Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Introduction to materials
physics #3
Week 3: Electric dipole interaction
1
Chap. 1-2: Table of contents


Review of electromagnetic wave
Electric dipole interaction



Mechanical oscillator model of electric dipole


Force acting on electric dipole
Potential energy of electric dipole in electric field
Lorentz model and refraction index
Absorption and dispersion of light in material

Absorption and refraction
2
1. Review of electromagnetic wave:
Electromagnetic waves in vacuum VS.
dielectric material


In vacuum: ε0, μ0
Ex t , z   E 0 coskz  t  0 
 E0 cosk /  z  t 0 
1 / c  k /    0 0
c  1 /  0  0  2.99792458 108 m/s (speed of light
in vacuum)
In dielectric material: ε(≠ε0), μ0
E x t , z   E0 cosk /  z  t 0 
1 / c'  k /   0
c'  1 / 0 
1 /  0 0
 / 0

c
Speed of light in material 
n n : refractive index
3
Electromagnetic wave in
dielectric material

Electromagnetic wave in dielectric
material propagates with slower speed
c’ than that in vacuum c.
c'  c / n, n : refractive index
n   /  0 ,    0 1     n  1, c'  c

Measurement of n provides ε (orχ),
which describes the electric property of
a material. (Optical measurement)
4
Phasor representation

Waves can be represented by complex
exponential function instead of real
trigonometric function.
EXERCISE:

Real trigonometric function

Complex exponential function (Phasor rep.)
Ex t , z   E 0 coskz  t  0 
~
~
Ex t , z   E 0 exp ikz  t 
1 ~
~
~*
Ex t , z   Re Ex t , z   Ex t , z   Ex t , z 
2
~
E 0  E0 exp i0  : complex amplitude

 

NOTE: “~” denotes phasor representation, and therefore it is complex.
5
2. Electric dipole interaction:
Force and potential energy

Force acting on charge and potential
energy of electric dipole moment
Force acting on charge
F  QE
Electric dipole moment and Polarization
p  Qd Electric dipole moment
p Q Electric
P
 ex
polarization
Sd S
Potential energy
U   Q Ex0   Q E x0  d 
  E Qd    E  p
6
Electric dipole moment

Electric dipole moment is a pair of two
positive and negative charges with the
same magnitude separated with the
displacement vector r.
p  Qr
7
Electric polarization and electric dipole
moment of atoms (or molecules)


Electric polarization consists of electric dipole
moments of atoms.
To know electric dipole moment of a single
atom is equivalent to know electric polarization
8
Relation between electric dipole moment
of atom and electric polarization
p  Npa  naVpa : total electric dipole moment
p
P   na pa : relation between P and pa
V
9
3. Mechanical oscillator model of electric dipole:
Electric dipole moment of an atom induced by
external electric field

An atom consists of a positively charged nucleus and
negatively charged electron cloud. If external electric
field exists, the nucleus and the center of the electron
cloud are displaced. ⇒ electric dipole moment

Without E field
With E field
pa  QR
10
Electric dipole moment as an
mechanical oscillator: Lorentz model

Electric dipole moment of an atom can be
regard as a mechanical oscillator.
○ Stronger electric field displaces
the electron cloud farther.
⇒ “Spring”
○ Inertia of the electron cloud
⇒ “Mass”
11
Oscillatory motion of electron cloud

Motion of the center of the electron
cloud ⇒ Damped harmonic oscillation
Equation of motion
d2
d
M 2 R  2M R  KR  QE0 cos t 
dt
dt
Set z=0, φ0=0 for simplification
Phasor representation
d2 ~
d ~
~
~
M 2 R  2M R  KR  QE0 exp  it 
dt
dt
~
R  Re R

12
Solution of damped oscillation

Equation of motion (phasor rep.)
d2 ~
d ~
~
~
M 2 R  2M R  KR  QE0 exp  it 
dt
dt
EXERCISE: Solve the above differential equation.

Solution (phasor rep.)
~
~
R t   R0 exp  it  
~
R0 
Q/M
 2  02  2i
Q/M
~
E
0 exp  it 
2
2
  0  2i
~
E0
13
Electric dipole moment of an atom,
polarization, susceptibility and permittivity

Electric dipole moment of an atom (Phasor)
~
~
pa t   QR0 exp  it  

Electric polarization (Phasor)
~
~
P   0 ~E t   na ~
pa
 na Q 2 / M ~
 na Q 2 / M
 2
E0 exp  it   2
2
2
  0  2i

 Q2 / M
~
E0 exp  it 
2
2
  0  2i
  0  2i
~
E t 
Electric susceptibility and permittivity (Phasor)
 na Q 2 /  0 M 
~

 2  02  2i
2

n
Q
/  0 M  
~
~
a
   0 1      0 1  2

2




2
i


0


14
Refraction index and electric susceptibility

Relation between refraction index and
electric susceptibility
n~  ~ /  0
n~ 2  ~ /  0  1  ~  n~ must be complex.
~  n'in" , ~   'i "
Let n
 n'2 n"2  1   ' : real part
the n 
2n' n"   " : imaginary part
EXERCISE: Derive the above relation between n’, n” and χ’, χ”.
15
Real and imaginary parts of n and χ

Electric susceptibility (Γ≪ω0)
 na Q 2 /  0 M 
~
   'i "  2
  02  2i
02 S 02   2
S0 0    / 2
Real part :
' 2

2
2
2
  02  4 2 2   0   
202 S
S0  / 2
na Q 2
Imaginary part :  " 

, where S 
2
2
2
2 2
2 2
M 002
  0   
  0  4 







Refractive index (n’≃1, n”≪1)
S0 0    / 4
0  
1

1


4 0 MV0   0 2   2
  0 2   2
S0 / 4
1

Imaginary part : n" 


  0 2   2 4 0 MV0   0 2   2
Real part :
n'  1 
16
Refractive index (non-dimensional)
Graph of refractive index
n’ : real part
n” : imaginary part
Angular frequency (rad/s)
17
4. Absorption and dispersion of
light in material

What are the real and imaginary parts
of refractive index?


Electric field (phasor rep.)
  n~
~
~
~

Ex t , z   E0 exp ik /  z  t  E0 exp i  z  t 
Replace n by n’+in”
  n'in"
~
~

E x t , z   E0 exp i 
z  t 
 c

  c
  n'
~

 n"
 E0 exp i  z  t   exp  
c


 c


z

Propagating wave
Spatial damping
n’ ⇒traditional
n” ⇒absorption
refractive index
18
Absorption of light

Absorption: n” describes damping of
wave by dielectric.
Vacuum
Dielectric
D
Vacuum
Damping of electric field
during D
 n" 
exp  
D
 c

Damping of light
intensity I (∝E2)
 2n" 
exp  
D   exp  AD 
c


 D 

 exp  
 d 
 opt 
2n"
A
: Absorption coefficien t
c
1
c
d opt  
: Optical depth
A 2n"
19
Dispersion: separation of colors

n’ is a function of ω. ⇒ Refraction is
different among colors.


In most cases, ω0≫ω. ⇒ n’ (ωblue)>n’ (ωred)
Blue ray bends more deeply that red ray does.
Snell' s law :
n1 sin 1  n2 sin  2
n1, 2 : refracttiv e index of dielectric 1, 2
1,2 : angles of incidence and refraction
in dielectric 1, 2
When n' blue   n' red ,  b   r .
EXERCISE:
Prove the above inequality.
20
How does one probe property of
atoms from optical measurement?

Mutual relation among optical, electric
and atomic properties
Optical property
Refractive index
n’ : Refraction
n” : Absorption
Electric property
(Dielectricity)
Electric susceptibility
χ’ : Real part
χ” : Imaginary part
n'2 n"2  1   '
2n' n"   "
Atomic property
Electric dipole moment
of atom
ω0: Resonance
frequency
Γ : Damping constant
'
S0 0    / 2
  0 2   2
"
S 0  / 2
  0 2   2
21
Summary


Review of electromagnetic wave
Electric dipole interaction



Mechanical oscillator model of electric dipole


Force acting on electric dipole
Potential energy of electric dipole in electric field
Lorentz model and refraction index
Absorption and dispersion of light in material

Absorption and refraction
22
Related documents