Download Ex.B

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
W.35 Pure Mathematics (Complex Number)
Ex.A
1.
(a) (i)
Express cos 4 sin 3 as a sum of sines of multiples of  .
(ii) Express cos3 sin 4 as a sum of cosines of multiples of  .
2.
(b) Hence, find

(a) Show that
cos 7  64 cos7 - 112 cos5  56 cos3 - 7 cos .
cos3 sin 3 cos   sin   d .
(b) Using (a), or otherwise, show that the roots of the equation 64 x 6 - 112 x 4  56 x 2 - 7  0
are
 cos
π
3π
5π
,  cos
and  cos
.
14
14
14
(c) Hence, deduce that cos
3.
i 

By expanding  1 

3 

n
(a)

k0
4.
(a) Show that
π
3π
5π
7
 cos
 cos

.
14
14
14
8
2n
, find the values of
 1
C
2n 2k  - 3 
n -1
k

(b)
k0
sin (2n  1)  sin 2n 1
n

k0
where n is a positive integer and 0 <  

2
2n C
- 1k 2n 1C2k 1
 1
2k 1  3 
k
.
cot2 n - k
.
(b) Hence, show that
n

k 1
5.
n (2n - 1)
 k 
cot 2 
 
3
 2n  1 
n
and

k 1
2n (n  1)
 k 
csc 2 
.
 
3
 2n  1 
(a) Let n be a positive integer.
Prove that
 1  i tan 

 1 - i tan 
Hence, show that



n

1  i tan n
.
1 - i tan n
C1 cot n -1 - C3 cot n -3  C5 cot n -5 - ...
n
n
n
tan n 
.
n
n
2
cot  - C2 cot   C4 cot n -4 - ...
n
n
(b) By considering the roots of the equation
xn 
C x n -1 - C2 x n -2 - C3 x n -3  C4 x n -4  C5 x n -5 - ...  0 ,
n 1
n
n
n
n
n
evaluate

k 1
cot
(4k - 1)
.
4n
Ex.B
1.
Let n be a positive integer. Show that
n -1
Hence, deduce that
1 x 
2n


1-n
cos 
  2

 2n 
k 1
k
 z2n - zn cos n  1 
-
 1- x 
2n
n -1
 4nx

 2
2  k 
 x  tan  2n  .


k 1 
n .
2.
Factorize
into real quadratic factors .
3.
(a) Find all the complex numbers z satisfying the equation
z  z n -1 .
(b) Find the sum 1  2w  3w 2  ...  nw n -1 where w is a root of the equation w n = 1.
4.
Solve for z where
5.
(a) Show that
 1  z 2n 1

 1 - z 2n 1
and show that
tan 2
π
2π
 tan 2
 5 .
5
5
2
4



 1   x 2 - 2x cos
 1
x 6  x5  x 4  x3  x 2  x  1   x 2 - 2x cos
7
7



6
 2

 1
 x - 2x cos
7


and deduce that sin
π
2π
3π
7
 sin
 sin

.
7
7
7
8
(b) Show that

3



 1
x 6 - x5  x 4 - x3  x 2 - x  1   x 2 - 2x cos  1   x 2 - 2x cos
7
7



5
 2

 1
 x - 2x cos
7


π
3π
5π
1
 sin
 sin
 .
and deduce that sin
14
14
14
8
6.
If  and  are the roots of the equation
(a)  - 2i and  - 2i
with the roots
7.
(1  i) z 2 - 2i z  (2 - 3i)  0 , construct the equation
(b)  2 and  2 .
(a) Write down all the 2n th roots of 1.
(b) Hence, factorize z 2n - 1 into real quadratic factors.
   z2 - 2z cos rn

n -1
(Answer : z 2n - 1 = z2 - 1
r 1
(c) Deduce from (b) that
(i)
sin n
 2n -1
sin 
(ii)
sin
n -1

 cos 


r 1
- cos
r 

n 
π
2π
(n - 1)
n
 sin
   sin

.
n
n
n
2n -1

 1

)
8.
If  is a complex cube root of 1, show that
(a)
(b)
(c)
9.
1     2 1 -    2   4
,
1   -  2 3 - 1 -    2 3  0 ,
 2  5  2 2 6   2  2  5 2 6  729 .
If  is a complex fifth root of 1, show that
1  
10. By considering the equation
1   2 2 1  3 3 1   4 4  -1 .
 z  i 8
x 4 - 28x 3  70x 2 - 28x  1  0

 z - i 8
are tan 2
 0 , prove that the roots of the equation
π
3π
5π
7π
, tan 2
, tan 2
and tan 2
.
16
16
16
16
Ex.C
1.
Let Tn (x) = cos
 n cos-1x  .
(82) (a) Prove that Tn+1(x) = 2x Tn(x) - Tn-1(x) and hence show that Tn(x) is a polynomial in x of
degree n with leading coefficient 2n-1 where n = 1, 2 , 3, … .
(b) By using De Moivre’s Theorem, or otherwise, find ak (k = 0 , 1 , 2, … , n) in
cos n 
n
=

k0
a
k
cos (n - 2k)  .
(c) By using (b), or otherwise, show that
xn =
1
2n 1
n -1
2

k0
n Ck Tn -2k (x)
for - 1  x  1
where n is any odd positive integer .
2.
(a) State De Moivre’s Theorem for a positive integral value.
(76) (b) Find a polynomial f (x) such that cos 5  cos  f  cos  .
Hence, find the value of  ( 0     ) such that f  cos  = 0 .
(c) By using (b), or otherwise, show that
 
3

 1 - cos
  1 - cos
10  
10

   3 

Hence, show that  sin
  sin
 
10 
 10  
7  
9 
1

.
  1 - cos
  1 - cos
 
10  
10  16

1
.
4
3.
(a) Show that if P (x) is a polynomial with real coefficients and r is a complex number for which
 
P (r) = 0, then P r  0 .
(b) If z is a complex number whose imaginary part is positive, show that for any complex number r,
 r - z  r - z


r - z  r - z


if Im r  0
if Im r  0
.
When does the equality hold?
(c) Let z1 , z2 , … , zn be n complex numbers whose imaginary parts are all strictly positive and put
 z - z   z n   a  i b  z n -1  ...   a  i b 
n
n

1
1
j

j1
n
j
j
j
where a1 , a2 , … , an and
b1 , b2 , … , bn are real .
Show that if r is a root of the equation x n  a1 x n -1  ...  a n  0 , then
n

j1
n
r - z
j
j


j1
r - z
j
.
j
(d) Hence, deduce from (b) and (c) that every root of the equation x n  a1 x n -1  ...  a n  0
is real .
4.
(a) By using De Moivre’s Theorem, show that
sin (2n  1)  sin 2n 1
n

r0
where n is a positive integer and 0 <  

2
- 1r 2n 1C2r 1
cot2 n - r
.
(b) By using (a) and the relations between the coefficients and the roots of the equation
n

r0
- 1r
n - r  0 , show that
2n 1C2r 1 x
n
and deduce that

k 1
n

k 1
n (2n  2)
 k 
csc 2 
.
 
3
 2n  1 
n (2n - 1)
 k 
cot 2 
 
3
 2n  1 
Related documents