Download electron

Document related concepts
no text concepts found
Transcript
Elementary Particle Physics
Microcosmos
I.
II.
III.
IV.
The Wild World of Subatomic Particles
The Story of the Higgs
The Mystery of Dark Matter
Particle Physics and You!
Frank Linde
Nikhef & UvA
+31-205925001
[email protected]
Dark ages
Long ago …
Empedocles
Plato
Aristoteles
Leucippus
Democritus
Air
Water
Fire
Earth
Atoms
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
Alchemy
Lead
Gold
Number of atoms per volume independent of atom type!
(Avogadro)
NA atoms
=
1 Mole
Atoms
gas
22.4 liters
NA = 6.0221420  1023/Mol
How large?
30-3001012 meters
How heavy? 2-4501025 kilograms
How many?
31023/gram hydrogen
Het Periodiek
Systeem
Periodic
Table
of Elements
nummering: kernlading
Nobel gasses
Not part of the
original Mendeleev
periodic table
The atom
Thomson
1897
e/m = 1.761011 C/kg
Thomson
1897
qe = 1.60217646  1019 C
me = 9.1093819  1031 kg
Millikan
1900
electron
Atoms: Rutherford’s view
Elementary particles (1932):
Electron, Proton & Neutron
1897
electron
Thomson
1911
nucleus
Rutherford
1911
proton
Rutherford
1932
neutron
Chadwick
Physics just before 1900
??????? all ok ???????
Done?
No: few “minor” problems:




“black body” radiation
no eather?
natural radioactivity (Curie et al.)
stability of the Rutherford atom
I.
Special relativity
1905
Intermezzo: Einstein & relativity
Time travel becomes a reality!
‘click’ of the light clock at rest: t
L
‘hence-and-forward’
light flash period t:
2L
t=
c
c=299792458 m/s (exact)
observer at rest
c=299792458 m/s (exact)
‘click’ of the moving light clock: t’
‘hence-and-forward’
light flash period: t’
v [m/s]
L
2L2+(½vt’)2
t’ =
c
(ct’)2 = 4L2+(vt’)2
t
t’ = 2L =
t
c2v2 1v2/c2
½vt’
vt’
Moving clock ‘clicks’ slower!
observer moving with velocity v
II.
Quantum world
1900-19
Imagination
Light: quantum effects
Planck
1900
Planck (1858-1947)
Einstein
1905
Einstein (1879-1955)
Compton
1922
Compton (1892-1962)
I. Black body radiation
Planck
1900
Stacking waves!
Fit ½, 1, 1½, 2, etc. wavelengths in
box such that amplitude=0 on walls
L
Easier to fit short wavelengths!
=2L
=1L
=½L
Light wave's energy: classical
energy
E continuous!
|amplitude|2
ultra-violet catastroph
energy density
Radiated energy spectrum: classical
0 m
ρE  λ  
0,5 m
8π
λ

1

kT
4
wavelength ()
Light wave's energy: quantum
E = Nhf
Planck’s constant
h = 6.62606881034 J/s
E = 5hf
E discrete!
energy
E = 4hf
E = 3hf
E = 2hf
E = hf
# quanta N
hc
ρE  λ   4  hc λkT 
1 λ
λ e
ultra-violet catastroph
energy density
Radiated energy spectrum: quantum
0 m
8π
0,5 m
1
wavelength ()
Color
T=2,500 oC
the sun T=5,000 oC
T=7,500 oC
T=10,000 oC
T=12,500 oC
T=15,000 oC
Universe as black body radiator
T  2.725 K
 270.5 oC
Big Bang’s afterglow on your TV
II. Photo electric effect
incident light
wavelength 
(frequency f)
Einstein
1905
knocked out
electrons
slab of material
III. Compton effect
incident light
wavelength 
Compton
1922
scattered light
wavelength ’
scattered
electron
Duality: wave & particle characteristics
It is safe to say that nobody understands
quantum mechanics. R.P. Feynman
Quantum mechanics is magic.
Daniel Greenberger.
Everything we call real is made of things
that cannot be regarded as real.
Niels Bohr.
Those who are not shocked when they
first come across quantum theory
cannot possibly have understood it.
Niels Bohr.
If you are not confused by quantum
mechanics, you do not understand it.
John Wheeler.
more
quotes
If quantum theory is correct, it signifies
the end of physics as a science.
Albert Einstein.
I do not like quantum mechanics; I am
sorry I ever had anything to do with it.
Erwin Schrödinger.
Atom: quantum effects
Bohr
1910
Bohr (1885-1962)
Heisenberg Schrödinger
1925
1927
Heisenberg (1901-1976)
Schrödinger (1887-1961)
Bohr’s atom model
En  
13.6
n
2
eV
n=5
4 3 2 1
n=3
n=2
n=1
Balmer serie
En  
13.6
n
2
1

1



 2
 10.97
2
1
n 

μm1
eV
μm
1

3
2
1
Paschen
Balmer
Lyman
0.0
1.5
3.4
binding energy (eV)
 1
1 

 2  2  10.97
2

n


μm
1
quantum number (n)
 1
1 

 2  2  10.97
3
n 

13.6 eV
Heisenberg’s uncertainty principle
4
/2
t large
t small
light
t [s]
light
f large
f small
f [1/s]
electron
electron
Schrödinger’s wave equation
1H
ground state
n=1
“s” states
n=1
n=2
n=3
“p” & “d” states
Electron: quantum details
Lorentz & Zeeman
1896
(1885-1962) (1887-1961)
Leiden
Amsterdam
Uhlenbeck & Goudsmit
1925
(1887-1961)
(1901-1976)
Leiden
Leiden
Pauli
1925
(1900-1958)
N
Stern
Gerlach
Z
Zeeman
N
Z
Electron
Uhlenbeck
Goudsmit
spin!
Democracy: all electrons are equal
Pauli:
Each electron in
a different state!
electron = asocial
The electron
Mass:
0.000000000000000000000000000910938188 gram
Electric charge:
0.00000000000000000016021765 Coulomb
Mean lifetime:
 (infinite) seconds
”Spin”: ½
Perfect description of atoms!
‘Physics 2000’
website
(Colorado)
Relativistic quantum theory
Dirac
Anderson
Feynman
Dirac (1902-1984)
Anderson (1905-1991)
Feynman (1918-1988)
1928
1932
1947
negative energy
positive energy
Dirac’s anti-matter hypothesis

e

e+e
e
e+
+
e
Anderson’s anti-electron discovery
e+e
Positron EmissionTomograph
Angels & Demons: the movie
Real fun: creation & annihilition
Compton scattering:
e  e
Möller scattering:
e e   e e 
Bhabha scattering:
e+ e  e+e
Pair creation:
the only interaction
  e+e
Pair annihilation:
time
e+e  
Particle collisions
boring
collisions
exciting
collisions
high
energy
fun
collisions
2
E=mc
large
mass
Elementary Particle Physics
Microcosmos
I.
II.
III.
IV.
The Wild World of Subatomic Particles
The Story of the Higgs
The Mystery of Dark Matter
Particle Physics and You!
Frank Linde
Nikhef & UvA
+31-205925001
[email protected]
Related documents