Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ProblemoftheMonth RodTrains TheProblemsoftheMonth(POM)areusedinavarietyofwaystopromoteproblem solvingandtofosterthefirststandardofmathematicalpracticefromtheCommon CoreStateStandards:“Makesenseofproblemsandpersevereinsolvingthem.”The POMmaybeusedbyateachertopromoteproblemsolvingandtoaddressthe differentiatedneedsofherstudents.Adepartmentorgradelevelmayengagetheir studentsinaPOMtoshowcaseproblemsolvingasakeyaspectofdoing mathematics.Itcanalsobeusedschoolwidetopromoteaproblemsolvingthemeat aschool.Thegoalisforallstudentstohavetheexperienceofattackingandsolving non‐routineproblemsanddevelopingtheirmathematicalreasoningskills.Although obtainingandjustifyingsolutionstotheproblemsistheobjective,theprocessof learningtoproblemsolveisevenmoreimportant. TheProblemoftheMonthisstructuredtoprovidereasonabletasksforallstudents inaschool.ThestructureofaPOMisashallowfloorandahighceiling,sothatall studentscanproductivelyengage,struggle,andpersevere.ThePrimaryVersion LevelAisdesignedtobeaccessibletoallstudentsandespeciallythekeychallenge forgradesK–1.LevelAwillbechallengingformostsecondandthirdgraders. LevelBmaybethelimitofwherefourthandfifth‐gradestudentshavesuccessand understanding.LevelCmaystretchsixthandseventh‐gradestudents.LevelDmay challengemosteighthandninthgradestudents,andLevelEshouldbechallenging formosthighschoolstudents.Thesegrade‐levelexpectationsarejustestimatesand shouldnotbeusedasanabsoluteminimumexpectationormaximumlimitationfor students.Problemsolvingisalearnedskill,andstudentsmayneedmany experiencestodeveloptheirreasoningskills,approaches,strategies,andthe perseverancetobesuccessful.TheProblemoftheMonthbuildsonsequentiallevels ofunderstanding.AllstudentsshouldexperienceLevelAandthenmovethroughthe tasksinordertogoasdeeplyastheycanintotheproblem.Therewillbethose studentswhowillnothaveaccessintoevenLevelA.Educatorsshouldfeelfreeto modifythetasktoallowaccessatsomelevel. Overview IntheProblemoftheMonthRodTrains,studentsusemathematicalconceptsof combinatorics,numbertheory,anddiscretemathematics.Themathematicaltopics thatunderliethisPOMareknowledgeofnumbersense,numberpatterns,counting principles,systematiccharting,andclosedformequations.Themathematicsthat includescountingprinciplesandsystematicchartingisoftenreferredtoasdiscrete mathematics. InthefirstlevelsofthePOM,studentscomparethelengthofrodstodeterminea numericalmeasurementofeachoftherods.Asonecontinuesthroughthelevels, ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). studentsanalyzeproblemstodeterminethenumberoftrainsthatarecreatedby arrangingtherodsindifferentordersanddifferentlengths.Inthefinallevelsofthe POM,studentsarepresentedwithsituationsthatrequirethemtousecounting principlesandorganizedliststodeterminethenumberofwaystrainscanbe assembled.Inthefinallevel,studentsareaskedtogeneralizetheirfindingsinan equationgivenatrainlengthofn. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). Problem of the Month Rod Trains Level A: You have 10 different rods - each a different color and a different length. If you use just the red rods and put them together in a train (one next to each other), what other length rods could you make? List the other rods by color. Explain why only some rods work. If the light green rod is 3 units long, determine the length of each of the other rods. Explain the method you used to figure out the lengths. Organize the rods in order from smallest to largest and draw each of them. Write the length next to each of your drawings. Problem of the Month Rod Trains Page 1 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level B: A rod train can be made with different sizes of rods. A rod train with a red rod first and a purple rod second is different than a purple rod first and a red rod second. Which color rod is the same length as a red rod next to a purple rod? What is the length of that rod? How long is the brown rod? Suppose you put two smaller rods together to make a rod train the same length as the brown rod. How many different ways (order matters) can you put two rods together and make it the same length as the brown? Explain how you figured it out. Write an addition number sentence for each of the combinations that you found. What do you notice from the number sentences? Explain. Problem of the Month Rod Trains Page 2 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level C: Rod Trains can be just one rod, several rods of equal size, or several rods of differing sizes. The order of the rods matters – different order makes Rod Trains unique from one another. For example a Rod Train made up of a red on the left side and a purple on the right is a different Rod Train from one that has a purple on the left side and a red on the right. Consider the yellow rod. Determine all the different combinations of rods that can be arranged so that you have a rod train that is equal to the length of the yellow rod. How many possible Rod Trains are equal in length to a yellow rod? Explain your solution and the method you used to figure it out. How do you know you have all the combinations? Problem of the Month Rod Trains Page 3 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level D: The longest rod you have is the orange rod, which is 10 centimeters in length. Determine the number of rod trains that make up each of the ten rods. Illustrate or list the ten rods and all the rod trains that have equal length to that rod. Explain your method for finding each set of rod trains. How do you know you have them all? What patterns or relationships do you see in the list of the sets of rod trains? Problem of the Month Rod Trains Page 4 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level E: Suppose you have rods whose length equals every natural number. Determine the number of rod train combinations needed for a train of length n. Justify mathematically how you got your answer. Problem of the Month Rod Trains Page 5 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Problem of the Month Primary Version Level A Rod Trains PrimaryVersionLevelA Materials:Asetofrods(1‐10)foreachpair,paperandpencilstowriteordraw, colorcrayons,markersorpencils Discussionontherug:Teachergivesstudentsseveralrods.“Here are some rods. What do you notice about them? What else do you notice about them?”Teachercontinuestoaskchildrentonoticethattheyaredifferentcolorsand differentlengths.Theteacherencouragesthestudentstoplaywiththemandmake differentthings. Insmallgroups:Eachgrouphasasetofrods.Teacherasksthefollowing questions,goingontothenextquestiononlywhenstudentshavesuccess. 1.“How many rods do you have? How can you check to know for sure?” Continueuntilyouthinkstudentsunderstandthatyouhaveten.If10istoomany, youmightuseless‐suchas6. 2.“Put the rods in order of smallest to biggest?” Attheendoftheinvestigationhavestudentsdrawapicturetorepresenttheir solution. 3.“If this is a size 1 rod, how big are the others? Can you give each a name?”Havestudentswriteanumbernexttoeachroddrawn. 4.“If you put red rods together, what other color rods can you make? Explain.” Problem of the Month Rod Trains Page 6 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Cuisenaire Rods Problem of the Month Rod Trains Page 7 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). ProblemoftheMonth RodTrains TaskDescription–LevelA Thistaskchallengesastudenttouserodsofdifferentlengths anduseoneasa“unit”ofmeasureto determinethesizeoftheotherrods.Studentsalsocomparelengthsofrods. CommonCoreStateStandardsMath‐ContentStandards MeasurementandData Measurelengthsindirectlyandbyiteratinglengthunits. 1.MD.1Orderthreeobjectsbylength;comparethelengthsoftwoobjectsindirectlybyusingathird object. 1.MD.2Expressthelengthofanobjectasawholenumberoflengthunits,bylayingmultiplecopiesof ashorterobject(thelengthunit)endtoend;understandthatthelengthmeasurementofanobjectis thenumberofthesamesizelengthunitsthatspanitwithnogapsoroverlaps. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.5Useappropriatetoolsstrategically. Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematical problem.Thesetoolsmightincludepencilandpaper,concretemodels,aruler,aprotractor,a calculator,aspreadsheet,acomputeralgebrasystem,astatisticalpackage,ordynamicgeometry software.Proficientstudentsaresufficientlyfamiliarwithtoolsappropriatefortheirgradeorcourse tomakesounddecisionsaboutwheneachofthesetoolsmightbehelpful,recognizingboththe insighttobegainedandtheirlimitations.Forexample,mathematicallyproficienthighschool studentsanalyzegraphsoffunctionsandsolutionsgeneratedusingagraphingcalculator.They detectpossibleerrorsbystrategicallyusingestimationandothermathematicalknowledge.When makingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizetheresultsof varyingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematically proficientstudentsatvariousgradelevelsareabletoindentifyrelevantexternalmathematical resources,suchasdigitalcontentlocatedonawebsite,andusethemtoposeorsolveproblems.They areabletousetechnologicaltoolstoexploreanddeepentheirunderstandingofconcepts. MP.6Attendtoprecision. Mathematicallyproficientstudentstrytocommunicatepreciselytoothers.Theytrytouseclear definitionsindiscussionwithothersandintheirownreasoning.Theystatethemeaningofsymbols theychoose,includingusingtheequalsignconsistentlyandappropriately.Theyarecarefulabout specifyingunitsofmeasure,andlabelingaxestoclarifythecorrespondencewithquantitiesina problem.Theycalculateaccuratelyandefficiently,expressnumericalanswerswithadegreeof precisionappropriatefortheproblemcontext.Intheelementarygrades,studentsgivecarefully formulatedexplanationstoeachother.Bythetimetheyreachhighschooltheyhavelearnedto examineclaimsandmakeexplicituseofdefinitions. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth RodTrains TaskDescription–LevelB Thistaskchallengesstudentstofindthetotalcombinationsoftworodsthatcanequalabrownrod (length8)andrecordthecombinationsusingnumbersentences.Studentsarechallengedtolookfor patternsinthenumbersentences. CommonCoreStateStandardsMath‐ContentStandards OperationsandAlgebraicThinking Representandsolveproblemsinvolvingadditionandsubtraction. 1.OA.1Useadditionandsubtractionwithin20tosolvewordproblemsinvolvingsituationsofadding to,takingfrom,puttingtogether,takingapart,andcomparingwithunknownsinallthepositions,e.g. byusingobjects,drawings,andequationswithasymbolfortheunknownnumbertorepresentthe problem. Addandsubtractwithin20. 1.OA.5Relatecountingtoadditionandsubtraction. MeasurementandData Measurelengthsindirectlyandbyiteratinglengthunits. 1.MD.1Orderthreeobjectsbylength;comparethelengthsoftwoobjectsindirectlybyusingathird object. 1.MD.2Expressthelengthofanobjectasawholenumberoflengthunits,bylayingmultiplecopiesof ashorterobject(thelengthunit)endtoend;understandthatthelengthmeasurementofanobjectis thenumberofthesamesizelengthunitsthatspanitwithnogapsoroverlaps. StatisticsandProbability Investigatechanceprocessanddevelop,use,andevaluateprobabilitymodels. 7.SP.8Representsamplespacesforcompoundeventsusingmethodssuchasorganizedlists,tables, andtreediagrams. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.5Useappropriatetoolsstrategically. Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematical problem.Thesetoolsmightincludepencilandpaper,concretemodels,aruler,aprotractor,a calculator,aspreadsheet,acomputeralgebrasystem,astatisticalpackage,ordynamicgeometry software.Proficientstudentsaresufficientlyfamiliarwithtoolsappropriatefortheirgradeorcourse tomakesounddecisionsaboutwheneachofthesetoolsmightbehelpful,recognizingboththe insighttobegainedandtheirlimitations.Forexample,mathematicallyproficienthighschool studentsanalyzegraphsoffunctionsandsolutionsgeneratedusingagraphingcalculator.They detectpossibleerrorsbystrategicallyusingestimationandothermathematicalknowledge.When makingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizetheresultsof varyingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematically proficientstudentsatvariousgradelevelsareabletoindentifyrelevantexternalmathematical resources,suchasdigitalcontentlocatedonawebsite,andusethemtoposeorsolveproblems.They areabletousetechnologicaltoolstoexploreanddeepentheirunderstandingofconcepts. MP.6Attendtoprecision. Mathematicallyproficientstudentstrytocommunicatepreciselytoothers.Theytrytouseclear definitionsindiscussionwithothersandintheirownreasoning.Theystatethemeaningofsymbols theychoose,includingusingtheequalsignconsistentlyandappropriately.Theyarecarefulabout specifyingunitsofmeasure,andlabelingaxestoclarifythecorrespondencewithquantitiesina problem.Theycalculateaccuratelyandefficiently,expressnumericalanswerswithadegreeof precisionappropriatefortheproblemcontext.Intheelementarygrades,studentsgivecarefully formulatedexplanationstoeachother.Bythetimetheyreachhighschooltheyhavelearnedto examineclaimsandmakeexplicituseofdefinitions. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth RodTrains TaskDescription–LevelC Thistaskchallengesastudenttofindthetotalcombinationsofrodsthatcanequalabrownrod (length8)andrecordthecombinationsusingnumbersentences.Atthislevelthechallengeis expandedtothepossibilityofusingmorethanonerodofagivencolorandmorethan2rods.The studentmustalsomakeaconvincingargumentabouthavingfoundthetotalnumberofpossibilities. CommonCoreStateStandardsMath‐ContentStandards OperationsandAlgebraicThinking Representandsolveproblemsinvolvingadditionandsubtraction. 1.OA.1Useadditionandsubtractionwithin20tosolvewordproblemsinvolvingsituationsofaddingto,taking from,puttingtogether,takingapart,andcomparingwithunknownsinallthepositions,e.g.byusingobjects, drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem. Addandsubtractwithin20. 1.OA.5Relatecountingtoadditionandsubtraction. MeasurementandData Measurelengthsindirectlyandbyiteratinglengthunits. 1.MD.1Orderthreeobjectsbylength;comparethelengthsoftwoobjectsindirectlybyusingathirdobject. 1.MD.2Expressthelengthofanobjectasawholenumberoflengthunits,bylayingmultiplecopiesofashorter object(thelengthunit)endtoend;understandthatthelengthmeasurementofanobjectisthenumberofthe samesizelengthunitsthatspanitwithnogapsoroverlaps. StatisticsandProbability Investigatechanceprocessanddevelop,use,andevaluateprobabilitymodels. 7.SP.8Representsamplespacesforcompoundeventsusingmethodssuchasorganizedlists,tables,andtree diagrams. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingfor entrypointstoitssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjectures abouttheformandmeaningofthesolutionandplanasolutionpathwayratherthansimplyjumpingintoa solutionattempt.Theyconsideranalogousproblems,andtryspecialcasesandsimplerformsoftheoriginal probleminordertogaininsightintoitssolution.Theymonitorandevaluatetheirprogressandchangecourseif necessary.Olderstudentsmight,dependingonthecontextoftheproblem,transformalgebraicexpressionsor changetheviewingwindowontheirgraphingcalculatortogettheinformationtheyneed.Mathematically proficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables,andgraphsor drawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem. Mathematicallyproficientstudentschecktheiranswerstoproblemsusingadifferentmethod,andthey continuallyaskthemselves,“Doesthismakesense?”Theycanunderstandtheapproachesofotherstosolving complexproblemsandidentifycorrespondencesbetweendifferentapproaches. MP.3Constructviableargumentsandcritiquethereasoningofothers. Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviously establishedresultsinconstructingarguments.Theymakeconjecturesandbuildalogicalprogressionof statementstoexplorethetruthoftheirconjectures.Theyareabletoanalyzesituationsbybreakingtheminto cases,andcanrecognizeandusecounterexamples.Theyjustifytheirconclusions,communicatethemtoothers, andrespondtotheargumentsofothers.Theyreasoninductivelyaboutdata,makingplausibleargumentsthat takeintoaccountthecontextfromwhichthedataarose.Mathematicallyproficientstudentsarealsoableto comparetheeffectivenessoftwoplausiblearguments,distinguishcorrectlogicorreasoningfromthatwhichis flawed,and–ifthereisaflawinanargument–explainwhatitis.Elementarystudentscanconstructarguments usingconcretereferentssuchasobjects,drawings,diagrams,andactions.Suchargumentscanmakesenseand becorrect,eventhoughtheyarenotgeneralizedormadeformaluntillatergrades.Later,studentslearnto determinedomainstowhichanargumentapplies.Studentsatallgradescanlistenorreadtheargumentsof others,decidewhethertheymakesense,andaskusefulquestionstoclarifyorimprovethearguments. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth RodTrains TaskDescription–LevelD Thistaskchallengesastudenttofindallthecombinationsofrodtrainsthatcanmakeasize10rod. Studentsneedtobeabletobreaktheproblemdownintosmallercasesandorganizethedatafor eachcase.Studentsmustconstructaconvincingargumenttoshowhowtheyknowtheyhavefound allthepossibilitiesandlookforpatternsorrelationshipsinthesetsofrodtrains. CommonCoreStateStandardsMath‐ContentStandards StatisticsandProbability Investigatechanceprocessanddevelop,use,andevaluateprobabilitymodels. 7.SP.8Representsamplespacesforcompoundeventsusingmethodssuchasorganizedlists,tables, andtreediagrams. HighSchool–StatisticsandProbability–ConditionalProbabilityandtheRulesofProbability Usetherulesofprobabilitytocomputeprobabilitiesofcompoundeventsinauniform probabilitymodel. S‐CP.9.Usepermutationsandcombinationstocomputeprobabilitiesofcompoundeventsandsolve problems. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.3Constructviableargumentsandcritiquethereasoningofothers. Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,and previouslyestablishedresultsinconstructingarguments.Theymakeconjecturesandbuildalogical progressionofstatementstoexplorethetruthoftheirconjectures.Theyareabletoanalyze situationsbybreakingthemintocases,andcanrecognizeandusecounterexamples.Theyjustify theirconclusions,communicatethemtoothers,andrespondtotheargumentsofothers.They reasoninductivelyaboutdata,makingplausibleargumentsthattakeintoaccountthecontextfrom whichthedataarose.Mathematicallyproficientstudentsarealsoabletocomparetheeffectiveness oftwoplausiblearguments,distinguishcorrectlogicorreasoningfromthatwhichisflawed,and–if thereisaflawinanargument–explainwhatitis.Elementarystudentscanconstructarguments usingconcretereferentssuchasobjects,drawings,diagrams,andactions.Suchargumentscanmake senseandbecorrect,eventhroughtheyarenotgeneralizedormadeformaluntillatergrades.Later, studentslearntodeterminedomainstowhichanargumentapplies.Studentsatallgradescanlisten orreadtheargumentsofothers,decidewhethertheymakesense,andaskusefulquestionstoclarify orimprovethearguments. MP.5Useappropriatetoolsstrategically. Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematical problem.Thesetoolsmightincludepencilandpaper,concretemodels,aruler,aprotractor,a calculator,aspreadsheet,acomputeralgebrasystem,astatisticalpackage,ordynamicgeometry software.Proficientstudentsaresufficientlyfamiliarwithtoolsappropriatefortheirgradeorcourse tomakesounddecisionsaboutwheneachofthesetoolsmightbehelpful,recognizingboththe insighttobegainedandtheirlimitations.Forexample,mathematicallyproficienthighschool studentsanalyzegraphsoffunctionsandsolutionsgeneratedusingagraphingcalculator.They detectpossibleerrorsbystrategicallyusingestimationandothermathematicalknowledge.When makingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizetheresultsof varyingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematically proficientstudentsatvariousgradelevelsareabletoindentifyrelevantexternalmathematical resources,suchasdigitalcontentlocatedonawebsite,andusethemtoposeorsolveproblems.They areabletousetechnologicaltoolstoexploreanddeepentheirunderstandingofconcepts. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth RodTrains TaskDescription–LevelE Thistaskchallengesastudenttofindaclosedequationforallthepossiblerodtrainsthatcouldequal arodtrainoflengthn. CommonCoreStateStandardsMath‐ContentStandards ExpressionsandEquations Applyandextendpreviousunderstandingsofarithmetictoalgebraicexpressions. 6.EE.1Writeandevaluatenumericalexpressionsinvolvingwhole‐numberexponents. StatisticsandProbability Investigatechanceprocessanddevelop,use,andevaluateprobabilitymodels. 7.SP.8Representsamplespacesforcompoundeventsusingmethodssuchasorganizedlists,tables,andtree diagrams. HighSchool–Algebra–CreatingEquations Createequationsthatdescribenumbersorrelationships. A‐CED.1Createequationsandinequalitiesinonevariableandusethemtosolveproblems,includeequations arisingfromlinearandquadraticfunctions,andsimplerationandexponentialfunctions. HighSchool–StatisticsandProbability–ConditionalProbabilityandtheRulesofProbability Understandindependenceandconditionalprobabilityandusethemtointerpretdata. S‐CP.1Describeeventsassubsetsofasamplespaceusingcharacteristicsoftheoutcomes,orasunions, intersections,orcomplementsofotherevents(“or”,“and”,“not”). S‐CP.4Constructandinterprettwo‐waytablesofdatawhentwocategoriesareassociatedwitheachobject beingclassified.Usethetwo‐waytableasasamplespacetodecideifeventsareindependentandtoapproximate conditionalprobabilities. Usetherulesofprobabilitytocomputeprobabilitiesofcompoundeventsinauniformprobability model. S‐CP.9Usepermutationsandcombinationstocomputeprobabilitiesofcompoundeventsandsolveproblems. CommonCoreStateStandardsMath– StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingfor entrypointstoitssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjectures abouttheformandmeaningofthesolutionandplanasolutionpathwayratherthansimplyjumpingintoa solutionattempt.Theyconsideranalogousproblems,andtryspecialcasesandsimplerformsoftheoriginal probleminordertogaininsightintoitssolution.Theymonitorandevaluatetheirprogressandchangecourseif necessary.Olderstudentsmight,dependingonthecontextoftheproblem,transformalgebraicexpressionsor changetheviewingwindowontheirgraphingcalculatortogettheinformationtheyneed.Mathematically proficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables,andgraphsor drawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem. Mathematicallyproficientstudentschecktheiranswerstoproblemsusingadifferentmethod,andthey continuallyaskthemselves,“Doesthismakesense?”Theycanunderstandtheapproachesofotherstosolving complexproblemsandidentifycorrespondencesbetweendifferentapproaches. MP.4Modelwithmathematics. Mathematicallyproficientstudentscanapplythemathematicstheyknowtosolveproblemsarisingineveryday life,society,andtheworkplace.Inearlygradesthismightbeassimpleaswritinganadditionequationto describeasituation.Inmiddlegrades,astudentmightapplyproportionalreasoningtoplanaschooleventor analyzeaprobleminthecommunity.Byhighschool,astudentmightusegeometrytosolveadesignproblemor useafunctiontodescribehowonequantityofinterestdependsonanother.Mathematicallyproficientstudents whocanapplywhattheyknowarecomfortablemakingassumptionsandapproximationstosimplifya complicatedsituation,realizingthatthesemayneedrevisionlater.Theyareabletoidentifyimportant quantitiesinapracticalsituationandmaptheirrelationshipsusingsuchtoolsasdiagrams,two‐waytables, graphs,flowcharts,andformulas.Theycananalyzethoserelationshipsmathematicallytodrawconclusions. Theyroutinelyinterprettheirmathematicalresultsinthecontextofthesituationandreflectonwhetherthe resultsmakesense,possiblyimprovingthemodelifithasnotserveditspurpose. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth RodTrains TaskDescription–PrimaryLevel Thistaskchallengesastudenttocountandcomparerodsofdifferentsizesandreasonabouthow largerrodscanbemadewithsmallerrods. CommonCoreStateStandardsMath‐ContentStandards MeasurementandData Measurelengthsindirectlyandbyiteratinglengthunits. 1.MD.1Orderthreeobjectsbylength;comparethelengthsoftwoobjectsindirectlybyusingathird object. 1.MD.2Expressthelengthofanobjectasawholenumberoflengthunits,bylayingmultiplecopiesof ashorterobject(thelengthunit)endtoend;understandthatthelengthmeasurementofanobjectis thenumberofthesamesizelengthunitsthatspanitwithnogapsoroverlaps. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.5Useappropriatetoolsstrategically. Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematical problem.Thesetoolsmightincludepencilandpaper,concretemodels,aruler,aprotractor,a calculator,aspreadsheet,acomputeralgebrasystem,astatisticalpackage,ordynamicgeometry software.Proficientstudentsaresufficientlyfamiliarwithtoolsappropriatefortheirgradeorcourse tomakesounddecisionsaboutwheneachofthesetoolsmightbehelpful,recognizingboththe insighttobegainedandtheirlimitations.Forexample,mathematicallyproficienthighschool studentsanalyzegraphsoffunctionsandsolutionsgeneratedusingagraphingcalculator.They detectpossibleerrorsbystrategicallyusingestimationandothermathematicalknowledge.When makingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizetheresultsof varyingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematically proficientstudentsatvariousgradelevelsareabletoindentifyrelevantexternalmathematical resources,suchasdigitalcontentlocatedonawebsite,andusethemtoposeorsolveproblems.They areabletousetechnologicaltoolstoexploreanddeepentheirunderstandingofconcepts. MP.6Attendtoprecision. Mathematicallyproficientstudentstrytocommunicatepreciselytoothers.Theytrytouseclear definitionsindiscussionwithothersandintheirownreasoning.Theystatethemeaningofsymbols theychoose,includingusingtheequalsignconsistentlyandappropriately.Theyarecarefulabout specifyingunitsofmeasure,andlabelingaxestoclarifythecorrespondencewithquantitiesina problem.Theycalculateaccuratelyandefficiently,expressnumericalanswerswithadegreeof precisionappropriatefortheproblemcontext.Intheelementarygrades,studentsgivecarefully formulatedexplanationstoeachother.Bythetimetheyreachhighschooltheyhavelearnedto examineclaimsandmakeexplicituseofdefinitions. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US).