* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Accelerated Geometry – Concepts 5-8
Multilateration wikipedia , lookup
Duality (projective geometry) wikipedia , lookup
Trigonometric functions wikipedia , lookup
Perspective (graphical) wikipedia , lookup
History of trigonometry wikipedia , lookup
Riemann–Roch theorem wikipedia , lookup
Noether's theorem wikipedia , lookup
Pythagorean theorem wikipedia , lookup
Rational trigonometry wikipedia , lookup
Four color theorem wikipedia , lookup
Brouwer fixed-point theorem wikipedia , lookup
Euler angles wikipedia , lookup
Accelerated Geometry – Concepts 5-8 Reasoning and Proof Building Concept5–ConditionalStatements(Section2.2) ConditionalStatement: Hypothesis: Conclusion: Converse: Example:Usethestatementbelowtoanswereachquestion. Ifanumberisdivisibleby3,thenitisodd. a)Whatisthehypothesisofthestatement? b)Whatistheconclusionofthestatement? c)Whatistheconverseofthestatement? Concept5–BiconditionalsandDefinitions(Section2.3) Biconditional: Example:Writetheconverseofthestatementbelow.Ifitistrue,writeabiconditionalstatement. Conditional-Iftwoangleshavethesamemeasure,thentheanglesarecongruent. Converse- Biconditional– GoodDefinition: Counterexample: Concept5–InductiveReasoning(Section2.1) InductiveReasoning: Conjecture: Concept5–DeductiveReasoning(Section2.4) DeductiveReasoning: LawofDetachment LawofSyllogism Ifp → q and q → r are true statements, then p → r is also a true statement. Concept6–ReasoninginAlgebraandGeometry(Section2.5) AlgebraicPropertiesofEquality Property Example AdditionProperty If a = b ,then a + c = b + c . SubtractionProperty If a = b ,then a − c = b − c . MultiplicationProperty If a = b , then ac = bc . DivisionProperty If a = b , then SubstitutionProperty If a = b , then a can be substituted for b in any expression or equation. DistributiveProperty a(b + c) = ab + ac a b = c c PropertiesofEqualityandCongruence Property Example Explanation ReflexivePropertyofEquality a=a ReflexivePropertyofCongruence RT ≅ RT or ∠5 ≅ ∠5 SymmetricPropertyofEquality If a = b , then b = a . SymmetricPropertyofCongruence If LM ≅ RT , then RT ≅ LM . TransitivePropertyofEquality If a = b and b = c , then a = c . TransitivePropertyofCongruence If ∠A ≅ ∠B and ∠B ≅ ∠C , then ∠A ≅ ∠C . Proof: 2-ColumnProof Eachstatementmusthaveareasontojustifyit.Properties,postulates, definitions,andtheoremsareusedasreasonsinaproof. Postulate: Theorem: HelpfulPostulatesforusinginproofs: Postulate1-6:SegmentAdditionPostulate IfthreepointsA,B,andCarecollinearandBisbetweenAandC, thenAB+BC=AC. Postulate1-8:AngleAdditionPostulate IfpointBisintheinteriorof ∠ AOC, then m∠ AOB + m∠ BOC = m∠ AOC. Postulate1-9:LinearPairPostulate Iftwoanglesforalinearpair,thentheyaresupplementary. Concept6–ProvingAnglesCongruent(Section2.6) ParagraphProof: Theorem2-1:VerticalAnglesTheorem Theorem2-2:CongruentSupplementsTheorem Iftwoanglesaresupplementarytothesameangle (ortocongruentangles),then________________________________________ . Theorem2-3:CongruentComplementsTheorem Iftwoanglesarecomplementarytothesameangle (ortocongruentangles),then________________________________________. Theorem2-4 Theorem2-5 Iftwoanglesarecongruentandsupplementary, theneachis_________________________. Concept7–LinesandAngles(Section3.1) PairsofLines/Segments ParallelLines: PerpendicularLines: SkewLines: ParallelPlanes: Transversal: CorrespondingAngles AlternateInteriorAngles AlternateExteriorAngles Same-SideInteriorAngles (ConsecutiveInterior) Concept7–PropertiesofParallelLines(Section3.2) AnglePairsandParallelLines *UsetheseTheoremsasreasonsforwhytwoanglesarecongruentorsupplementary* Postulate3-1:Same-SideInteriorAnglesPostulate Ifatransversalintersectstwoparallellines,thensame-sideinterioranglesare____________________. Theorem3-1:AlternateInteriorAnglesTheorem Ifatransversalintersectstwoparallellines,thenalternateinterioranglesare___________________. Theorem3-2:CorrespondingAnglesTheorem Ifatransversalintersectstwoparallellines,thencorrespondinganglesare___________________. Theorem3-3:AlternateExteriorAnglesTheorem Ifatransversalintersectstwoparallellines,thenalternateexterioranglesare___________________. Concept7–ProvingLinesParallel(Section3.3) TheoremstoProveLinesareParallel *UsetheseTheoremsasreasonsforhowyouknowtwolinesareparallel* Theorem3-4:CorrespondingAnglesConverse Iftwolinesandatransversalformcorrespondinganglesthatarecongruent,thenlinesareparallel. Theorem3-5:AlternateInteriorAnglesConverse Iftwolinesandatransversalformalternateinterioranglesthatarecongruent,thenlinesareparallel Theorem3-6:Same-SideInteriorAnglesConverse Iftwolinesandatransversalformsame-sideinterioranglesthataresupplementary,thenlinesare parallel. Theorem3-7:AlternateExteriorAnglesConverse Iftwolinesandatransversalformalternateexterioranglesthatarecongruent,thenlinesareparallel. Concept7–ParallelandPerpendicularLines(Section3.4) Theorem3-8 Iftwolinesareparalleltothesameline, thentheyare________________________________________. Theorem3-9 Inaplane,iftwolinesareperpendiculartothesameline, thentheyare_______________________________________. Theorem3-10 Inaplane,ifalineisperpendiculartooneoftwoparallellines, thenitisalso_______________________________________. Concept8–EquationsofLinesintheCoordinatePlane(Section3.7) rise y2 − y1 = Slope= run x2 − x1 m= b= m= (x1, y1) = Concept8–SlopesofParallelandPerpendicularLines(Section3.8) Slopes of Parallel Lines Two nonvertical lines are parallel if and only if they have ___________________________________. Any two vertical lines are parallel. Slopes of Perpendicular Lines Two nonvertical lines are perpendicular if and only if they have _________________________________. Any horizontal line and vertical line are perpendicular.