Download Resistor Voltage Coefficient

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
IC Transistors and Resistors
I.
II.
III.
IV.
Resistors
Bipolar Transistors
MOS
DMOS
Chris Kendrick
Jan. 29, 2003
BiCMOS Design
Resistor Voltage Coefficient
Figure 1 A p type region in an n type tub forms the resistor.
http://adev.onsemi.com/knowledge_net/index.html
Resistor Voltage Coefficient
% Change PHV Resistance vs. Body Bias
% Change Resistance
25.00%
30x300
20.00%
12x300
6x300
12x120
15.00%
12x30
10.00%
VApplied = 5V
5.00%
0.00%
0
10
20
30
Body Bias (V)
40
50
Resistor Temperature Coefficient
PHV Resistance vs. Temperature
% Change in Resistance
80.0%
VBody = 5V
60.0%
40.0%
30x300
12x300
20.0%
6x300
0.0%
-100
0
-50
50
-20.0%
-40.0%
Temperature (C)
100
150
200
Resistor Voltage limits
• The maximum resistor voltage is NOT
defined by the tub it’s sitting in!
Diffusion
Breakdown (V)
Buried Layer – Isolation
95
PWell – Epi
95
PHV – Epi
60
NHV - PWell
43
PSD - Epi
30
NSD - PWell
17.5
NSD – PHV
12
NSD – PSD (in PWell)
5.8
• The voltage rating of the tub determines
the spacing of PHV to Epi
Lateral PNP Saturation
http://adev.onsemi.com/knowledge_net/index.html
Low current NPN/PNP biasing
• What’s the lowest current bipolars can be biased at?
Lateral PNP
C
B
E
FOX
PSD PHV
PHV
FOX
FOX
PSD Epi
PSD
PHV
NSD
Substrate
PNP (PHV/Epi - Emitter 21x 21
UDR) cross-section
ICmin ~ 5uA
Low current NPN/PNP biasing
• What’s the lowest current bipolars can be biased at?
Vertical PNP
C
B
E
C
FOX
FOX
PWell
PSD
PSD
PHV
NSD
NHV Epi
NSD
PSD
PHV
Substrate
PNPV (PSD/NHV - Emitter 28 x 28
UDR) cross-section
ICmin ~ 20nA
Low current NPN/PNP biasing
• What’s the lowest current bipolars can be biased at?
NPN
E
C
B
FOX
FOX
FOX
PWell
PSD
PHV
NSD
Epi
PSD
PHV
NSD
Substrate
NPN (NSD/PWell - Emitter 21 x 21
UDR) cross-section
ICmin ~ 20nA
MOS Safe Operating Area
• Hot carrier injection limits NMOS operating voltage
S
Poly
D
G
BPSG
FOX
BPSG
FOX
PWell
Epi
NSD
Substrate
Low Voltage NMOS cross-section
4.0E-05
Bulk Current (A)
3.5E-05
3.0E-05
2.5E-05
2.0E-05
1.5E-05
1.0E-05
5.0E-06
0.0E+00
0
1
2
3
Gate Voltage (V)
4
5
6
LV NMOS Hot Carrier Injection
• Maximum Vds determined from HCI measurements 10% degradation in 10 yrs
• Transient Vds rating based on 10% duty cycle
LV LVT NMOS 100x6
Time to 10% IDlin degredation vs. Vds
Time @ 10% Idlin degredation
1.0E+09
1.0E+08
Measured Vds Max (V)
Device
LV NMOS 100x6
LV NMOS 100x16
LV LVT NMOS 100x6
LV LVT NMOS 100x16
Id 10%
1 yr.
5.5
6.8
5.1
6.4
10 yrs -> Vds=4.6V
10 yr.
5.1
6.5
4.6
6.1
1.0E+07
1.0E+06
1.0E+05
0.15
0.16
0.17
0.18
0.19
-1
1/Vds (V )
0.2
0.21
0.22
LV LVT PMOS drain-source leakage
• Drain-source leakage determines maximum Vds at high temperature
• Minimum channel length targeted based on process variation and independent
SEM measurement
LV LVT PMOS Leakage vs. Gate Length (Vds=5V)
L29894, wf #19
1.0E-06
4.5
5.0
5.5
6.0
6.5
7.0
7.5
1.0E-07
Flat_27
Leakage Current (A/um)
1.0E-08
1.0E-09
1.0E-10
Flat_150
Center_150
1.43um
150C
1.70um
Top_27
Top_150
Flat_poly1_27
1.0E-11
1.69um
1.0E-12
1.0E-13
1.0E-14
27C
1.0E-15
Minimum Poly2 CD = 1.57um
1.0E-16
Gate Length (UDR)
DMOS Specific Rdson
Active Area width
Rsp = Rdson x transistor active area
Active Area length
transistor active area = # cells x cell area
Rdson (W)
Area (cm2)
Rsp. (mW.cm2)
LV NLDMOS
0.66
5.19E-4
0.34
MV1 NLDMOS
1.93
7.32E-4
1.41
LV PLDMOS
2.58
5.19E-4
1.34
MV PLDMOS
4.92
7.32E-4
3.6
VDMOS_HEC
1.53
1.77E-3
2.7
Device
Ex : LDMOS transistor
DMOS Specific Rdson
S
G
D
N+ P+ N+
PHV
N+ P+
PHV PW
N+
Sinker
• More components to Rdson
than just channel resistance
RCH + REpi + RBL + RMetal
N-Epi
N-Buried Layer
• Series resistance causes ‘bend’
in ID vs. VG curve
P-substrate
6.0E-02
5.0E-02
IDS (A)
4.0E-02
3.0E-02
2.0E-02
1.0E-02
0.0E+00
0
2
4
6
VGS (V)
8
10
12
A useful way to extract DMOS series resistance
(1)
C W
I   ox (V  V )V 
D
GS T DS
L
(2)
V
DS
DS
G 

M V
(1  R  (V
 V )) 2
GS
S
GS T
V V
I R
DS
DS
D S
I
(3)
 
COX W
L
Device

VGS
Substituting (2) into (3) gives,
ID
 VT VDS  I D RS 
RS 
( I D  GM (VGS  VT ))VDS
I D2
size (cells)
R-series (Ohms)
Total rdson (OHMs)
% series resistance
NLDMOS_13V
5x20
0.37
0.69
54 %
NLDMOS_30V
5x20
NLDMOS_45V
5x20
1.44
1.99
72 %
PLDMOS_13V
5x20
1.25
2.66
47 %
PLDMOS_45V
5x20
2.8
5.0
36 %
VDMOS_HD
15x46
1.63
1.84
89 %
VDMOS_HEC
13x46
DMOS Clamped Inductive Switching
• Clamping the flyback voltage below the DMOS breakdown increases energy
capability.
• Power dissipation eventually allows parasitic bipolar to turn on, killing device
Energy Capability
Device Comparison
300
y = 2.8072x0.6032
Energy (mJ/mm2)
250
80
70
47V VDMOS_HD
150
47V VDMOS_HEC
47V MV2_NLDMOS
100
Power (47V VDMOS_HD)
Vd
1.5
60
Drain Voltage (V)
y = 1.9762x0.6223
200
2.0
Id
Power (47V VDMOS_HEC)
50
50
1.0
40
Power (47V MV2_NLDMOS)
to
30
0.5
20
0
10
0.0
0
0
-10
-4
-5.00x10
0.6421
y = 1.7849x
-2.50x10
-4
0.00
2.50x10
Time (sec.)
-4
5.00x10
-4
-0.5
-4
7.50x10
500
1000
1500
Time (uS)
2000
2500
Energy capability can determine device size
DMOS Rdson vs. Energy Capability
30.0
25.0
160.00
Rdson
Energy Capability
140.00
120.00
Rdson ( W )
20.0
100.00
15.0
80.00
60.00
10.0
40.00
5.0
20.00
0.0
0.0E+00
0.00
2.5E-03
5.0E-03
Area (cm 2)
7.5E-03
1.0E-02
Related documents