Download Statistical relational AI : papers presented at the Twenty

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Statistical Relational AI
Papers Presented
Twenty-Eighth AAAI
on
Artificial
at
the
Conference
Intelligence
Technical Report WS-14-13
AAAI Press
Palo Alto, California
Contents
Organizers / iii
Preface / vii
Guy
Van den
Broeck,
Kristian
Kersting
Sriraam
Natarajan, David Poole
Papers
Lifting
Relational MAP-LPs
Using Cluster Signatures /
2
Udi Apsel, Kristian Kersting, Martin Mladenov
Efficient Markov Logic Inference for Natural Language Semantics / 9
Islam
Reasoning
in the
Beltagy, Raymond J. Mooney
Description Logic BEL Using Bayesian Networks /15
Ceylan, Rafael Penaloza
Ismail Ilkan
Parameter Estimation for Relational Kalman Filtering / 22
Jaesik Choi, EyalAmir, TianfangXu,
Albert J. Valocchi
Representation, Reasoning, and Learning for a Relational Influence
Diagram Applied to a Real-Time Geological Domain / 29
Matthew C. Dirks, Andrew Csinger, Andrew Bomber, David Poole
Extending PSL with Fuzzy Quantifiers /
Golnoosh Farnadi,
Stephen
H.
Bach,
35
Marie-Francine Moens, Use
Getoor, Martine De Cock
Understanding the Complexity of Lifted Inference and Asymmetric Weighted Model Counting /
Eric Gribkoff, Guy Van den Broeck, Dan Suciu
Relational Logistic Regression: The Directed Analog of Markov Logic Networks / 41
Seyed Mehran Kazemi, David Buchman, Kristian Kersting Sriraam Natarajan, David Poole
Classification from One Class of Examples for Relational Domains / 44
Tushar
Applying Marginal
Khot,
Sriraam
Natarajan, Jude Shavlik
MAP Search to Probabilistic Conformant
Planning: Initial
Results / 51
Junkyu Lee, Rina Dechter, Radu Marinescu
Towards Adversarial Reasoning in Statistical Relational Domains / 57
Daniel Lowd, Brenton Lessley, Mino De Raj
Automated Debugging with Tractable Probabilistic Programming / 60
Aniruddh Nath, Pedro Domingos
Learning Tractable
Statistical Relational Models / 62
Aniruddh Nath, Pedro Domingos
v
38
Tractable Probabilistic
Knowledge Bases: Wikipedia and Beyond / 69
Mathias Niepert, Pedro
A
Sparse
Domingos
Parameter Learning Method for Probabilistic
Logic Programs /
76
Masaaki Nishino, Akihiro Yamamoto, Masaaki Nagata
A Deeper Empirical
Analysis of CBP Algorithm: Grounding Is the Bottleneck / 83
Poyrekar, Sriraam Natarajan, Kristian Kersting
Shrutika
Explanation-Based Approximate Weighted Model Counting for Probabilistic Logics
Joris Renkens, Angelika Kimmig, Guy
A
Proposal
Van den
/ 86
Broeck, Luc De Raedt
for Statistical Outlier Detection in Relational Structures / 93
Fatemeh Riahi, Oliver Schulte, QingLi
WOLFE:
Strength Reduction and Approximate Programming for Probabilistic Programming / 100
Sebastian Riedel Sameer Singh Vivek Srikumar, Jim Rocktaschel,
Hierarchical
Larysa Visengeriyeva, Jan Noessner
Reasoning with Probabilistic Programrning /104
Ruttenberg, Matthew P. Wilkins, Avi Pfeffer
Brian E.
Scalable Learning for Structure in Markov Logic Networks /111
Zhengya Sun, Zhuoyu Wei, Jue Wang Hongwei Hao
Evidence-Based Clustering for Scalable Inference in Markov Logic /
118
Deepak Venugopal Vibhav Gogate
Solving Distributed Constraint Optimization
Mihaela Verman,
Philip
Problems Using Ranks / 125
Stutz, Abraham Bernstein
Efficient Probabilistic Inference for Dynamic Relational Models / 131
Jonas Vhsselaer, Wannes Meert, Guy Van den Broeck, Luc De Raedt
ProPPR: Efficient First-Order Probabilistic
Structure
Logic Programming for
Parameter Learning, and Scalable Inference / 133
Discovery,
Yang Wang Kathryn Mazaitis,
William
vi
William W. Cohen
Related documents