* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Date
Multilateration wikipedia , lookup
History of geometry wikipedia , lookup
History of trigonometry wikipedia , lookup
Geometrization conjecture wikipedia , lookup
Reuleaux triangle wikipedia , lookup
Rational trigonometry wikipedia , lookup
Euler angles wikipedia , lookup
Poincaré conjecture wikipedia , lookup
Trigonometric functions wikipedia , lookup
Incircle and excircles of a triangle wikipedia , lookup
Integer triangle wikipedia , lookup
Name _______________________________________ Date ___________________ Class __________________ Indirect Proof and Inequalities in One Triangle A. Consider the statement “Two acute angles do not form a linear pair.” Steps 1. Identify the conjecture to be proven. Given: Prove: 2. Assume the opposite of the conclusion is true. 3. Use direct reasoning to show that the assumption leads to a contradiction. 4. Conclude that the assumption is false and hence that the original conjecture must be true. B. Use the following statement for Exercises 1–4. An obtuse triangle cannot have a right angle. 1. Given: ____________________________________________ Prove: ______________________________________ 2. To write this indirect proof, what should you assume? _________________________________________________________________________ 3. Use direct reasoning to arrive at a contradiction. 4. What can you conclude? Use the figure for Exercises 1–6. Find each measure if HG and HI are midsegments. 1. HI ___________________ 2. DF ___________________ 3. GE ___________________ 4. mHIF ___________________ 5. mHGD ______________ 6. mD ___________________ 7. InXYZ, XY 9.3, YZ 7.6, and XZ 8.05. Name the largest and smallest angles ofXYZ. ________________________________________________________________________________________ 8. InJKL, mJ 62 and mK 57. Name the longest and shortest sides ofJKL. ________________________________________________________________________________________ In each figure, list the segments in order from longest to shortest. 9. 10. Tell whether a triangle can have sides with the given lengths. If not, show why. 11. 8, 8, 16 _______________ 12. 0.5, 0.7, 0.3 ________ 1 13. 10 , 4, 14 ________ 2 14. 3x 2, x2, 2x when x 4 _____________________________________________________ 15. 3x 2, x2, 2x when x 6 _____________________________________________________ The lengths of two sides of a triangle are given. Find the range of possible lengths for the third side. 16. 8.2 m, 3.5 m ________________________ 17. 298 ft, 177 ft ________________________ Find the range of values for the variable in each diagram. 19. 20. 18. 3 1 mi, 4 mi 2 ________________________ Name _______________________________________ Date __________________ Class __________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. Holt McDougal Geometry