Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 10 Sinusoidal Steady-State Analysis Charles P. Steinmetz (1865-1923), the developer of the mathematical analytical tools for studying ac circuits. Courtesy of General Electric Co. a jb r (cos j sin ) Heinrich R. Hertz (1857-1894). Courtesy of the Institution of Electrical Engineers. cycles/second Hertz, Hz Sinusoidal Sources Amplitude Period = 1/f Phase angle Angular or radian frequency = 2pf = 2p/T Sinusoidal voltage source vs Vm sin(t ). Sinusoidal current source is Im sin(t ). Example v i + i circuit v element _ Voltage and current of a circuit element. The current leads the voltage by radians OR The voltage lags the current by radians Example 10.3-1 v 3cos 3t i 2sin(3t 10) Find their phase relationship sin t sin( t p ) i 2sin(3t 180 10) and sin cos( 90) i 2 cos(3t 180 10 90) 2 cos(3t 100) Therefore the current leads the voltage by 100 Recall vs V0 cos t v f A cos t B sin t 10.3-4 A vf A B cos t 2 2 A B 2 2 sin t 2 2 A B B A2 B2 cos cos t sin sin t A B cos t 2 2 B Triangle for A and B of Eq. 10.3-4, tan A ; A 0 where C A2B2 . 1 B 180 tan ;A 0 B A A sin cos A2 B 2 A2 B 2 1 Example 10.3-2 i 6cos2t 8sin2t A B B A A 6 0 1 B 180 tan A 1 8 180 tan 6 180 53.1 i 10cos(2t 126.9) Steady-State Response of an RL circuit vs Vm cos t i f ? di L Ri Vm cos t dt An RL circuit. From #8	 10.4-1 i f A cos t B sin t Substitute the assumed solution into 10.4-1 L( A sin t B cos t ) R( A cos t B sin t ) Vm cos t Coeff. of cos LB RA Vm Coeff. of sin LA RB 0 Solve for A & B RVm A 2 2 2 R L LVm and B 2 2 2 R L Steady-State Response of an RL circuit (cont.) i A cos t B sin t Vm cos( t ) Z Z R2 2 L2 tan 1 L R Thus the forced (steady-state) response is of the form i I m cos(t ) Vm Im Z Complex Exponential Forcing Function vs Vm cos t i Input Vm cos( t ) Z magnitude Response phase frequency Exponential Signal ve Vme j t vs Vm cos t Re Vme Note Rea jb a j t Rev e Complex Exponential Forcing Function (cont.) die L Rie ve dt try vs ve ie Ae j t We get ( j L R ) Ae j t Vme j t Vm Vm j A e R j L Z where tan 1 L R and Z R L 2 2 2 Complex Exponential Forcing Function (cont.) Substituting for A Vm j jt ie e e Z We expect Vm j jt i Re ie Re e e Z Vm Re e j e j t Z Vm j ( t ) Re e Z Vm cos( t ) Z Example 2 d i di 12i 12 cos3t 2 dt dt We replace 2 d ie 2 dt j 3t die ie Ae , dt Substituting ie ve 12e die j 3t 12ie 12e dt 2 d ie j 3t j 3t j 3 Ae , 2 9 Ae dt j 3t ( 9 j 3 12) Ae 12e 12 A 2 2 45 3 j3 j 3t j 3t Example(cont.) ie Ae j 3t 2 2e j (p / 4)e j 3t 2 2e j (3t p / 4) The desired answer for the steady-state current i Re ie Re 2 2e j (3t p / 4) 2 2 cos(3t 45) Or p interchangeable 2 2 cos(3t ) 4 Using Complex Exponential Excitation to Determine a Circuit’s SS Response to a Sinusoidal Source Write the excitation as a cosine waveform with a phase angle ys Ym cos( t ) Introduce complex excitation vs Re Vm e j ( t ) Use the assumed response xe Ae j ( t ) Determine the constant A A Be j Obtain the solution xe Ae j ( t ) Be j ( t ) The desired response is x(t ) Rexe B cos(t ) Example 10.5-1 R 2 L 1H vs 10sin 3t Example 10.5-1(cont.) vs 10sin 3t 10cos(3t 90) ve 10e j (3t 90 ) die L Rie ve dt j 3 Ae j (3t 90 ) 2 Ae ie Ae j (3t 90) j (3t 90 ) 10e j (3t 90 ) j 3 A 2 A 10 10 10 j A e 2 j3 49 3 tan 56.3 2 1 Example 10.5-1(cont.) The solution is 10 j 56.3 j (3t 90) 10 j (3t 146.3 ) ie e e e 13 13 The actual response is 10 i Re ie cos(3t 146.3) A 13 The Phasor Concept A sinusoidal current or voltage at a given frequency is characterized by its amplitude and phase angle. i (t ) Re I m e j ( t ) I m cos( t ) Magnitude Phase angle Thus we may write i (t ) Re I me j ( ) e j t unchanged The Phasor Concept(cont.) A phasor is a complex number that represents the magnitude and phase of a sinusoid. phasor I I me j ( ) I m The Phasor Concept may be used when the circuit is linear , in steady state, and all independent sources are sinusoidal and have the same frequency. A real sinusoidal current i (t ) I m cos( t ) Re I me j (t ) I I me j I m phasor notation The Transformation y (t ) Ym cos( t ) Re Ym e j ( t ) Time domain Transformation Frequency domain Y Ym e Ym j The Transformation (cont.) Time domain i (t ) 5sin(100t 120) 5cos(100t 30) Transformation Frequency domain I 530 Example di L Ri vs 10.6-2 dt j ( t ) vs Vm cos( t ) Re Vm e i I m cos( t ) Re I m e j ( t ) Substitute into 10.6-2 ( j LI m RI m )e Suppress e j ( t ) j t ( j L R ) I m e I j Vme j ( t ) Vm e j V V I ( j L R ) Example (cont.) R 200 , L 2 H, 100 rad / s V I ( j 200 200) Vm0 28345 Vm 45 283 Vm i (t ) cos(100t 45) A 283 Phasor Relationship for R, L, and C Elements Time domain v Ri Frequency domain V V RI or I R Voltage and current are in phase Resistor Inductor Time domain di vL dt Frequency domain V V j LI or I j L Voltage leads current by 90 Capacitor Time domain dv iC dt Frequency domain I jCV or V Voltage lags current by 90 I jC Impedance and Admittance Impedance is defined as the ratio of the phasor voltage to the phasor current. V Ohm’s law in phasor notation Z I phase Vm Vm I m I m magnitude Z or Z Z polar Ze j exponential R jX rectangular Graphical representation of impedance Z Z Z R X 1 X tan R 2 Resistor Inductor Capacitor ZR Z j L 1 Z jC R L 1/C 2 Admittance is defined as the reciprocal of impedance. 1 1 Y Y Z Z conductance In rectangular form 1 1 R jX Y 2 G jB 2 Z R jX R X Resistor Inductor Capacitor 1 YG R Y susceptance G 1 j L Y j C 1/L C Kirchhoff’s Law using Phasors KVL V1 V2 V3 KCL I1 I2 I3 Vn 0 In 0 Both Kirchhoff’s Laws hold in the frequency domain. and so all the techniques developed for resistive circuits hold Superposition Thevenin &Norton Equivalent Circuits Source Transformation Node & Mesh Analysis etc. Impedances in series Zeq Z1 Z2 Z3 Zn Admittances in parallel Yeq Y1 Y2 Y3 Yn Example 10.9-1 KVL Z 2 j L j1 R = 9 , L = 10 mH, C = 1 mF i = ? RI Z2I Z3I Vs (9 j1 j10)I Vs Vs 1000 I 7.8645 (9 j 9) 9 2 45 or i 7.86cos(100t 45) A 1 Z3 j10 j C Example 10.9-2 v=? KCL V V V 100 10 10 j10 j10 0.1V (0.05 j 0.05) V j 0.1V 10 or 10 V 63.3 18.4 0.15818.4 v 63.3cos(1000t 18.4) V Node Voltage & Mesh Current using Phasors is I m cos t C 100 μF, L 5 mH 1000 rad/s va = ? vb = ? 1 Z1 j10 j C Y2 1 1 1 (1 j ) 5 j L 5 Z3 10 KCL at node a Va Va Vb Is Z1 Z3 KCL at node b Vb Va Vb 0 Z3 Z2 Rearranging ( Y1 Y3 ) Va ( Y3 ) Vb I s ( Y3 ) Va ( Y2 Y3 ) Vb 0 Y3 Va I s ( Y1 Y3 ) Y Y2 Y3 Vb 0 3 Y matrix Admittance matrix If Im = 10 A and I s I m0 Using Cramer’s rule to solve for Va 100(3 2 j ) Va 4 j 100(3 2 j )(4 j ) 17 100 (10 11 j ) 17 87.5 47.7 Therefore the steady state voltage va is va 87.5cos(1000t 47.7) V Example 10.10-1 v=? vs 10cos t C 10 mF, L 0.5 H 10 rad/s use supernode concept as in #4 Z L j L j5 1 ZC j10 j C Z3 R3 Z L 5 j5 Example 10.10-1 (cont.) 1 1 Y1 R1 10 Y2 1 1 1 (1 j ) R2 ZC 10 1 1 Y3 (5 j5) Z3 50 KCL at supernode Y1 ( V Vs ) Y2 V Y3 V 10Y1 ( Vs V) 0 Rearranging ( Y1 Y2 Y3 10Y1Y3 ) V ( Y1 10Y1Y3 ) Vs ( Y1 10Y1Y3 ) Vs V ( Y1 Y2 Y3 10Y1Y3 ) Example 10.10-1 (cont.) ( Y1 10Y1Y3 )100 V ( Y1 Y2 Y3 10Y1Y3 ) 10 j 10 63.4 2 j 5 Therefore the steady state voltage v is 10 v cos(10t 63.4) V 5 Example 10.10-2 i1 = ? vs 10 2 cos( t 45) C 5 mF, L 30 mH 100 rad/s Z L j L j 3 ZC 1 j2 jC Vs 10 245 10 j10 Example 10.10-2 (cont.) KVL at mesh 1 & 2 (3 j 3)I1 j 3I 2 Vs (3 j 3)I1 ( j 3 j 2)I2 0 Using Cramer’s rule to solve for I1 (10 j10) j I1 where is the determinant (3 j 3)( j ) j 3(3 - j 3) 6 12 j (10 j10) j I1 1.0571.6 6 12 j Superposition, Thevenin & Norton Equivalents and Source Transformations Example 10.11-1 i=? vs 10cos10t V is 3 A C 10 mF, L 1.5 H Vs 100 I s 30 Consider the response to the voltage source acting alone = i1 Example 10.11-2 (cont.) Substitute Vs I1 5 j L Z p ZC R Zp 5(1 j ) and L 15 R ZC 100 I1 5 j15 (5 j5) 10 10 45 10 j10 200 Example 10.11-2 (cont.) Consider the response to the current source acting alone = i2 0 10 I 2 (3) 2 A 15 Using the principle of superposition i 0.71cos(10t 45) 2 A Source Transformations VI IV Example 10.11-2 IS = ? vs 10cos( t 45) V 100 rad/s Z s 10 j10 Vs 1045 1045 Is 20045 10 0 200 Example 10.11-3 Thevenin’s equivalent circuit ? Z1 1 j Z2 j VOC I s Z1 2 245 Zt Z1 Z2 1 Example 10.11-4 Thevenin’s equivalent circuit V 10I s 200 VOC 3V V 800 VO j10I 4V ( j10 40)I Zt 40 j10 Example 10.11-4 Norton’s equivalent circuit ? Z1Z 2 Zt Z3 Z1 Z 2 ( Z1 Z2 )I ( Z2 )I SC Vs ( Z2 )I ( Z2 Z3 )I SC 0 Phasor Diagrams A Phasor Diagram is a graphical representation of phasors and their relationship on the complex plane. Take I as a reference phasor I I 0 The voltage phasors are VR RI RI 0 VL j LI LI 90 j I VC I 90 C C Phasor Diagrams (cont.) KVL Vs VR VL VC For a given L and C there will be a frequency that VL VC 1 L C Resonant frequency 1 or LC 2 Resonance Vs VR 1 LC Summary Sinusoidal Sources Steady-State Response of an RL Circuit for Sinusoidal Forcing Function Complex Exponential Forcing Function The Phasor Concept Impedance and Admittance Electrical Circuit Laws using Phasors