Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CSC242: Intro to AI Lecture 22 Administrivia Posters! Tue Apr 24 and Thu Apr 26 Idea! Presentation! 2-wide x 8-high landscape pages Learning Probabilistic Models Supervised Learning • Given a training set of N example inputoutput pairs: (x1, y1), (x2, y2), ..., (xN, yN) where each yj = f(xj) • Discover function h that approximates f Linear Classifiers • Linear regression for fitting a line to data • Linear classifiers: use a line to separate the data • Gradient descent for finding weights • Hard threshold (perceptron learning rule) • Logistic (sigmoid) threshold • Neural Networks: Network of linear classifiers • Support Vector Machines: State of the art for learning supervised learning of classifiers Learning Probabilistic Models 100% cherry 75% cherry 25% lime 50% cherry 50% lime 25% cherry 75% lime 100% lime h1 h2 h3 h4 h5 H ∈ {h1 , h2 , h3 , h4 , h5 } Observations: D1= D2= D3= Goal: Predict the flavor of the next candy ... D1= D2= Bags Agent, process, disease, ... Candies Actions, effects, symptoms, results of tests, ... Observations D3= Goal Predict next Predict agent’s next move candy Predict next output of process Predict disease given symptoms and tests H ∈ {h1 , h2 , h3 , h4 , h5 } Observations: D1= D2= D3= Goal: Predict the flavor of the next candy ... Strategy 1 • Predict (estimate) the underlying distribution hi • Use that to predict the next observation Bayesian Strategy Learning 2 • Compute the probability of each hypothesis distribution • Use that to compute a weighted estimate of the possible values for the next observation Bayesian Learning P (hi | d) = αP (d | hi )P (hi ) Likelihood of the data under the hypothesis Hypothesis prior Bayesian Learning Likelihood of disease given symptoms/tests P (hi | d) = αP (d | hi )P (hi ) Likelihood that the disease caused the symptoms/tests Prior probability of the disease Bayesian Learning P (hi | d) = αP (d | hi )P (hi ) Likelihood of the data under the hypothesis Hypothesis prior h1 h2 h3 h4 P(H) = �0.1, 0.2, 0.4, 0.2, 0.1� h5 h1 h2 h3 h4 h5 P(H) = �0.1, 0.2, 0.4, 0.2, 0.1� P (d | hi ) = � j P (dj | hi ) if i.i.d. Independent Identically Distributed (i.i.d.) • Probability of a sample is independent of any previous samples P(Di |Di−1 , Di−2 , . . .) = P(Di ) • Probability distribution doesn’t change among samples P(Di ) = P(Di−1 ) = P(Di−2 ) = · · · h1 h2 h3 h4 h5 P(H) = �0.1, 0.2, 0.4, 0.2, 0.1� P (d | hi ) = � j P (dj | hi ) if i.i.d. d P (d | hi ) h1 0 h2 0.2510 h3 0.510 h4 0.7510 h5 1 P (hi | d) = αP (d | hi )P (hi ) Posterior probability of hypothesis P(H) = �0.1, 0.2, 0.4, 0.2, 0.1� 1 P(h1 | d) P(h2 | d) P(h3 | d) P(h4 | d) P(h5 | d) 0.8 0.6 0.4 0.2 0 0 2 4 6 8 Number of observations in d 10 Bayesian Prediction P(DN +1 | d) = = � i � i =α P(DN +1 | d, hi )P(hi | d) P(DN +1 | hi )P(hi | d) � i P(DN +1 | hi )P (d | hi )P (hi ) Probability that next candy is lime 1 0.9 0.8 0.7 0.6 0.5 0.4 0 2 4 6 8 Number of observations in d P (dN +1 = lime | d1 , . . . , dN ) 10 Bayesian Learning P(X | d) = α � i P(X | hi )P (d | hi )P (hi ) Maximum A Posteriori (MAP) hMAP = argmax P (hi | d) hi P(X | d) ≈ P(X | hMAP ) Probability that next candy is lime 1 0.9 0.8 0.7 0.6 0.5 0.4 0 2 4 6 8 Number of observations in d P (dN +1 = lime | d1 , . . . , dN ) 10 Maximum A Posteriori (MAP) hMAP = argmax P (hi | d) hi P(X | d) ≈ P(X | hMAP ) What About Overfitting? • Expressive hypothesis space allows many hypotheses that fit the data well • Solution: Use hypothesis prior to penalize complexity • Usually more complex hypotheses have a lower prior probability than simple ones Maximum Likelihood Hypothesis • Assume uniform hypothesis prior • No hypothesis preferred to any other a priori (e.g., all equally complex) hMAP = argmax P (hi | d) hi = argmax P (d | hi ) = hML hi Statistical Learning • Bayesian Learning • Hypothesis prior • Likelihood of data given hypothesis • Weighted average over all hypotheses • MAP hypothesis: single best hypothesis • ML hypothesis: uniform hypothesis prior h1 h2 h3 h4 P(H) = �0.1, 0.2, 0.4, 0.2, 0.1� h5 D1= D2= Bags Agent, process, disease, ... Candies Actions, effects, symptoms, results of tests, ... Observations D3= Goal Predict next Predict agent’s next move candy Predict next output of process Predict disease given symptoms and tests Bayesian Networks • A Bayesian network represents a full joint probability distribution between a set of random variables • Uses conditional independence to reduce the number of probabilities need to specify it and make inference easier Learning and Bayesian Networks • The distribution defined by the network is parameterized by the entries in the CPTs associated with the nodes • A BN defines a space of distributions corresponding to the parameter space Learning and Bayesian Networks • If we have a BN that we believe represents the causality (conditional independence) in our problem • In order to find (estimate) the true distribution • We learn to find the parameters of the model from the training data Burglary JohnCalls P(B) .001 Earthquake Alarm B t t f f A P(J) t f .90 .05 E t f t f P(E) .002 P(A) .95 .94 .29 .001 MaryCalls A P(M) t f .70 .01 Parameter Learning (in Bayesian Networks) hΘ P(F=cherry) Θ Flavor P(F=cherry) hΘ Θ Flavor N P (d | hΘ ) = � j P (dj | hΘ ) = Θc · (1 − Θ)l c l Maximum Likelihood Hypothesis argmax P (d | hΘ ) Θ Log Likelihood P (d | hΘ ) = � j P (dj | hΘ ) = Θc · (1 − Θ)l L(d | hΘ ) = log P (d | hΘ ) = � j log P (dj | hΘ ) = c log Θ + l log(1 − Θ) Maximum Likelihood Hypothesis L(d | hΘ ) = c log Θ + l log(1 − Θ) c c = argmax L(d | hΘ ) = c+l N Θ Flavor Wrapper P(F=cherry) Θ Flavor Wrapper F P(W=red|F) cherry Θ1 lime Θ2 hΘ,Θ1 ,Θ2 P(F=cherry) Θ Flavor Wrapper F P(W=red|F) cherry Θ1 lime Θ2 P(F=cherry) hΘ,Θ1 ,Θ2 Θ Flavor Wrapper F P(W=red|F) cherry Θ1 lime Θ2 P (F = f, W = w | hΘ,Θ1 ,Θ2 ) = P (F = f | hΘ,Θ1 ,Θ2 ) · P (W = w | W = f, hΘ,Θ1 ,Θ2 ) P (F = c, W = g | hΘ,Θ1 ,Θ2 ) = Θ · (1 − Θ1 ) F W P(F=f,W=w| hΘ,Θ1,Θ2) cherry red Θ Θ1 cherry green Θ (1-Θ1) lime red (1-Θ) Θ2 lime green (1-Θ) (1-Θ2) N c rc l gc rl gl F W P N=c+l cherry red Θ Θ1 rc cherry green Θ (1-Θ1) gc lime red (1-Θ) Θ2 rl lime green (1-Θ) (1-Θ2) gl F W P N=c+l P (d | hΘ,Θ1 ,Θ2 ) cherry red Θ Θ1 rc (ΘΘ1 )rc cherry green Θ (1-Θ1) gc (Θ(1 − Θ1 ))gc lime red (1-Θ) Θ2 rl ((1 − Θ)Θ2 )rl rl ((1 − Θ)(1 − Θ2 ))gl lime green (1-Θ) (1-Θ2) P (d | hΘ,Θ1 ,Θ2 ) = (ΘΘ1 )rc · (Θ(1 − Θ1 ))gc · ((1 − Θ)Θ2 )rl · ((1 − Θ)(1 − Θ2 ))gl = Θc (1 − Θ)l · Θr1c (1 − Θ1 )gc · Θr2l (1 − Θ2 )gl L(d | hΘ,Θ1 ,Θ2 ) = c log Θ + l log(1 − Θ)+ [rc log Θ1 + gc log(1 − Θ1 )]+ [rl log Θ2 + gl log(1 − Θ2 )] c c = Θ= c+l N rc rc Θ1 = = rc + g c c rl rl Θ2 = = rl + g l l hΘ,Θ1 ,Θ2 P(F=cherry) Θ Flavor Wrapper F P(W=red|F) cherry Θ1 lime Θ2 c c = Θ= c+l N rc rc Θ1 = = rc + g c c rl rl Θ2 = = rl + g l l argmax L(d | hΘ,Θ1 ,Θ2 ) = argmax P (d | hΘ,Θ1 ,Θ2 ) Θ,Θ1 ,Θ2 Θ,Θ1 ,Θ2 Naive Bayes Models Class Attr1 Attr2 Attr3 ... Naive Bayes Models { mammal, reptile, fish, ... } Class Furry Warm Blooded Size ... Naive Bayes Models Class Attr1 Attr2 Attr3 ... Naive Bayes Models { mammal, reptile, fish, ... } Class Furry Warm Blooded Size ... Naive Bayes Models { terrorist, tourist } Class Arrival Mode One-way Ticket Furtive Manner ... Naive Bayes Models Disease Test1 Test2 Test3 ... Learning Naive Bayes Models • Naive Bayes model with n Boolean attributes requires 2n+1 parameters • Maximum likelihood hypothesis h ML found with no search • Scales to large problems • Robust to noisy or missing data can be Learning with Complete Data • Can learn the CPTs for a Bayes Net from observations that include values for all variables • Finding maximum likelihood parameters decomposes into separate problems, one for each parameter • Parameter values for a variable given its parents are the observed frequencies • 20.2.3: Maximum likelihood parameter learning: Continuous models • 20.2.4: Bayesian parameter learning • 20.2.5: Learning Bayes net structure • 20.2.6: Density estimation with nonparametric models { terrorist, tourist } Class Arrival Mode One-way Ticket Furtive Manner ... Arrival One-Way Furtive ... Class taxi yes very ... terrorist car no none ... tourist car yes very ... terrorist car yes some ... tourist walk yes none ... student bus no some ... tourist Disease Test1 Test2 Test3 ... Test Test2 Test3 ... Disease T F T ... ? T F F ... ? F F T ... ? T T T ... ? F T F ... ? T F T ... ? 2 Smoking 2 Diet 2 Exercise 2 Smoking 2 Diet 2 Exercise 54 HeartDisease 6 Symptom 1 6 Symptom 2 6 Symptom 3 (a) 78 parameters 54 Symptom 1 162 Symptom 2 486 Symptom 3 (b) 708 parameters Hidden (Latent) Variables • Can dramatically reduce the number of parameters required to specify a Bayes net • Reduces amount of data required to learn the parameters • Values of hidden variables not present in training data (observations) • “Complicates” the learning problem EM Expectation-Maximization • Repeat • Expectation: “Pretend” we know the parameters and compute (or estimate) likelihood of data given model • Maximization: Recompute parameters using expected values as if they were observed values • Until convergence Flavor cherry lime Wrapper red green Hole true false P(F,W,H) Flavor cherry Wrapper red green lime red green Hole t f t f t f t f P(f,w,h) pc,r,t pc,r,f pc,g,t pc,g,f pl,r,t pl,r,f pl,g,t pl,g,f P1(F,W,H) P2(F,W,H) Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam euismod euismod facilisis. Aliquam erat volutpat. Maecenas nisl ligula, dignissim et volutpat ac, pharetra blandit augue. Maecenas id ligula in leo tristique viverra. Curabitur lacinia nulla in nibh bibendum laoreet. Morbi a est mi, mattis imperdiet risus. Quisque quam felis, facilisis ac semper vel, viverra vitae nulla. Donec nisl lectus, faucibus vehicula tincidunt nec, ultrices nec eros. Proin non felis nec urna pellentesque tempor at sit amet est. P1(X1,X2,X3) P2(X1,X2,X3) P(F,W,H) Flavor cherry Wrapper red green lime red green Hole t f t f t f t f P(f,w,h) pc,r,t pc,r,f pc,g,t pc,g,f pl,r,t pl,r,f pl,g,t pl,g,f P(Bag=1) θ Bag P(F=cherry | B) 1 θF1 2 θF2 Flavor Bag Wrapper (a) C Hole X (b) P(Bag=1) θ Bag Bag P(F=cherry | B) 1 θF1 2 θF2 Flavor Wrapper (a) Bag P(W=red|B) C X Hole (b) Bag P(H=true|B) 1 ΘW1 1 ΘH1 2 ΘW2 2 ΘH2 P(Bag=1) θ Bag Bag P(F=cherry | B) 1 θF1 2 θF2 Flavor C Wrapper (a) Bag P(W=red|B) X Hole Bag P(H=true|B) 1 ΘW1 1 ΘH1 2 ΘW2 2 ΘH2 (b) Flavor Wrapper Hole Bag cherry red true ? cherry red true ? lime green false ? cherry green true ? lime green true ? cherry red false ? lime red true ? N=1000 W=red W=green H=1 H=0 H=1 H=0 F=cherry 273 93 104 90 F=lime 79 100 94 167 EM Expectation-Maximization • Repeat • E: Use the current values of the parameters to compute the expected values of the hidden variables • M: Recompute the parameters to maximize the log-likelihood of the data given the values of the variables (observed and hidden) EM Expectation-Maximization • Repeat • E: Use the current values of the parameters to compute the expected values of the hidden variables • M: Recompute the parameters to maximize the log-likelihood of the data given the values of the variables (observed and hidden) Summary • Statistical Learning • Bayesian Learning • Maximum A Posteriori (MAP) hypothesis • Maximum Likelihood (ML) hypothesis • Learning the parameters of a Bayesian Network • Complete data: Maximum Likelihood learning • Hidden variables: EM For Next Time: 21.0-21.3; 21.5 fyi Posters!