Download Section

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PM11
Trigonomtery Unit
Section
Topic
Assignment
SOHCAHTOA Review
Coterminal/Reference Angles
Primary Trig Ratios
Reciprocal Trig Ratios
Special Triangles & Exact Values
Solving Trig Equations
Solving Trig Equations (Part 2)
Worksheet
Worksheet
Worksheet
Worksheet
Worksheet
Worksheet
Worksheet
PM11
Lesson 1 Notes:
Review of SOH CAH TOA
Review:
opp
hyp
adj
cos A 
hyp
opp
tan A 
adj
sin A 
hypotenuse
opposite
A
adjacent
For all questions:
1.
2.
3.
Label O,A, and H on the triangle
Choose the right ratio for the information you
are given
Set up the equation and solve.
* MAKE SURE YOUR CALCULATOR IS SET TO
DEGREES *
Finding a missing side (use the sin, cos or tan button)
15
51º
x
2.4
37º
x
Finding a missing angle (use the sin-1, cos-1 or tan-1 button – “inverse sine”,
etc.)
θ
9.1
5.5
PM11
Lesson 2 Notes:
Standard, Coterminal and Reference Angles
Review:
opp
hyp
adj
cos A 
hyp
opp
tan A 
adj
sin A 
hypotenuse
opposite
adjacent
A
NEW: We can also represent angles in the 4 quadrants of the x-y coordinate
plane.
QI
Q II
terminal arm
θ
initial arm
Q IV
Q III
Standard Position:
Ex1
an angle is in standard position if…
Draw the following angles in standard position:
a) 120º
b) -130º
c) 45º
d) 400º
Coterminal Angles:
Ex2
Find 2 positive and 2 negative coterminal angles for 435º
Principal Angle:
Ex3
Find the principal angle for -520º
Reference Angle:
Ex4
Find the reference angles for:
a) 145º
b) 400º
PM11
Lesson 3 Notes:
Primary Trig Ratios
If there is a circle centred at (0,0) and if point P(x, y) is on the circle, what is the
trig ratio for that terminal arm?
I
II
P(x, y)
r
y
θ
x
y
r
x
cos  
r
y
tan  
x
2
2
x  y  r2
sin  
IV
III
When   90 , we use the reference angle of 
I
II
P(-x, y)
r
y
θ
-x
III
IV
Note: in this position all 3
trig ratios are positive
Which trig ratios are positive in each quadrant?
Ex1
Point A(-3, 2) is on the terminal arm of angle  in standard position.
Find the three primary trig ratios.
Ex2
Are the following trig ratios positive or negative?
a) sin 290º
b) sin(-35º)
c) tan 145º
d) cos (-220º)
e) tan (-100º)
f) cos 700º
PM11
Lesson 4 Notes:
1
 csc 
sin
Reciprocal Trig Ratios
1
 sec 
cos 
1
 cot 
tan
Ex1
If point B(-3, 2) is on the terminal arm of  in standard position, find
the three reciprocal trig ratios.
Ex2
If angle  is in quadrant II, and cot   
ratios.
6
, find the remaining 5 trig
5
PM11
Lesson 5 Notes:
Review:
Special Triangles & Exact Values
the 30º-60º-90º triangle has a specific ratio:
There is also a 45º-45º-90º triangle:
There are also other special angles with exact values:
Ex1
Find the exact value of the following:
a) sin 120º
b) cos 240º
d) csc 315º
e) sec(-30º)
c) tan(-135º)
Ex2
Determine the value(s) of  if 0    360 :
a) cos  1
b) sin  
3
2
c) cot    3
PM11
Lesson 6 Notes:
Review:
Solving Trig Equations
Solve: cos   
3
, 0    360
2
Now, it’s only one step away to solve this one:
(assume 0    360 unless you are told otherwise)
Ex1
2sin   3
For the next couple, you must factor:
Ex2
sin x cos x  sin x  0
Ex3
cos2 x  cos x  2  0
For this one it might be easier once you know what sec x equals, to convert
it to the primary ratio instead.
Ex4
sec 2 x 
4
3
Worksheets
PM11
Coterminal & Reference Angles
1. Find the smallest positive coterminal angle.
a. 390°
b. 420°
c. –30°
d. –405°
e. 540°
f. 830°
2. Draw each angle in standard position and find its reference angle:
a. 125°
b. 580°
c. 240°
d. 315°
e. 755°
f. –280°
PM 11
Primary Trig Ratios
Name:
The co-ordinates of a point P on the terminal arm of each  are shown. Write the
exact values of sin  , cos  , and tan  .
1.
2.
(3, 4)
(1,  3 )
Determine the exact values of sin  , cos  , and tan  if the terminal arm of angle  is in
standard position and passes through the point P.
3. P1, 6

4. P 2, 5

6. P  1,  5


7. P 3, 7

5. P 5 ,  3

8. P3,  3
State whether the value of each function is positive or negative.
9. cos 200
10. tan  225
11. sin 660
12. cos 45
13. tan 310
14. sin 120
Determine the quadrant in which  lies for each of the following:
15. tan   0, sin   0
16. cos   0, sin   0
Given that angle  is in standard position with its arm in the stated quadrant, find the
exact values of the remaining primary trigonometric ratios.
17. sin  
7
, quadrant II
25
18. tan  
3
, quadrant III
2
19. cos  
1
, quadrant IV
4
20. sin  
3
, quadrant IV
4
21. cos  
2
, quadrant II
3
PM 11
Reciprocal Trig Ratios
Name:
The co-ordinates of a point P on the terminal arm of each  are shown. Write the
exact values of sec  , csc  , and cot  .
1.
2.
(3, 4)
(1,  3 )
Determine the exact values of the six trigonometric ratios if the terminal arm of angle 
in standard position contains the given point.
3. P  7, 24

6. P 2,  5
4. P  3, 2

7. P

5. P  4, 1

8. P  1,  2 
2,  1
State whether the value of each function is positive or negative
9. cot (–260°)
10. csc 120°
11. sec(–30°)
12. csc 225°
Determine the quadrant in which  lies for the following
13. csc   0, cot   0
14. sec   0, csc  0
Given that angle  is in standard position with its terminal arm in the stated quadrant,
find the exact values of the remaining five trigonometric ratios.
3
15. sin   , quadrant II
5
3
17. cot   , quadrant III
4
2
, quadrant III
19. cot  
3
13
, quadrant IV
5
4
, quadrant IV
18. csc  
 5
16. sec  
PM 11
Special Triangles & Exact Values
Name:
Determine the exact value of the following.
1. sin 315
2. cos 270
3. tan150
4. sin 90
5. csc210
6. cot  120
7. sec120
8. sec  135
9. sin 540
10. cot 330
11. sin  150
12. csc240
Determine each value of  if 0    360 .
13. cos  
1
2
15. sin   0
17. cot  
1
3
14. tan   
1
3
16. csc  2
18. sec   
2
3
PM 11
Solving Trigonometric Equations 1
Name:
Solve for x where 0  x  360 .


4. 2 cos 2 x  cos x  0
5. sin x 2sin x  3  0

6. 2sin 2 x  3sin x  1  0
7. 2 cos 2 x  cos x  1  0
8. cos 2 x  1
3. tan x


2. tan x  3  cos x  1  0
1. 2sin x 1  0

3 tan x  1  0
PM 11
Solving Trigonometric Equations 2
Name:
Solve for  where 0    360 .
1. 1  2 cos   0
2. 2 sin  cos   2 cos   0
3. tan 2   2 tan   1
4. sin   1   sin 
5. tan 2   3  0
6. cos 2   4 cos   4  0
7. sec  csc   csc   0
8. 2 sin   1cos   1  0
9. 4 sin 2   1
10. 2 cos 2   cos   1
PM 11
Trig Review
1. Solve
ABC given: a) B  90, BC  7.2cm, and AC = 12.5 cm
b) A  34, B  90, and AB = 4.8 cm
2. Determine the principle angle ( smallest positive co-terminal angle), the reference
angle and the quadrant containing the terminal arm for:
a) 730°
b) - 235°
3. Determine the exact values of the six trigonometric ratios if the terminal arm of angle
 in standard position contains the given point:
a) P(3, -5)
b) P(  5 ,2 )
4. What quadrant has sin   0 and tan   0 ?
5. Determine cos if csc   
3
and tan   0
2
6. Given angle  in standard position with its terminal arm in quadrant lV, find the exact
3
values of the 5 remaining trig ratios is sec  
2
7. State whether the following are positive or negative
a) sin 145° b) sec 252° c) tan ( -80° ) d) csc ( -700° )
8. Determine the exact value
a) sin 45° b) sec 30° c) tan 330° d) cos 210° e) cot 480° f) csc 315°
9. Solve for x where 0  x  360
3 cot x  1
a) 2cos x 1  0
b)
c)  cos x  1 tan x 1  0
d)
e) tan 2 x  3
f) 2cos 2 x  cos x  1  0
 2cos x  1sin x 1  0
Trig Review Key:
1. a) AB = 10.2 , A  35, C  55 b) C  56 , BC = 3.24, AC = 5.79
2. a) 10,10, I b) 125,55, II
3. a) sin  
34
34
3
5
3
5
,sec  
, cot  
, csc  
, cos 
, tan  
5
3
5
3
34
34
2
 5
2
3
3
 5
b) sin   , cos  
, csc   ,sec  
, tan  
, cot  
3
3
2
2
 5
 5
4. III 5. cos  
5
3
 5
2
 5
3
3
2
, cos   , tan  
, csc  
,sec   , cot  
3
3
2
2
 5
 5
7. a) positive b) negative c) negative d) positive
3
1
2
1
1
8. a)
b)
c) 
d) 
e) 
f)  2
2
2
3
3
3
9. a) 60,300 b) 60,240
6. sin  
c)
45,180, 225
d) 90,120, 240
e) 60,120,240,300 f) 0,120, 240
Related documents