Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Statistical Relational AI Papers Presented Twenty-Eighth AAAI on Artificial at the Conference Intelligence Technical Report WS-14-13 AAAI Press Palo Alto, California Contents Organizers / iii Preface / vii Guy Van den Broeck, Kristian Kersting Sriraam Natarajan, David Poole Papers Lifting Relational MAP-LPs Using Cluster Signatures / 2 Udi Apsel, Kristian Kersting, Martin Mladenov Efficient Markov Logic Inference for Natural Language Semantics / 9 Islam Reasoning in the Beltagy, Raymond J. Mooney Description Logic BEL Using Bayesian Networks /15 Ceylan, Rafael Penaloza Ismail Ilkan Parameter Estimation for Relational Kalman Filtering / 22 Jaesik Choi, EyalAmir, TianfangXu, Albert J. Valocchi Representation, Reasoning, and Learning for a Relational Influence Diagram Applied to a Real-Time Geological Domain / 29 Matthew C. Dirks, Andrew Csinger, Andrew Bomber, David Poole Extending PSL with Fuzzy Quantifiers / Golnoosh Farnadi, Stephen H. Bach, 35 Marie-Francine Moens, Use Getoor, Martine De Cock Understanding the Complexity of Lifted Inference and Asymmetric Weighted Model Counting / Eric Gribkoff, Guy Van den Broeck, Dan Suciu Relational Logistic Regression: The Directed Analog of Markov Logic Networks / 41 Seyed Mehran Kazemi, David Buchman, Kristian Kersting Sriraam Natarajan, David Poole Classification from One Class of Examples for Relational Domains / 44 Tushar Applying Marginal Khot, Sriraam Natarajan, Jude Shavlik MAP Search to Probabilistic Conformant Planning: Initial Results / 51 Junkyu Lee, Rina Dechter, Radu Marinescu Towards Adversarial Reasoning in Statistical Relational Domains / 57 Daniel Lowd, Brenton Lessley, Mino De Raj Automated Debugging with Tractable Probabilistic Programming / 60 Aniruddh Nath, Pedro Domingos Learning Tractable Statistical Relational Models / 62 Aniruddh Nath, Pedro Domingos v 38 Tractable Probabilistic Knowledge Bases: Wikipedia and Beyond / 69 Mathias Niepert, Pedro A Sparse Domingos Parameter Learning Method for Probabilistic Logic Programs / 76 Masaaki Nishino, Akihiro Yamamoto, Masaaki Nagata A Deeper Empirical Analysis of CBP Algorithm: Grounding Is the Bottleneck / 83 Poyrekar, Sriraam Natarajan, Kristian Kersting Shrutika Explanation-Based Approximate Weighted Model Counting for Probabilistic Logics Joris Renkens, Angelika Kimmig, Guy A Proposal Van den / 86 Broeck, Luc De Raedt for Statistical Outlier Detection in Relational Structures / 93 Fatemeh Riahi, Oliver Schulte, QingLi WOLFE: Strength Reduction and Approximate Programming for Probabilistic Programming / 100 Sebastian Riedel Sameer Singh Vivek Srikumar, Jim Rocktaschel, Hierarchical Larysa Visengeriyeva, Jan Noessner Reasoning with Probabilistic Programrning /104 Ruttenberg, Matthew P. Wilkins, Avi Pfeffer Brian E. Scalable Learning for Structure in Markov Logic Networks /111 Zhengya Sun, Zhuoyu Wei, Jue Wang Hongwei Hao Evidence-Based Clustering for Scalable Inference in Markov Logic / 118 Deepak Venugopal Vibhav Gogate Solving Distributed Constraint Optimization Mihaela Verman, Philip Problems Using Ranks / 125 Stutz, Abraham Bernstein Efficient Probabilistic Inference for Dynamic Relational Models / 131 Jonas Vhsselaer, Wannes Meert, Guy Van den Broeck, Luc De Raedt ProPPR: Efficient First-Order Probabilistic Structure Logic Programming for Parameter Learning, and Scalable Inference / 133 Discovery, Yang Wang Kathryn Mazaitis, William vi William W. Cohen