Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
IC Transistors and Resistors I. II. III. IV. Resistors Bipolar Transistors MOS DMOS Chris Kendrick Jan. 29, 2003 BiCMOS Design Resistor Voltage Coefficient Figure 1 A p type region in an n type tub forms the resistor. http://adev.onsemi.com/knowledge_net/index.html Resistor Voltage Coefficient % Change PHV Resistance vs. Body Bias % Change Resistance 25.00% 30x300 20.00% 12x300 6x300 12x120 15.00% 12x30 10.00% VApplied = 5V 5.00% 0.00% 0 10 20 30 Body Bias (V) 40 50 Resistor Temperature Coefficient PHV Resistance vs. Temperature % Change in Resistance 80.0% VBody = 5V 60.0% 40.0% 30x300 12x300 20.0% 6x300 0.0% -100 0 -50 50 -20.0% -40.0% Temperature (C) 100 150 200 Resistor Voltage limits • The maximum resistor voltage is NOT defined by the tub it’s sitting in! Diffusion Breakdown (V) Buried Layer – Isolation 95 PWell – Epi 95 PHV – Epi 60 NHV - PWell 43 PSD - Epi 30 NSD - PWell 17.5 NSD – PHV 12 NSD – PSD (in PWell) 5.8 • The voltage rating of the tub determines the spacing of PHV to Epi Lateral PNP Saturation http://adev.onsemi.com/knowledge_net/index.html Low current NPN/PNP biasing • What’s the lowest current bipolars can be biased at? Lateral PNP C B E FOX PSD PHV PHV FOX FOX PSD Epi PSD PHV NSD Substrate PNP (PHV/Epi - Emitter 21x 21 UDR) cross-section ICmin ~ 5uA Low current NPN/PNP biasing • What’s the lowest current bipolars can be biased at? Vertical PNP C B E C FOX FOX PWell PSD PSD PHV NSD NHV Epi NSD PSD PHV Substrate PNPV (PSD/NHV - Emitter 28 x 28 UDR) cross-section ICmin ~ 20nA Low current NPN/PNP biasing • What’s the lowest current bipolars can be biased at? NPN E C B FOX FOX FOX PWell PSD PHV NSD Epi PSD PHV NSD Substrate NPN (NSD/PWell - Emitter 21 x 21 UDR) cross-section ICmin ~ 20nA MOS Safe Operating Area • Hot carrier injection limits NMOS operating voltage S Poly D G BPSG FOX BPSG FOX PWell Epi NSD Substrate Low Voltage NMOS cross-section 4.0E-05 Bulk Current (A) 3.5E-05 3.0E-05 2.5E-05 2.0E-05 1.5E-05 1.0E-05 5.0E-06 0.0E+00 0 1 2 3 Gate Voltage (V) 4 5 6 LV NMOS Hot Carrier Injection • Maximum Vds determined from HCI measurements 10% degradation in 10 yrs • Transient Vds rating based on 10% duty cycle LV LVT NMOS 100x6 Time to 10% IDlin degredation vs. Vds Time @ 10% Idlin degredation 1.0E+09 1.0E+08 Measured Vds Max (V) Device LV NMOS 100x6 LV NMOS 100x16 LV LVT NMOS 100x6 LV LVT NMOS 100x16 Id 10% 1 yr. 5.5 6.8 5.1 6.4 10 yrs -> Vds=4.6V 10 yr. 5.1 6.5 4.6 6.1 1.0E+07 1.0E+06 1.0E+05 0.15 0.16 0.17 0.18 0.19 -1 1/Vds (V ) 0.2 0.21 0.22 LV LVT PMOS drain-source leakage • Drain-source leakage determines maximum Vds at high temperature • Minimum channel length targeted based on process variation and independent SEM measurement LV LVT PMOS Leakage vs. Gate Length (Vds=5V) L29894, wf #19 1.0E-06 4.5 5.0 5.5 6.0 6.5 7.0 7.5 1.0E-07 Flat_27 Leakage Current (A/um) 1.0E-08 1.0E-09 1.0E-10 Flat_150 Center_150 1.43um 150C 1.70um Top_27 Top_150 Flat_poly1_27 1.0E-11 1.69um 1.0E-12 1.0E-13 1.0E-14 27C 1.0E-15 Minimum Poly2 CD = 1.57um 1.0E-16 Gate Length (UDR) DMOS Specific Rdson Active Area width Rsp = Rdson x transistor active area Active Area length transistor active area = # cells x cell area Rdson (W) Area (cm2) Rsp. (mW.cm2) LV NLDMOS 0.66 5.19E-4 0.34 MV1 NLDMOS 1.93 7.32E-4 1.41 LV PLDMOS 2.58 5.19E-4 1.34 MV PLDMOS 4.92 7.32E-4 3.6 VDMOS_HEC 1.53 1.77E-3 2.7 Device Ex : LDMOS transistor DMOS Specific Rdson S G D N+ P+ N+ PHV N+ P+ PHV PW N+ Sinker • More components to Rdson than just channel resistance RCH + REpi + RBL + RMetal N-Epi N-Buried Layer • Series resistance causes ‘bend’ in ID vs. VG curve P-substrate 6.0E-02 5.0E-02 IDS (A) 4.0E-02 3.0E-02 2.0E-02 1.0E-02 0.0E+00 0 2 4 6 VGS (V) 8 10 12 A useful way to extract DMOS series resistance (1) C W I ox (V V )V D GS T DS L (2) V DS DS G M V (1 R (V V )) 2 GS S GS T V V I R DS DS D S I (3) COX W L Device VGS Substituting (2) into (3) gives, ID VT VDS I D RS RS ( I D GM (VGS VT ))VDS I D2 size (cells) R-series (Ohms) Total rdson (OHMs) % series resistance NLDMOS_13V 5x20 0.37 0.69 54 % NLDMOS_30V 5x20 NLDMOS_45V 5x20 1.44 1.99 72 % PLDMOS_13V 5x20 1.25 2.66 47 % PLDMOS_45V 5x20 2.8 5.0 36 % VDMOS_HD 15x46 1.63 1.84 89 % VDMOS_HEC 13x46 DMOS Clamped Inductive Switching • Clamping the flyback voltage below the DMOS breakdown increases energy capability. • Power dissipation eventually allows parasitic bipolar to turn on, killing device Energy Capability Device Comparison 300 y = 2.8072x0.6032 Energy (mJ/mm2) 250 80 70 47V VDMOS_HD 150 47V VDMOS_HEC 47V MV2_NLDMOS 100 Power (47V VDMOS_HD) Vd 1.5 60 Drain Voltage (V) y = 1.9762x0.6223 200 2.0 Id Power (47V VDMOS_HEC) 50 50 1.0 40 Power (47V MV2_NLDMOS) to 30 0.5 20 0 10 0.0 0 0 -10 -4 -5.00x10 0.6421 y = 1.7849x -2.50x10 -4 0.00 2.50x10 Time (sec.) -4 5.00x10 -4 -0.5 -4 7.50x10 500 1000 1500 Time (uS) 2000 2500 Energy capability can determine device size DMOS Rdson vs. Energy Capability 30.0 25.0 160.00 Rdson Energy Capability 140.00 120.00 Rdson ( W ) 20.0 100.00 15.0 80.00 60.00 10.0 40.00 5.0 20.00 0.0 0.0E+00 0.00 2.5E-03 5.0E-03 Area (cm 2) 7.5E-03 1.0E-02