. Since โ„’ scatters ๐‘‹, there is some ๐‘€ โˆˆ โ„’ such that
๐‘€ โˆฉ (๐‘‹ โˆ’ ๐ฟ) = {๐‘ฅ}. Since โ„’ is a nest, ๐ฟ โŠŠ ๐‘€ = ๐ฟ โˆช {๐‘ฅ} and, whenever
โˆฉ
๐ฟ โŠŠ ๐‘€ โ€ฒ โˆˆ โ„’, ๐‘€ โŠ† ๐‘€ โ€ฒ . Hence ๐ฟ โˆ•= {๐‘€ โˆˆ โ„’ : ๐ฟ โŠŠ ๐‘€ }, so that โ„’ is
vacuously interlocking.
To see that (3) holds, note ๏ฌrst that by Lemma 16 that โŠฒโ„’ is a well-order. Let
๐‘ฅ โˆ•= ๐‘ฆ and let ๐‘ฅ+ denote the immediate โŠฒโ„’ -successor of ๐‘ฅ, so that ๐‘ฅ+ โŠดโ„’ ๐‘ฆ.
Sinceโ„’ โˆช โ„› ๐‘‡1 -separates ๐‘‹, there are ๐ฟ โˆˆ โ„’ and ๐‘… โˆˆ โ„› such that ๐‘ฅ โˆˆ ๐ฟ โˆ•โˆ‹ ๐‘ฅ+
and ๐‘ฅ โˆˆ
/ ๐‘… โˆ‹ ๐‘ฅ+ . Since the interval (๐‘ฅ, ๐‘ฅ+ ) is empty, ๐‘‹ โˆ’ ๐ฟ = ๐‘…. Since ๐‘… is
open, ๐ฟ is clopen, ๐‘ฅ โˆˆ ๐ฟ โˆ•โˆ‹ ๐‘ฆ and ๐‘ฆ โˆˆ ๐‘… โˆ•โˆ‹ ๐‘ฅ๐ฟ. โ–ก
Lemma 19 Let โ„’ be a nest of subsets of the set ๐‘‹ and let โ„› be the nest
โ„› = {๐‘‹ โˆ’ ๐ฟ : ๐ฟ โˆˆ โ„’}.
(1) โ„› is interlocking if and only if, for all ๐ฟ โˆˆ โ„’, ๐ฟ =
โˆช
whenever ๐ฟ = {๐‘€ โˆˆ โ„’ : ๐‘€ โŠŠ ๐ฟ}.
9
โˆฉ
{๐‘€ โˆˆ โ„’ : ๐ฟ โŠŠ ๐‘€ }
(2) If ๐‘‹ is a space and each ๐ฟ โˆˆ โ„’ is compact and open, then โ„› is interlocking.
(3) If โ„’ is ๐‘‡0 -separating, in particular if โ„’ scatters ๐‘‹, then โ„’ โˆช โ„› is ๐‘‡1 separating.
PROOF. That (1) holds is an immediate consequence of de Morganโ€™s Laws.
โˆช
For (2), suppose that ๐ฟ = {๐‘€ โˆˆ โ„’ : ๐‘€ โŠŠ ๐ฟ}. Since ๐ฟ is compact, we have
๐ฟ = ๐‘€1 โˆช โ‹… โ‹… โ‹… โˆช ๐‘€๐‘˜ , for some ๐‘€๐‘– โŠŠ ๐ฟ, but โ„’ is a nest so we have ๐ฟ = ๐‘€๐‘— for
some ๐‘€๐‘— โˆˆ โ„’ such that ๐‘€๐‘— โŠŠ ๐ฟ, which is impossible. So the condition in (1)
holds vacuously. Given Lemma 18, (3) follows immediately. โ–ก
Theorem 20 Let ๐‘‹ be a space. The following are equivalent.
(1) ๐‘‹ is homeomorphic to an ordinal.
(2) ๐‘‹ has two interlocking nests โ„’ and โ„› of open sets whose union is ๐‘‡1 separating subbase such that โ„’ scatters ๐‘‹.
(3) ๐‘‹ has two interlocking nests โ„’ and โ„› of open sets whose union is ๐‘‡1 separating subbase, one of which is well-ordered by โŠ† or โŠ‡.
(4) ๐‘‹ is scattered by a nest โ„’ of clopen subsets such that
โˆช
(a) ๐ฟ โˆ•= {๐‘€ : ๐‘€ โŠŠ ๐ฟ} for any ๐ฟ โˆˆ โ„’;
(b) {๐ฟ โˆ’ ๐‘€ : ๐ฟ, ๐‘€ โˆˆ โ„’} is a base for ๐‘‹.
(5) ๐‘‹ is scattered by a nest of compact clopen sets.
PROOF. The equivalence of (1), (2) and (3) follows immediately from Theorems 16 and 10 and Lemma 18.
{
}
(1) implies both (4) and (5) since, if ๐›ผ is an ordinal, then [0, ๐›ฝ] : ๐›ฝ < ๐›ผ is a
nest of compact clopen subsets that scatter ๐›ผ and satisfy conditions (4a) and
(4b).
Lemmas 18 and 19 imply that if either (4) or (5) holds, then both โ„’ and
โ„› = {๐‘‹ โˆ’ ๐ฟ : ๐ฟ โˆˆ โ„’} are interlocking nests of open sets whose union ๐‘‡1 separates ๐‘‹. If (4b) holds, then โ„’ โˆช โ„› is a subbase for ๐‘‹ and we see that
(4) implies (2). To see that (5) implies (1), we argue as follows. We have that
โŠฒโ„’ is a well-order on ๐‘‹ and that the order topology induced by โŠฒโ„’ is coarser
than the topology on ๐‘‹ by Theorem 10. If ๐‘‹ is compact, then we note that
the order topology is Hausdor๏ฌ€ and coarser than the compact topology on
๐‘‹. Hence the two topologies coincide. If ๐‘‹ is not compact, then since the
elements of โ„’ are clopen and compact, ๐‘‹ is locally compact and we may
form the one-point compacti๏ฌcation ๐‘‹ โˆ— of ๐‘‹. But then โ„’ โˆช {๐‘‹ โˆ— } is a nest
of compact clopen sets that scatters ๐‘‹ โˆ— , which by the previous sentence is
homeomorphic to an ordinal. Clearly ๐‘‹ is a โŠฒโ„’ -initial segment of ๐‘‹ โˆ— , so that
๐‘‹ is also homeomorphic to an ordinal. โ–ก
10
The following corollary is now immediate.
Corollary 21 ๐‘‹ is homeomorphic to a cardinal if and only if ๐‘‹ is scattered
by a nest โ„’ of compact clopen sets such that โˆฃ๐ฟโˆฃ < โˆฃ๐‘‹โˆฃ for each ๐ฟ โˆˆ โ„’.
In particular, ๐‘‹ is homeomorphic to ๐œ”1 if and only if ๐‘‹ is uncountable and
scattered by a nest of compact clopen countable sets. โ–ก
As in Theorem 10, we also have the following.
Proposition 22 Let ๐‘‹ be a space.
(1) ๐‘‹ admits a continuous bijection onto and ordinal if and only if it is
scattered by a nest of clopen sets.
(2) ๐‘‹ is homeomorphic to a subspace of an ordinal if and only if it is scattered
by a nest of clopen sets โ„’ and {๐ฟ โˆ’ ๐‘€ : ๐ฟ, ๐‘€ โˆˆ โ„’} forms a subbase for
๐‘‹.
PROOF. One direction is obvious in each case. For (1), we note that the order
โŠฒโ„’ is a well-order and that every order open set is open in ๐‘‹ by Theorem 10.
For (2), if โ„’ is a nest of clopen sets that scattered ๐‘‹, then โŠฒโ„’ is well-ordered
and โ„’ is ๐‘‡0 -separating (and interlocking) by Lemma 18. Let โ„› = {๐‘‹ โˆ’ ๐ฟ :
๐ฟ โˆˆ โ„’}. Then, as โ„’ is ๐‘‡0 -separating, โ„’ โˆช โ„› is ๐‘‡1 -separating, so that the result
follows by the proof of Theorem 10 (2). To see this note that by Lemma 19,
โˆช
interlocking fails in โ„› for elements ๐‘‹ โˆ’ ๐ฟ where ๐ฟ = {๐‘€ โˆˆ โ„’ : ๐‘€ โŠŠ ๐ฟ} but
โˆฉ
๐ฟ โˆ•= {๐‘€ โˆˆ โ„’ : ๐ฟ โŠŠ ๐‘€ }. Let โ„’โ€ฒ be the set of all such ๐ฟ. For each such ๐ฟ we
introduce a new point ๐‘ฅ๐ฟ โˆ•โˆˆ ๐‘‹ and de๏ฌne an order < on ๐‘‹ โˆ— = ๐‘‹ โˆช {๐‘ฅ๐ฟ : ๐ฟ โˆˆ
โ„’โ€ฒ } by declaring
โŽง
๏ฃด
๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ and ๐‘ฅโŠฒโ„’ ๐‘ฆ,
๏ฃด
๏ฃด
๏ฃด
๏ฃด
โŽจ๐‘ฅ = ๐‘ฅ , ๐‘ฆ โˆˆ ๐‘‹ and ๐‘ฆ โˆˆ
/ ๐ฟ,
๐ฟ
๐‘ฅ < ๐‘ฆ i๏ฌ€
๏ฃด
๏ฃด๐‘ฅ โˆˆ ๐‘‹, ๐‘ฆ = ๐‘ฅ๐ฟ and ๐‘ฅ โˆˆ ๐ฟ,
๏ฃด
๏ฃด
๏ฃด
โŽฉ
๐‘ฅ = ๐‘ฅ๐ฟ , ๐‘ฆ = ๐‘ฆ๐‘€ and ๐ฟ โŠŠ ๐‘€.
Then it is not hard to show that < is a well-order on ๐‘‹ โˆ— that agrees with โŠฒโ„’
on ๐‘‹ and that ๐‘‹ is subspace of ๐‘‹ โˆ— . โ–ก
Lemma 15 shows that the existence of nest of open sets that scatters a space
is equivalent to right-separation. We exploit this in the next theorem.
De๏ฌnition 23 Let ๐‘‹ be a space and < a well-order on ๐‘‹. We say that <weakly left-separates ๐‘‹ if and only if {๐‘ฆ โˆˆ ๐‘‹ : ๐‘ฆ โ‰ค ๐‘ฅ} is closed for every
๐‘ฅ โˆˆ ๐‘‹. < left-separates ๐‘‹ if and only if {๐‘ฆ : ๐‘ฆ < ๐‘ฅ} is closed for all ๐‘ฅ โˆˆ ๐‘‹.
11
Theorem 24 Let ๐‘‹ be a space.
(1) ๐‘‹ admits a continuous bijection onto an ordinal if and only if it is rightand weakly left-separated by the same well order.
(2) ๐‘‹ is homeomorphic to a subspace of an ordinal if and only if it is rightand weakly-left separated by a well-order whose intervals form a subbase
for ๐‘‹.
(3) ๐‘‹ is homeomorphic to an ordinal if and only if it is right- and weakly
left-separated by the order < so that if ๐ถ = {๐‘ฅ๐›ผ : ๐›ผ โˆˆ ๐œ†} is a <-increasing
sequence indexed by a limit ordinal and ๐ถ is closed, then ๐ถ is <-co๏ฌnal
in ๐‘‹.
PROOF. (1) and (2) follow easily from Proposition 22. For (3), note ๏ฌrst
that the order topology induced by < is coarser than the topology on ๐‘‹. But
then if the topology of ๐‘‹ is strictly ๏ฌner than the order topology on ๐‘‹, there
is some order limit point ๐‘ฅ that is not a limit point in ๐‘‹, which contradicts
the condition of the theorem.
The space ๐œ”1 +1+๐œ”โˆ—, where ๐œ” โˆ— denotes ๐œ” with the reverse order, is a compact
scattered LOTS that is not scattered by a nest of clopen sets. Purisch [8] has
shown that every scattered GO space is LOTS, hence the isolated points of ๐œ”1
is a locally compact LOTS and has an subbase consisting of two interlocking
nest whose union is ๐‘‡1 -separating. It also has a nest of clopen countable sets
that scatter ๐‘‹, but is not scattered by a nest of compact clopen sets.
Let ฮจ = ๐œ” โˆช {๐‘ฅ๐›ผ : ๐›ผ โˆˆ ๐œ…} denote Mrowkaโ€™s ฮจ-space and ฮจโˆ— denote
its one
{
point compacti๏ฌcation. If ๐ฟ๐›ผ = ๐œ” โˆช {๐‘ฅ๐›ฝ : ๐›ฝ < ๐›ผ} and โ„’ = [0, ๐‘›] : ๐‘› โˆˆ
}
๐œ” โˆช {๐ฟ๐›ผ : ๐›ผ โˆˆ ๐œ…} is a ๐‘‡0 -separating nest of open sets that scatters ฮจโˆ— . Note
โˆฉ
โˆช
that ๐ฟ0 = {๐‘€ โˆˆ ๐’ฉ : ๐ฟ0 โŠŠ ๐‘€ } but ๐ฟ0 โˆ•= {๐‘€ โˆˆ ๐’ฉ : ๐‘€ โŠŠ ๐ฟ0 }, so that โ„’
is not interlocking. It follows that two nests whose union is ๐‘‡1 -separating for
the conclusion of Theorem 11 to hold. ฮจโˆ— is both right- and left-separated,
but not by the same order.
{
}
Let ๐‘‹ = ๐œ”1 โˆช (๐›ผ, ๐‘›) : ๐‘› โˆˆ ๐œ”, ๐›ผ โˆˆ ๐œ”1 a limit . Let < be the usual order
on ๐œ”1 and de๏ฌne a linear order โŠฒ on ๐‘‹ by declaring: ๐›ผ โŠฒ ๐›ฝ i๏ฌ€ ๐›ผ < ๐›ฝ;
๐›ผ โŠฒ (๐›ฝ, ๐‘›) i๏ฌ€ ๐›ผ โ‰ค ๐›ฝ; (๐›ฝ, ๐‘›) โŠฒ ๐›ผ i๏ฌ€ ๐›ฝ < ๐›ผ; and (๐›ผ, ๐‘›) โŠฒ (๐›ฝ, ๐‘š) i๏ฌ€ ๐›ผ < ๐›ฝ
or ๐›ผ = ๐›ฝ and ๐‘š < ๐‘›. Then with the order topology generated by โŠฒ, ๐‘‹
is a scattered, locally countable, locally compact scattered LOTS, which has
a nest of compact clopen countable sets that ๐‘‡0 -separates ๐‘‹, but ๐‘‹ is not
homeomorphic to an ordinal space.
12
References
[1] John Warren Baker. Compact spaces homeomorphic to a ray of ordinals. Fund.
Math., 76(1):19โ€“27, 1972.
[2] S. Fujii and T. Nogura. Characterizations of compact ordinal spaces via
continuous selections. Topology Appl., 91(1):65โ€“69, 1999.
[3] Seiji Fujii. Characterizations of ordinal spaces via continuous selections. In
Proceedings of the International Conference on Topology and its Applications
(Yokohama, 1999), volume 122, pages 143โ€“150, 2002.
[4] Chris Good. Bijective preimages of ๐œ”1 . Topology Appl., 75(2):125โ€“142, 1997.
[5] Yasushi Hirata and Nobuyuki Kemoto. Orderability of subspaces of wellorderable topological spaces. Topology Appl., 157(1):127โ€“135, 2010.
[6] M. R. Jones. Intersection topologies with respect to separable GO-spaces and
the countable ordinals. Fund. Math., 146(2):153โ€“158, 1995.
[7] David J. Lutzer. Ordered topological spaces. In Surveys in general topology,
pages 247โ€“295. Academic Press, New York, 1980.
[8] S. Purisch. The orderability and closed images of scattered spaces. Trans.
Amer. Math. Soc., 320(2):713โ€“725, 1990.
[9] S. Purisch. A history of results on orderability and suborderability. In Handbook
of the history of general topology, Vol. 2 (San Antonio, TX, 1993), volume 2
of Hist. Topol., pages 689โ€“702. Kluwer Acad. Publ., Dordrecht, 1998.
[10] G. M. Reed. The intersection topology w.r.t. the real line and the countable
ordinals. Trans. Amer. Math. Soc., 297(2):509โ€“520, 1986.
[11] Judy Roitman. Basic ๐‘† and ๐ฟ. In Handbook of set-theoretic topology, pages
295โ€“326. North-Holland, Amsterdam, 1984.
[12] J. van Dalen and E. Wattel. A topological characterization of ordered spaces.
General Topology and Appl., 3:347โ€“354, 1973.
[13] Eric K. van Douwen. On Mikeโ€™s misnamed intersection topologies. Topology
Appl., 51(2):197โ€“201, 1993.
[14] Eric K. van Douwen. Orderability of all noncompact images. Topology Appl.,
51(2):159โ€“172, 1993.
13