Download Introduction - LSU Computer Science

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CSC-2259 Discrete Structures
Konstantin Busch
Louisiana State University
K. Busch - LSU
1
Topics to be covered
•
•
•
•
•
•
•
Logic and Proofs
Sets, Functions, Sequences, Sums
Integers, Matrices
Induction, Recursion
Counting
Discrete Probability
Graphs
K. Busch - LSU
2
Binary Arithmetic
Decimal Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Numbers:
9, 28, 211, etc
Binary Digits: 0, 1
(also known as bits)
Numbers: 1001, 11100, 11010011, etc
K. Busch - LSU
3
Binary
Decimal
1001
9
1 2  0  2  0  2  1 2  8  1  9
3
2
1
K. Busch - LSU
0
4
Binary Addition
1001 (9)
+ 1 1 (3)
-----1100 (12)
Binary Multiplication
1001 (9)
x 1 1 (3)
-----1001
+ 1001
--------11011
(27)
K. Busch - LSU
5
Binary Logic
AND
Gates
OR
x
y
z
x
y
z
0
0
0
0
0
0
0
1
0
0
1
1
1
0
0
1
0
1
1
1
1
1
1
1
x
y
z
AND
x
y
NOT
z
OR
K. Busch - LSU
x
z
0
1
1
0
x
z
NOT
6
An arbitrary binary function is implemented
with NOT, AND, and OR gates
f ( x1 , x2 ,, xn )  y
x1
x2
x2
y
…
OR
xn
NOT
AND K. Busch - LSU
7
Propositional Logic
Proposition: a declarative sentence which
is either True or False
Examples: Today is Wednesday
Today it Snows
1+1 = 2
1+1 = 1
H20 = water
K. Busch - LSU
(False)
(False)
(True)
(False)
(True)
8
We can map to binary values: True = 1
False = 0
Propositions can be combined using
the binary operators AND, OR, NOT

Example:


( p  q)  (a  (b  c))
K. Busch - LSU
9
Implication
y
x y
x
True
True
True
True
False
False
False
True
True
False
False
True
x implies y
x y
“You get a computer science degree
only if you are a computer science major”
x : You get a computer science degree
y : You are a computer science major
K. Busch - LSU
10
Bi-conditional
y
x y
x
True
True
True
True
False
False
False
True
False
False
False
True
x if and only if y
x y
“There is a received phone call if and only if
there is a phone ring”
There is a received phone call
y : There is a phone ring
x:
K. Busch - LSU
11
Sets
Set is a collection of elements:
Real numbers R
Integers Z
Empty Set 
Students in this room
K. Busch - LSU
12
Basic Set Operations
Subset {2,4}  {1,2,3,4,5}
1
3
2
4 5
Union {1,2,3}  {2,4,5}  {1,2,3,4,5}
3
1
2
4
5
K. Busch - LSU
13
{1,2,3}  {2,4,5}  {2}
Intersection
3
1
2
4
5
Complement
{1,4}  {2,3,5}
universe {1,2,3,4,5}
K. Busch - LSU
14
DeMorgan’s Laws
A B  A B
A B  A B
K. Busch - LSU
15
Inclusion-Exclusion
| A B C |  | A|  | B |  | C |
 | A B |  | AC |  | B C |
 | A BC|
A
B
C
K. Busch - LSU
16
Powersets
Contains all subsets of a set
A  {1,2,3}
Powerset of A
Q  {,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}}
| Q | 2
| A|
K. Busch - LSU
17
Counting
Suppose we are given four objects: a, b, c, d
How many ways are there
to order the objects?
4! 1 2  3  4
a,b,c,d
b,a,c,d
a,b,d,c
b,a,d,c … and so on
K. Busch - LSU
18
Combinations
Given a set S with n elements
how many subsets exist with m elements?
n
n!
  
 m  m!(n  m)!
Example:
S  {1,2,3}
 3
3!
  
3
 2  2!(3  2)!
{1,2},{2,3},{1,3}
K. Busch - LSU
19
Sterling’s Approximation
n
n!  2n  
e
K. Busch - LSU
n
20
Probabilities
What is the probability the a dice gives 5?
Event set = {5}
Sample space = {1,2,3,4,5,6}
Size of event set
1
Pr obability( {5}) 

Size of sample space 6
K. Busch - LSU
21
What is the probability that two dice
give the same number?
Event set = {{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}}
Sample Space = {{1,1},{1,2},{1,3}, …., {6,5}, {6,6}}
Size of event set
6
Pr obability( {same number}) 

Size of sample space 36
K. Busch - LSU
22
Randomized Algorithms
Quicksort(A):
If ( |A| == 1)
return the one item in A
Else
p = RandomElement(A)
L = elements less than p
H = elements higher than p
B = Quicksort(L)
C = Quicksort(H)
return(BC)
K. Busch - LSU
23
Graph Theory
San Francisco
800
700
2000 miles
1500 miles
300
1500
Las Vegas
1500
Chicago
1000
1500
1000
1000
2000
Los Angeles
Boston
New York
800
Atlanta
700
Baton Rouge
1500
Miami
K. Busch - LSU
24
Shortest Path from Los Angeles to Boston
1500
2000
800
1500
1500
1000
700
1500
1000
300
Boston
800
1000
700
2000
1500
Los Angeles
K. Busch - LSU
25
Maximum number of edges in a graph
with n nodes:
2
n
 
n!
n(n  1) n  n
  


2
2
 2  2!(n  2)!
n5
edges  10
Clique with five nodes
K. Busch - LSU
26
Other interesting graphs
Trees
Bipartite Graph
K. Busch - LSU
27
Recursion
Sum of arithmetic sequence
f (n )  1  2  3  4    (n  1)  n
f (n )  n  f (n  1)
Basis
f (1)  1
Sum of geometric sequence
f (n )  20  21  22  23    2(n 1)
Basis
f (n )  2  f (n  1)  1
f (1)  1
K. Busch - LSU
28
Fibonacci numbers
Basis
f (n )  f n  1  f (n  2)
f (0)  0, f (1)  1
Divide and conquer algorithms (Quicksort)
n

f (n )  2  f    n
2
f (1)  1
K. Busch - LSU
29
Proof Techniques
Induction
Contradiction
Pigeonhole principle
K. Busch - LSU
30
Proof by Induction
f (n )  n  f (n  1)
n (n  1)
Prove: f (n ) 
2
1(1  1)
Induction Basis: f (1)  1 
2
Induction Hypothesis:
(n  1)n
f (n  1) 
2
Induction Step:
(n  1)n n 2  n n (n  1)
f (n )  n  f (n  1)  n 


2
2
2
K. Busch - LSU
31
Proof by Contradiction
is irrational
2
Suppose
m2
2 2
n
2 n2 = 4k2
m
2
n
(
m and n have no common
divisor greater than 1 )
m2 is even
n2 = 2k2
m=2k
m is even
n is even
Contradiction
K. Busch - LSU
32
Related documents