Download ch8 - Otterville R-VI School District

yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Maximum sustainable yield wikipedia, lookup

Theoretical ecology wikipedia, lookup

World population wikipedia, lookup

Molecular ecology wikipedia, lookup

Human overpopulation wikipedia, lookup

Storage effect wikipedia, lookup

Source–sink dynamics wikipedia, lookup

Habitat conservation wikipedia, lookup

Occupancy–abundance relationship wikipedia, lookup

Island restoration wikipedia, lookup

Overexploitation wikipedia, lookup

Human population planning wikipedia, lookup

Decline in amphibian populations wikipedia, lookup

Population Ecology
Overview Questions
 What
are the major characteristics of
 How do populations respond to changes in
environmental conditions?
 How do species differ in their reproductive
Core Case Study:
Southern Sea Otters: Are They Back
from the Brink of Extinction?
 They
were overhunted to the
brink of extinction
by the early
1900’s and are
now making a
Figure 8-1
Core Case Study:
Southern Sea Otters: Are They Back
from the Brink of Extinction?
 Sea
otters are an
keystone species
for sea urchins
and other kelpeating organisms.
Figure 8-1
 Most
populations live in clumps although other
patterns occur based on resource distribution.
Figure 8-2
Changes in Population Size:
Entrances and Exits
 Populations
increase through births and
 Populations
decrease through deaths and
Age Structure: Young Populations
Can Grow Fast
 How
fast a population grows or declines
depends on its age structure.
Prereproductive age: not mature enough to
Reproductive age: those capable of
Postreproductive age: those too old to
Limits on Population Growth:
Biotic Potential vs. Environmental
 No
population can increase its size
The intrinsic rate of increase (r) is the rate at
which a population would grow if it had unlimited
Carrying capacity (K): the maximum population
of a given species that a particular habitat can
sustain indefinitely without degrading the habitat.
Exponential and Logistic Population
Growth: J-Curves and S-Curves
 Populations
grow rapidly with
resources, but
as resources
become limited,
its growth rate
slows and levels
Figure 8-4
Exponential and Logistic Population
Growth: J-Curves and S-Curves
 As
a population
levels off, it
often fluctuates
slightly above
and below the
Figure 8-4
Exceeding Carrying Capacity: Move,
Switch Habits, or Decline in Size
 Members
populations which
exceed their
resources will die
unless they adapt or
move to an area with
more resources.
Figure 8-6
Exceeding Carrying Capacity: Move,
Switch Habits, or Decline in Size
 Over
time species may increase their carrying
capacity by developing adaptations.
 Some species maintain their carrying
capacity by migrating to other areas.
 So far, technological, social, and other
cultural changes have extended the earth’s
carrying capacity for humans.
How Would You Vote?
 Can
we continue to expand the earth's
carrying capacity for humans?
a. No. Unless humans voluntarily control their
population and conserve resources, nature will
do it for us.
b. Yes. New technologies and strategies will
allow us to further delay exceeding the earth's
carrying capacity.
Population Density and Population
Change: Effects of Crowding
 Population
density: the number of individuals
in a population found in a particular area or
A population’s density can affect how rapidly it
can grow or decline.
• e.g. biotic factors like disease
Some population control factors are not affected
by population density.
• e.g. abiotic factors like weather
Types of Population Change
Curves in Nature
 Population
sizes may stay the same, increase,
decrease, vary in regular cycles, or change
Stable: fluctuates slightly above and below carrying
Irruptive: populations explode and then crash to a
more stable level.
Cyclic: populations fluctuate and regular cyclic or
boom-and-bust cycles.
Irregular: erratic changes possibly due to chaos or
drastic change.
Types of Population Change
Curves in Nature
 Population
sizes often vary in regular cycles
when the predator and prey populations are
controlled by the scarcity of resources.
Figure 8-7
Case Study: Exploding White-Tailed
Deer Populations in the United States
 Since
the 1930s the white-tailed deer
population has exploded in the United States.
Nearly extinct prior to their protection in 1920’s.
 Today
25-30 million white-tailed deer in U.S.
pose human interaction problems.
Deer-vehicle collisions (1.5 million per year).
Transmit disease (Lyme disease in deer ticks).
 Some
species reproduce without having sex
Offspring are exact genetic copies (clones).
 Others
reproduce by having sex (sexual).
Genetic material is mixture of two individuals.
Disadvantages: males do not give birth, increase
chance of genetic errors and defects, courtship
and mating rituals can be costly.
Major advantages: genetic diversity, offspring
Sexual Reproduction: Courtship
 Courtship
consume time and
energy, can transmit
disease, and can
inflict injury on males
of some species as
they compete for
sexual partners.
Figure 8-8
Reproductive Patterns:
Opportunists and Competitors
 Large
number of
smaller offspring with
little parental care (rselected species).
 Fewer, larger
offspring with higher
invested parental
care (K-selected
Figure 8-9
Reproductive Patterns
 r-selected
species tend to be opportunists
while K-selected species tend to be
Figure 8-10
r-Selected Species
Many small offspring
Little or no parental care and protection of offspring
Early reproductive age
Most offspring die before reaching reproductive age
Small adults
Adapted to unstable climate and environmental
High population growth rate (r)
Population size fluctuates wildly above and below
carrying capacity (K)
Generalist niche
Low ability to compete
Early successional species
Fig. 8-10a, p. 168
K-Selected Species
Fewer, larger offspring
High parental care and protection
of offspring
Later reproductive age
Most offspring survive to reproductive age
Larger adults
Adapted to stable climate and environmental
Lower population growth rate (r)
Population size fairly stable and usually close to
carrying capacity (K)
Specialist niche
High ability to compete
Late successional species
Fig. 8-10b, p. 168
Survivorship Curves:
Short to Long Lives
 The
way to represent the age structure of a
population is with a survivorship curve.
Late loss population live to an old age.
Constant loss population die at all ages.
Most members of early loss population, die at
young ages.
Survivorship Curves:
Short to Long Lives
 The
of different
species vary in
how long
members typically
Figure 8-11