Download Common Source Amplifier

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Common Source Amplifier
VDD
RD
C3
C1
C2
vs
RL
RG
I
-VSS
• A discrete common source amplifier can be constructed that is very similar in
form to a common emitter
• Biasing with a current source is quite common, particularly for ICs
• But IC amplifiers do not include decoupling/bypass capacitors and biasing
resistors
Lecture 22-1
Common Source Amplifier
• Design the amplifier for maximum possible output voltage swing
VDD
RD
RS
C3
C1
C2
vs
RL=10kΩ
K=0.25mA/V2
Vt=2V
VDD=10V
RG=500k ( >> RS)
λ=0.02
RG
I=1mA
-VSS
Lecture 22-2
Common Source Amplifier
VDD
RD
RS
C3
C1
C2
vs
RL=10kΩ
K=0.25mA/V2
Vt=2volts
VDD=10volts
RG=500k ( >> RS)
RG
I=1mA
-VSS
Lecture 22-3
Common Source Amplifier
• Analyze the circuit --- first solve for the dc bias point:
IC
+
VCC
10V
1.000 mA
RD
6KΩ
C12
1UF
+
+
M1-NMOS
L=10U
W=10U
D
VSSIN
SIN
C1
1UF
+
S
RG
5E5Ω
C2
1UF
+
VIN
+
0.000 pV
-
VOUTAC
+
0.000 pV
-
-
RL
10KΩ
VD
+
4.000 V
-
IS
1mA
VS
+
VSS
-10V
+
-3.837 V
-
Lecture 22-4
Small Signal Model
VDD
RD
C3
C1
C2
vs
RG
D
G
vs
RL
RG
gm vs
ro
RD
RL
S
I
-VSS
Lecture 22-5
Small Signal Model
D
G
vs
RG
gm vs
ro
RD
RL
S
Lecture 22-6
ac Response
• Frequency response with lamda=0.02
e2
e3
e4
e5
e6
frequency
e7
12
11
10
9
8
7
6
5
DB(VOUTAC/VIN)
Lecture 22-7
Transient Response
• Time-domain response for a 10kHz, 0.2v peak ac input signal with
lamda=0.02
0.0
0.1
0.2
0.3
0.4
0.5
time
0.6 ms
1
V
0
-1
VOUTAC
VIN
Lecture 22-8
Transient Response Distortion?
• Vin multiplied by the midband gain, and shifted in phase by 180°
demonstrates that there is very little distortion
0.0
0.1
0.2
0.3
0.4
0.5
time
0.6 ms
1
V
0
-1
VOUTAC
VIN
VIN*(-3.75)
Lecture 22-9
ac Response
• Response for a 10kHz, 0.2v peak ac input signal with lamda=0
• How can we change the design so that lamda is practically zero?
e2
e3
e4
e5
e6
frequency
e7
12
11
10
9
8
7
6
5
DB(VOUTAC/VIN)
Lecture 22-10
Improving the Gain
• Assuming that the peak ac output is less than 1.0 volt, we can use a larger
value of RD to increase the gain but still keep the transistor out of the triode
region
IC
+
VCC
10V
1.000 mA
RD
10KΩ
C12
1UF
+
+
M1-NMOS
L=10U
W=10U
D
VSSIN
SIN
C1
1UF
+
S
RG
5E5Ω
C2
1UF
+
VIN
+
0.000 pV
-
VOUTAC
+
0.000 pV
-
-
RL
10KΩ
VD
+
0.000 pV
-
IS
1mA
VS
+
VSS
-10V
+
-3.920 V
-
Lecture 22-11
Improving the Gain
e2
e3
e4
e5
e6
frequency
e7
14
13
12
11
10
9
8
DB(VOUTAC/VIN)
Lecture 22-12
Improving the Gain
• But further increase in RD is not possible
0.0
0.1
0.2
0.3
0.4
0.5
time
0.6 ms
1
V
0
-1
VOUTAC
VIN
VIN*(-4.7)
Lecture 22-13
Current Mirrors
3.3V
R
M1
M2
Lecture 22-14
Current Mirrors - Output Resistance
3.3V
R
IREF
Io
ID
M1
M2
Lecture 22-15
Current Mirrors-Accuracy
3.3V
R
IREF
Io
ID
M1
M2
Lecture 22-16
Current Steering
M4
3.3V
R
+
V SG5
-
M5
I4
IREF
I2
I3
I5
ID
M1
M2
M3
Lecture 22-17
Related documents