Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Oceans and Marine Resources in a Changing Climate A Technical Input to the 2013 National Climate Assessment © 2013 The National Oceanic and Atmospheric Administration All rights reserved under International and Pan-American Copyright Conventions. Reproduction of this report by electronic means for personal and noncommercial purposes ȱĴȱȱȱȱȱ ȱȱǯȱȱȱȱȱ ¢ȱȱȱȱȱ ȱȱȱȱ ȱȱȱ ȱ ȱȱȱ Ĵȱȱȱȱǯ ȱȱȱȱȱȱȱȱȱȱǯ Printed on recycled, acid-free paper ȱȱȱȱȱȱ Note: This technical input document in its current form does not represent a Federal document ȱ¢ȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱ¢ȱǰȱǰȱǰȱ or Tribal Government or Non-Governmental entity Suggested Citation: Ĝǰȱǯȱȱ ǰȱǯȱǽǯǾǯȱŘŖŗřǯȱOceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment. Washington, DC: Island Press. Keywords: Climate change, climate variability, oceans, adaptation, extreme events, ocean ęǰȱȱȱȱǰȱȱȱǰȱǰȱȱȱĴǰȱ ȱ¢ǰȱȱǰȱȱǰȱęǰȱȬǰȱǰȱ¢ǰȱ ȱǰȱȱǰȱ¢ ȱȱȱ ȱȱ¢ȱȱȱȱ¡ȱȱȱȱȱȱȱ ȱȱ¢ȱĴǯȱȱ ȱȱȱȱȱȱȱȱ¢ȱȱ NCA author teams. ȱęȱȱȱǰȱȱ ȱȱ¢ȱ ȱȱȱ¡ȱǰȱȱ ȱȱȱǻǼȱȱȱȱ¢ȱĚȱȱ ȱȱȱȱȱȱȱ Commerce. ȱĴȱȱȱȱȱȱȱ¢ȱĴDZȱ April 17, 2012 ȱȱȱȱȱ ȱȱǯȱŘŖŗřǯȱȱȱȱȱȱȱȱ ǯȱOceanography and Marine Biology: An Annual ReviewǰȱŘŖŗřǰȱśŗǰȱŝŗȬŗşŘǯ ȱȱȱȱȱDZ ȱĜDZȱǯǯĜȓǯȱřŖŗȬŚŘŝȬŞŗřŚ ȱ DZȱǯ ȓǯȱřŖŗȬŚŘŝȬŞŗŝř ȱȱDZ Courtesy of the National Oceanic and Atmospheric Administration. About This Series This report is published as one of a series of technical inputs to the National Climate Assessment (NCA) 2013 report. The NCA is being conducted under the auspices of the ȱȱȱȱȱŗşşŖǰȱ ȱȱȱȱȱȱȱȱgress every four years on the status of climate change science and impacts. The NCA informs the nation about already observed changes, the current status of the climate, and ȱȱȱȱǯȱȱȱȱȱȱęȱȱȱȱȱȱȱȱȱ¢ȱęȱȱęȱȱȱ ȱ ǯȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱ¢ȱǯǯȱ£ǰȱȱȱȱȱ¢ȱȱȱȱ and environmentally sound plans for the nation’s future. ȱȱȱŘŖŗŗǰȱȱȱȱȱȱȱȱȱȱȱ¡ȱȱ ǰȱȱ¢ǰȱȱȱȱǰȱȬȱ£ǰȱ ȱ ǰȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱĴȱȱȱȱȱȱȱŘŖŗřǯȱȱǰȱȱȱȱǰȱ ȱ ȱȱȱȱȱȱȱȱǰȱ ȱȱȱȱ ȱȱȱȱȱȱǰȱȱȱǰȱȱ ȱȱęȱȱȱȱǯȱȱȱȱȱ ȱȱȱ developing this technical input. The lead authors for related chapters in the 2013 NCA ǰȱ ȱ ȱȱȱȱȱ¢ȱȱȱȱȱȱǰȱ are using these technical input reports as important source material. By publishing this ȱȱȱȱȱǰȱȱȱȱȱȱȱȱȱ ȱȱȱ ¢ȱǯȱ ȱȱȱȱ ȱDZ ȱȱȱęȱDZȱȱȱ Coastal Impacts, Adaptation, and Vulnerabilities Great Plains Regional Technical Input Report Climate Change in the Midwest: A Synthesis Report for the National Climate Assessment Climate Change in the Northeast: A Sourcebook Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities Oceans and Marine Resources in a Changing Climate Climate of the Southeast United States: Variability, Change, Impacts, and Vulnerability Assessment of Climate Change in the Southwest United States ȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ¡ȱǻǼȱ ȱȱwww.cakex.org/NCAreports. Printed copies are available for ȱȱȱȱȱ ȱȱwww.islandpress.org/NCAreports. Oceans and Marine Resources in a Changing Climate A Technical Input to the 2013 National Climate Assessment LEAD AUTHORS Roger Griffis National Oceanic and Atmospheric Administration Jennifer Howard National Oceanic and Atmospheric Administration Washington | Covelo | London Authors SECTION 1: INTRODUCTION AND CONTEXT Lead Author: Roger Griffis, National Oceanic and Atmospheric Administration Jennifer Howard, AAAS Science and Technology Policy Fellow at the National Oceanic and Atmospheric Administration SECTION 2: CLIMATE-DRIVEN PHYSICAL CHANGES IN MARINE ECOSYSTEMS Lead Author: Jennifer Howard, AAAS Science and Technology Policy Fellow at the National Oceanic and Atmospheric Administration Carol Auer, National Oceanic and Atmospheric Administration Russ Beard, National Oceanic and Atmospheric Administration Nicholas Bond, University of Washington Tim Boyer, National Oceanic and Atmospheric Administration David Brown, National Oceanic and Atmospheric Administration Kathy Crane, National Oceanic and Atmospheric Administration Scott Cross, National Oceanic and Atmospheric Administration Bob Diaz, Virginia Institute of Marine Science Libby Jewett, National Oceanic and Atmospheric Administration Rick Lumpkin, National Oceanic and Atmospheric Administration J. Ru Morrison, North East Regional Association of Coastal and Ocean Observing Systems James O’Donnell, University of Connecticut James Overland, National Oceanic and Atmospheric Administration Rost Parsons, National Oceanic and Atmospheric Administration Neal Pettigrew, University of Maine Emily Pidgeon, Conservation International Josie Quintrell, National Federation of Regional Associations for Ocean Observing Systems Jeffrey Runge, University of Maine and Gulf of Maine Research Institute Uwe Send, Scripps Institution of Oceanography (SIO) Diane Stanitski, National Oceanic and Atmospheric Administration Yan Xue, National Oceanic and Atmospheric Administration SECTION 3: IMPACTS OF CLIMATE CHANGE ON MARINE ORGANISMS Lead Authors: Brian Helmuth, University of South Carolina and Laura Petes, National Oceanic and Atmospheric Administration Eleanora Babij, U.S. Fish and Wildlife Service Emmett Duffy, Virginia Institute of Marine Science Deborah Fauquier, National Oceanic and Atmospheric Administration Michael Graham, Moss Landing Marine Laboratories Anne Hollowed, National Oceanic and Atmospheric Administration Jennifer Howard, AAAS Science and Technology Policy Fellow at the National Oceanic and Atmospheric Administration David Hutchins, University of Southern California Libby Jewett, National Oceanic and Atmospheric Administration Nancy Knowlton, Smithsonian Institute Trond Kristiansen, Institute of Marine Research Teri Rowles, National Oceanic and Atmospheric Administration Eric Sanford, Bodega Marine Laboratory, University of California at Davis Carol Thornber, University of Rhode Island Cara Wilson, National Oceanic and Atmospheric Administration SECTION 4: IMPACTS OF CLIMATE CHANGE ON HUMAN USES OF THE OCEAN Lead Authors: Amber Himes-Cornell, National Oceanic and Atmospheric Administration and Mike Orbach, Duke University Stewart Allen, National Oceanic and Atmospheric Administration Guillermo Auad, Bureau of Ocean Energy Management Mary Boatman, Bureau of Ocean Energy Management Patricia M. Clay, National Oceanic and Atmospheric Administration Sam Herrick, National Oceanic and Atmospheric Administration Dawn Kotowicz, National Oceanic and Atmospheric Administration Peter Little, Pacific States Marine Fisheries Commission Cary Lopez, National Oceanic and Atmospheric Administration Phil Loring, University of Alaska, Fairbanks Paul Niemeier, National Oceanic and Atmospheric Administration Karma Norman, National Oceanic and Atmospheric Administration Lisa Pfeiffer, National Oceanic and Atmospheric Administration Mark Plummer, National Oceanic and Atmospheric Administration Michael Rust, National Oceanic and Atmospheric Administration Merrill Singer, University of Connecticut Cameron Speirs, National Oceanic and Atmospheric Administration SECTION 5: INTERNATIONAL IMPLICATIONS OF CLIMATE CHANGE Lead Authors: Eleanora Babij, U.S. Fish and Wildlife Service and Paul Niemeier, National Oceanic and Atmospheric Administration Brian Hayum, U.S. Fish and Wildlife Service Amber Himes-Cornell, National Oceanic and Atmospheric Administration Anne Hollowed, National Oceanic and Atmospheric Administration Peter Little, Pacific States Marine Fisheries Commission Mike Orbach, Duke University Emily Pidgeon, Conservation International SECTION 6: MANAGEMENT CHALLENGES, ADAPTATIONS, APPROACHES, AND OPPORTUNITIES Lead Authors: Laura Petes, National Oceanic and Atmospheric Administration and Roger Griffis, National Oceanic and Atmospheric Administration Jordan Diamond, Environmental Law Institute Bill Fisher, U.S. Environmental Protection Agency Ben Halpern, National Center for Ecological Analysis and Synthesis Lara Hansen, EcoAdapt Amber Mace, California Ocean Protection Council Kathryn Mengerink, Environmental Law Institute Josie Quintrell, National Federation of Regional Associations for Ocean Observing Systems SECTION 7: SUSTAINING THE ASSESSMENT OF CLIMATE IMPACTS ON OCEANS AND MARINE RESOURCES Lead Author: Roger Griffis, National Oceanic and Atmospheric Administration Brian Helmuth, University of South Carolina Jennifer Howard, AAAS Science and Technology Policy Fellow at the National Oceanic and Atmospheric Administration Laura Petes, National Oceanic and Atmospheric Administration Acknowledgements This report was made possible by the generous assistance of many experts from ȱ¢ȱȱęȱ ȱȱȱȱȱǯȱȱȱȱ thanks experts from the NOAA Fisheries Science Centers, academia, and other institutions who provided regional assessments, references, and other information. The team also thanks peer reviewers for their time and comments, which ę¢ȱȱȱǯȱȱĵǰȱȱǰȱȱȱ Waple from the National Climate Assessment are greatly appreciated for their vision, leadership, support, and encouragement throughout the development of this report. Contents Key Terms Acronyms Communicating Uncertainty Executive Summary CHAPTER 1: INTRODUCTION 1.1 Scope and Purpose 1.2 Linkages with Other Parts of the National Climate Assessment CHAPTER 2: CLIMATE-DRIVEN PHYSICAL AND CHEMICAL CHANGES IN MARINE ECOSYSTEMS Executive Summary Key Findings Key Science Gaps/Knowledge Needs 2.1 Introduction 2.2 Ocean Temperature and Heat Trapping Ocean sea surface temperature 2.3 Loss of Arctic Ice 2.4 Salinity 2.5 Stratification 2.6 Changes in Precipitation and Extreme Weather Events Winds Precipitation Storms 2.7 Ocean Circulation California Current Gulf Stream 2.8 Climate Regimes North Atlantic Oscillation Pacific Decadal Oscillation El Niño/Southern Oscillation 2.9 Carbon Dioxide Absorption by the Oceans 2.10 Ocean Acidification 2.11 Hypoxia CHAPTER 3: IMPACTS OF CLIMATE CHANGE ON MARINE ORGANISMS Executive Summary Key Findings Key Science Gaps/Knowledge Needs 3.1 Physiological Responses xix xxii xxv xxvi 1 2 5 7 7 8 9 10 10 11 13 15 16 17 17 18 18 20 22 23 23 24 24 26 26 27 30 35 35 36 37 37 Effects of temperature change Ocean acidification impacts Exposure to toxicants Effects on life history tradeoffs and larval dispersal 3.2 Population and Community Responses Primary productivity Shifts in species distribution Marine diseases Invasive species Protected species 3.3 Ecosystem Structure and Function Species interactions and trophic relationships Biodiversity 3.4 Regime Shifts and Tipping Points CHAPTER 4: IMPACTS OF CLIMATE CHANGE ON HUMAN USES OF THE OCEAN AND OCEAN SERVICES Executive Summary Key Findings 4.1 Introduction 4.2 Climate Effects on Capture Fisheries Effects on the productivity and location of fish stocks Economic effects on commercial fisheries and fishing-dependent communities Regional effects of climate change on fisheries Fisheries and communities adapting to climate change 4.3 Implications of Climate Change for Aquaculture Direct impacts of climate change Indirect impacts of climate change Ocean acidification and aquaculture Social impacts of climate change on aquaculture 4.4 Offshore Energy Development Oil and gas Renewable energy (wind, ocean waves, and currents) 4.5 Tourism and Recreation 4.6 Human Health Health and vulnerability Waterborne and foodborne diseases Harmful algal blooms and climate change Health risks related to climate impacts on marine zoonotic diseases Health risks of extreme weather events Globalized seafood and emerging health risks Acidification and other unknown human health risks 4.7 Maritime Security and Transportation 4.8 Governance Challenges Fisheries management in the U.S. 39 40 44 44 45 45 48 51 54 55 56 58 60 61 64 64 66 67 70 72 73 75 85 88 88 89 90 90 91 91 96 96 99 101 102 105 106 107 107 109 109 109 110 Offshore energy development Tourism and recreation Human health Strategic planning 4.9 Research and Monitoring Gaps Socio-economic impacts for commercial and recreational fisheries Subsistence fisheries Offshore energy development Tourism and recreation Public health 4.10 Conclusion 113 113 113 114 114 115 116 116 117 117 118 CHAPTER 5: INTERNATIONAL IMPLICATIONS OF CLIMATE CHANGE 119 Executive Summary Key Findings 5.1 Implications of Climate Change in International Conventions and Treaties Convention on Migratory Species Convention on Wetlands of International Importance Convention on International Trade in Endangered Species of Wild Fauna and Flora Inter-American Convention for the Protection and Conservation of Sea Turtles Convention on Biological Diversity 5.2 Climate Change Considerations in Other International Organizations Agreement for the Conservation of Albatross and Petrels International Whaling Commission Commission for the Conservation of Antarctic Marine Living Resources North Pacific Marine Science Organization Wider Caribbean Sea Turtle Conservation Network 5.3 Climate Change Considerations by Regional Fisheries Management Organizations and Living Marine Resource Conservation Organizations Straddling fish stocks Transboundary fish stocks Highly migratory fish stocks Arctic 5.4 Climate Change and Other International Issues Maritime transportation and security Blue carbon 119 120 121 121 124 CHAPTER 6: OCEAN MANAGEMENT CHALLENGES, ADAPTATION APPROACHES, AND OPPORTUNITIES IN A CHANGING CLIMATE Executive Summary Key Findings Key Science Gaps/Knowledge Needs 6.1 Challenges and Opportunities for Adaptation in Marine Systems 6.2 Information, Tools, and Services to Support Ocean Adaptation 125 125 126 127 127 127 128 129 129 129 133 134 134 135 136 136 137 140 140 140 141 142 143 Importance of long-term observations and monitoring for management Tools and services for supporting ocean management in a changing climate 6.3 Opportunities for Integrating Climate Change into U.S. Ocean Policy and Management Incorporating climate change into marine spatial planning and marine protected area design Integrating climate change into fisheries management Efforts to integrate climate considerations into existing legislative and regulatory frameworks 6.4 Emerging Frameworks and Actions for Ocean Adaptation 143 145 147 147 149 150 152 CHAPTER 7: SUSTAINING THE ASSESSMENT OF CLIMATE IMPACTS 156 ON OCEANS AND MARINE RESOURCES Key Findings 7.1 Challenges to Assessing Climate Impacts on Oceans and Marine Resources 7.2 Key Steps for Sustained Assessment of Climate Impacts on Oceans and Marine Resources APPENDIX A: STATUS OF AND CLIMATE CHANGE IMPACTS TO COMMERCIAL, RECREATIONAL, AND SUBSISTENCE FISHERIES IN THE U.S. A.1 Commercial and Recreational Fisheries Commercial fisheries Recreational fisheries A.2 Commercial and Recreational Fishing-dependent Communities A.3 Regional Involvement in Commercial and Recreational Fishing North Pacific West coast Northeast Pacific Islands Southeast A.4 Subsistence Fisheries North Pacific Other subsistence fisheries West coast Northeast Pacific Islands Southeast REFERENCES 156 157 158 160 160 160 161 162 163 163 167 171 175 176 178 178 179 180 183 184 186 187 Key Terms ȱ– ȱȱȱȱȱ¢ȱȱȱȱȱȱ¡ȱ ȱȱȱȱěȱȱȱȱȱȱȱȱ¡ȱęȱǯȱ ȱ – ǰȱ ȱ ǰȱ ȱ ȱ ȱ ȱ Ěȱ ȱ ȱ ȱ ȱ nature. ¢ȱ– The variability among living organisms from all sources including terresǰȱǰȱȱȱȱ¢ȱȱȱȱ¡ȱȱ ȱ¢ȱ ȱȱDzȱȱȱ¢ȱȱ¢ȱȱ ȱȱ¢ȱ ȱȱȱ species. ȱ ȱ – ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ including coastal seagrasses, tidal marshes, and mangroves. Carbon sequestration – A long-term storage plan for carbon dioxide or other forms of ȱȱȱȱȱȱȱȱ ȱȱȱȱȱlation of greenhouse gases that are released by burning fossil fuels. ȱ– ȱȱȱ ȱǰȱȱȱȱȁȱ ǯȂȱȱ¢ǰȱȱ ȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱȱ over a period of time ranging from months to thousands or millions of years. These ȱȱȱȱȱȱȱȱǰȱǰȱȱ ǯȱ ȱȱȱȱȱȱřŖȱ¢ǰȱȱęȱ¢ȱȱȱȱ£ȱǻǼǯȱȱȱ ȱǰȱȱȱȱǰȱȱȱȱǰȱ of the climate system. ȱȱ– ȱȱȱȱ¢ȱȱȱȱȱǰȱ ȱȱ a result of natural variability or human activity. ȱ ȱ – Quantitative methods used to simulate the interactions of the atmosphere, oceans, land surface, and ice. They are used for a variety of purposes such ȱ ¢ȱ ȱ ¢ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ climate. Disaster – Severe alterations in the normal functioning of a community or a society due ȱȱȱȱ£ȱ¢ȱȱȱȱȱǰȱ ȱ ȱȱ ȱȱǰȱǰȱǰȱȱȱěȱȱ ȱȱ¢ȱȱȱ¢ȱȱȱȱȱ¢ȱȱ external support for recovery. ¢ȱ – A biological environment consisting of all of the organisms living in a ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ǰȱ ¢ȱ ȱ ȱ ȱ ǰȱȱȱǰȱǰȱ ȱȱǰȱ ȱ ȱȱȱǯ ¢ȱȱ– ȱęȱȱȱȱ¢ǯȱȱȱȱȱȱȱǰȱ ǰȱǰȱȱęDzȱȱȱȱȱȱ ȱȱǰȱĚǰȱǰȱ ǰȱȱ ȱ¢Dzȱȱȱȱ xix xx OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱ ǰȱ ȱ ¢ǰȱ ȱ ȱ ęDzȱ ȱ ȱ ȱ such as soil formation, photosynthesis, and nutrient cycling. ȱ– ȱȱȱȱ¢ȱȱ Ȃȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ęȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱ£ȱȱ ǯ ¡ȱȱȱǻǼȱ– ȱ£ȱȱ ȱȱȱȱȱȱȱ to the exploration and use of marine resources including the production of energy from ȱȱ ǯȱȱȱȱȱ ȱȱȱȱȂȱȱȱȱȱ 200 nautical miles from its coast. ¡ȱ– ȱȱȱȱȱ ȱȱ¢ȱȱ¡ȱȱęȱȱ variations. ¡ȱȱ– ȱ ȱȱȱȱȱȱ¡ȱȱȱȱǰȱ¢ȱȱȱȱ ȱȱȱȱ ǰȱǰȱ Ěǰȱǰȱȱ ęǯ ȱ ȱ – ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ the thermal infrared range. This process is the fundamental cause of the greenhouse ěǯȱȱ¢ȱȱȱȱȱȂȱȱȱ ȱǰȱȱ ¡ǰȱǰȱȱ¡ǰȱȱ£ǯ ¢¢ȱ – ȱ ǰȱ ǰȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱȱ¢ȱ¢ǰȱ ȱǰȱȱȱ ȱ sustainability. ¢¡ȱ– ȱȱȱȱȱȱȱȱȱȱȱ ȱ¡¢ȱȱȱȱȱȱȱȱȱȱȱȱ living in the system. ȱȱ– Ȭȱȱȱȱȱȱȱ¢ȱěȱȱ habitats and bioregions that they invade economically, environmentally, and/or ecologi¢ǯȱ¢ȱȱ¢ȱȱǰȱ ȱǰȱȱǰȱȦȱ Ȭȱȱȱȱȱȱȱȱȱǯ ȱȱ¢ȱǻǼȱ– ȱȱȱȱ£ȱ¢ȱȱǰȱ hydrology, productivity, and trophic interactions. ¡ȱȱȱǻǼȱ– The largest long-term average catch or yield that ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ mental conditions. – ȱȱȱȱȱȱĚȱȱȱ climate system. Mitigation includes strategies to reduce greenhouse gas sources and ȱȱȱȱȱǯ ȱ ęȱ – ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ Ȃȱǰȱȱ¢ȱȱȱȱȱȱ¡ȱǻ2) from the atmosphere. ȱ – The ability of a system and its component parts to anticipate, absorb, ǰȱȱȱȱȱěȱȱȱ£ȱȱȱȱ¢ȱȱĜȱ Key Terms manner through ensuring the preservation, restoration, or improvement of its essential basic structures and functions. ȱ– The capacity of the ecosystem to absorb disturbances and remain largely unchanged. ȱ– ȱȱȱȱ¢ȱȱȱȱȱȱǯ ȱȱ– ȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱ£ȱȱȱȱȱǯ ¢ȱ– ȱȱȱ ȱȱ¢ȱȱěǰȱȱ¢ȱȱę¢ǰȱ ¢ȱȱ¢ȱȱǯȱȱěȱ¢ȱȱǰȱȱȱȱȱȱ¢ȱ in response to a change in the mean, range, or variability of temperature, or indirect, ȱȱȱȱ¢ȱȱȱȱȱ¢ȱȱȱĚȱȱȱȬ level rise. ȱ– ȱǰȱǰȱ£ǰȱȱ¢ȱ ȱěȱȱȱȱěȱ ¢ȱȱ£Ȃȱǯ ęȱ– ȱęȱȱ ȱ ȱȱ ȱěȱȱ such as salinity, oxygenation, density, or temperature form layers that act as barriers to ȱ¡ǯȱȱ¢ȱȱ¢ȱȱȱȱ¢ǰȱ ȱȱȱ ȱ ȱȱĴȱȱȱȱȱǯ ȱȱ– ȱȱȱȱȱ¢£ȱȱȱ ȱęȱȱȱȱȱȱȱȱȱȱęȱǯȱȱȱment results in a report that often includes an estimation of the amount or abundance of ȱǰȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱǰȱ ȱȱȱȱȱȱȱȱȱȦȱȱȱ ȱȱȱ can maintain itself in the long term. ȱ– ȱȱȱȱĴȱȱȱ¢ȱȱȱ ¢Dzȱ¢ǰȱǰȱȱȱDzȱęȱDzȱȱnological or biological systems. ȱ – ȱ ȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ¢ȱ Ȭȱ ȱȱȱ ȱȱȱȱ¢ȱ ǰȱȱȱ ǰȱ ¢ȱȬȱȱ ǯ ¢ȱ– ȱ¢ȱȱȱȱȱ¢ȱěǯ xxi Acronyms ACAP – Agreement for the Conservation of Albatross and Petrels ACL – Annual Catch Limits ȱȮȱȱȱȱȱȱȱ AMO – Atlantic Multidecadal Oscillation AMSA – Arctic Marine Shipping Assessment BOEM – Bureau of Ocean Energy Management BSAI – Bering Sea–Aleutian Islands ȱȮȱȱȱ ȱ¡ȱ CBD – Convention on Biological Diversity CCAMLR – Commission for the Conservation of Antarctic Marine Living Resources CDC – Centers for Disease Control and Prevention CDM – Clean Development Mechanisms CFP – Ciguatera Fish Poisoning CI – Conservation International CITES – Convention on International Trade in Endangered Species CMS – Convention on Migratory Species CMSP – Coastal and Marine Spatial Planning CO2 – Carbon Dioxide ȱȮȱȱȱȱǰȱȱȱ ȱȱȱȱ CREST – Coral Reef Ecosystem Studies CWA – Clean Water Act ¢ ȱȮȱ¢ȱ EBS – Eastern Bering Sea ȱȮȱ¢ǰȱȱȱȱȱȱȱȱ EEZ – Exclusive Economic Zone ENSO – El Niño Southern Oscillation ȱȮȱǯǯȱȱȱ¢ ȱȮȱǯǯȱȱȱȱȱ ȱȮȱȱęȱȱȱ¢ FMP – Fishery Management Plans ȱȮȱǯǯȱȱ¢ȱĜ GEF – Global Environment Facility GET – General Excise Tax ȱȮȱȱȱ ȱȮȱȱȱ xxii Acronyms ȱȮȱ ȱȱȱ IAC – Inter-American Convention for the Protection and Conservation of Sea Turtles ȱȮȱ¢ȱȱȱȱȱȱ ȱȮȱȬȱ£ IOC – Intergovernmental Oceanic Commission IPCC – Intergovernmental Panel on Climate Change ȱȮȱȱȱȱȱȱ IWC – International Whaling Commission LME – Large Marine Ecosystems ȱȮȱȬǰȱȬȱȱȱ¢ȱ MPA – Marine Life Protection Act MPA – Marine Protected Area MSY – Maximum Sustainable Yield ȱȮȱ ȱȱȱ£ȱ NAMA – National Appropriate Mitigation Actions NAO – North Atlantic Oscillation ȱȮȱȱȱȱȱ£ NCA – National Climate Assessment ȱȮȱȱǯǯȱȱ¢ȱ ȱȮȱȬȱ£ ȱȮȱȱȱȱȱǻȱȱ ȱǼ NOAA – National Oceanic and Atmospheric Administration ȱȮȱȱęȱȱȱȱ ȱȮȱȱęȱȱȱȱ¢ȱ¢ȱ ȱȮȱȱęȱ¢ȱȱȱ NS – National Standards ȱȮȱęȱȱȱ PEIS – Programmatic Environmental Impact Statement ȱȮȱęȱ¢ȱȱȱ ȱȮȱȱęȱȱȱ£ȱ ȱȮȱęȱȱȱȱȱ PLA – Participatory Learning Assessment PWS – Prince William Sound REDD – Reducing Emissions from Deforestation and Forest Degradation ȱȮȱȱȱȱ£ȱ ȱȮȱȱ ȱȱęȱ ȱȮȱ ȱȱȱ SST – Sea Surface Temperature ȱȮȱȱ ȱȱ xxiii xxiv OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE TAT – Transient Accommodations Tax ȱȮȱȱȱ ȱȮȱȱȱȱȱȱ ȱȱȱȱ ȱȮȱȱȱǰȱęȱȱȱ£ ȱȮȱȱȱ ȱȱȱȱȱ ȱȮȱǯǯȱȱȱȱ¢ȱ ȱȮȱǯǯȱȱȱȱȱ ȱȮȱǯǯȱȱȱȱ ȱȮȱȱȱȱęȱȱ WECAFC – Western Central Atlantic Fishery Commission ȱȮȱȱ ȱ£ ȱȮȱȱȱȱȱȱȬ ZSL – Zoological Society of London Communicating Uncertainty ȱȱȱȱȱȱȱȱȱȱȱǯǯȱȱǰȱ ȱȱȱȱȱȱ ȱȱȱȱȱȱȱ¢ǰȱ ȱ ȱ ȱ Ȃȱ ȱ ȱ ¢ȱ ęȱ ǰȱ ȱ ¢ȱęDZ • ęȱȱȱ¢ȱȱȱęȱ¢ȱȱǻǼȱȱ¢ȱȱȱȱȱǻǼȱȱȱȱȱȱ¡ȱ ȱȱ ǯ Table 1: Communicating Uncertainty ęȱ ȱȱȱȱȱȱęȱ Strong evidence (established theory, multiple sources, consistent ǰȱ ȱȱȱȱǰȱǯǼǰȱȱ Moderate Moderate evidence (several sources, some consistency, methods vary and/or documentation limited, etc.), medium consensus Fair ȱȱǻȱ ȱǰȱȱ¢ǰȱȱ incomplete, methods emerging, etc.), competing schools of thought Inconclusive evidence (limited sources, extrapolations, inconsistent ęǰȱȱȱȦȱȱȱǰȱǯǼǰȱ ȱȱȱȱȱȱ¡ • ȱȱȱ¢ȱ¡ȱȱȱȱ¡ȱ ȱȱȱȱ¡ȱȱȱȱ¢ȱǯ xxv Executive Summary ȱȱȱǻǯǯǼȱȱȱȱDzȱȱǰȱȱȱȱȱ¡¢ȱ connected to and dependent on oceans and marine resources. Marine ecosystems under ǯǯȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ŘŖŖȱ ȱ ȱ ǰȱ ȱ ȱ ȱǯǯȱǰȱȱȱřǯŚȱȱȱȱȱȱǰȱȱȱȱȱȱȱǯǯȱ¡ȱȱ£ȱǻǰȱŘŖŖşǼǰȱ ȱȱȱȱŗǯŝȱȱ ȱȱȱȱȱȱǯǯǯȱȱȱȱȱȱ¢ȱȱ ȱȱȱȱ ȱȱŗŗȱěȱȱȱ¢ȱǻǼȱȱȱ ¢ȱ ȱ ǰȱ ȱ ǰȱ ǰȱ ȱ ǰȱ ȱ ǰȱȱęǰȱȱǰȱȱȱȱȱěȱǰȱ communities, and economies across America and internationally every day. ǯǯȱȱ¢ȱȱȱȱ¢ȱȱȱȱȱȱȱ ȱȱǯȱȱ ȱȱȱȱȱȱ ȱȱ Ȃȱȱȱȱ¢ȱȱ ȱȱȱȱȱȱ¢ȱȱȱduce dramatic changes in the physical, chemical, and biological characteristics of ocean ¢ȱȱȱ¢ȱȱȱȱȱǯȱ¢ǰȱȱ ȱ¢ȱȱ literature provides evidence of the current impacts of increasing atmospheric carbon di¡ȱȱȱȱȱ ȱȱȱęȱȱ¢ǰȱǰȱ ȱȱȱȱȱ¢ǯȱ¢ǰȱ¢ȱĴȱȱ ȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ vices and uses, although it is predicted that the vulnerability of ocean-dependent users, communities, and economies increases in a changing climate. In addition, non-climatic ȱȱȱȱ¢ȱȱȱǰȱȱǰȱęȱǰȱȱȬǰȱȱȱ ȱȱ¡ȱȱȱȱǯȱtively, climatic and non-climatic pressures on marine ecosystems are having profound and diverse impacts that are expected to increase in the future. ȱȱȱȱȱȱȱ ȱȱȂȱȱȱ ȱ¢ȱȱ ȱȱȱȱȱȱȱȱȱȱ¢ǰȱȱ ȱ ¢ȱ ȱ ǯǯȱ ȱ ȱ ǯǯȱ ȱ ¢ȱ ȱ ¢ȱ ȱȱȱȱěȱ¢ȱȬȱȱȱȱȱȱȱ atmospheric CO2. These impacts are set in motion through a collection of changes in the Ȃȱ¢ȱǻǯǯǰȱǰȱǰȱęǰȱ Ǽǰȱȱǻǯǯǰȱ ęǰȱȱǰȱ¡¢ȱǼǰȱȱȱǻǯǯǰȱ¢ȱǰȱ ȱǰȱ¢ǰȱ ȱǰȱ¢ȱȱȱ¢ȱȦǼȱȱȱǯȱȱȱȱȱǯǯȱȱȱȱȱȱ¢ȱȱȱȱǯǯȱȱȱȱ ¢ǰȱȱȬȱȱȱ¢ȱȱȱęȱȱȱ ǯȱȱȱȱȱȱȱ ȱȱȱȱȱȱ ȱ ȱ ȱ ǯȱ ě¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱěȱȱȱȱȱ greenhouse gases and protect and enhance those natural environments that act as carȱȱȱ ȱȱȱǰȱ¢ǰȱȱȱȱȱȱȱȱ ȱȱȱȱȱ ȱȱȱȱǯȱ xxvi Executive Summary ȱȱ ȱȱ¢ȱȱȱȱ¡ȱȱȱȱȱȱȱȱ ȱȱ ǻǼǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ǻǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱȱȱȱȱȱȱȱȱȱȱȱęȱȱ the physical, chemical, and biological components and human uses of marine ecosysȱ ȱ ǯǯȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱǯǯȱȱȱȱȱȱȱ¢ȱȱȱěȱȱȱ ȱȱȱȱȱȱęȱȱȱȱ¢ǯȱȱ ǯȱȱ¢ȱȱ¢ȱȱȱǯǯȱȱȱȱȱ ȱȱĚ ȱȱ ȱȱȱȱǰȱȱěȱȱȱȱȱ¢ȱȱ system, the connectivity and movement of species, and the extensive and diverse uses of marine resources and services that occur throughout the Nation. Therefore, climate ȱȱȱȱȱȱȱ ȱ¢ȱȱȱȱȱ are also considered in the NCA. ȱ ȱȱȱ¢ȱȱ¢ȱęȱȱȱȱȱ¡ȱȱȱȱȱ report. Chapter 2: Climate-Driven Physical and Chemical Changes in Marine Ecosystems ŗǯȲȱ Ȃȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ spheric carbon dioxide and other greenhouse gases. • ȱŗşśśȱȱŘŖŖŞǰȱ¡¢ȱŞŚȱȱȱȱȱȱȱȱ change has been absorbed by the oceans, thereby increasing the average temperȱȱȱȱŝŖŖȱȱȱ ȱ¢ȱŖǯŘǚȱDzȱȱȱȱ¢ȱȱ continue. • ȱȱȱȱ¢ȱȱȱȱȱȱȱ ȱǰȱ ȱȱȱȱȱǰȱȱȱǰȱȱ¢ȱ ȱȱȱȱǯ ŘǯȲȱȱȱȱȱȱ¡ȱȱȱȱȱȱȱŘŖȱ¢ȱȱȱ ȱȱȱȱȱ ǯȱ • Arctic ice has been decreasing throughout the early 21th century. The summer of ŘŖŗŘȱ ȱȱȱ ǰȱ ȱȱȱ¡ȱȱȱřǯŜȱȱŘǰȱ¡¢ȱŗȱȱŘȱȱȱȱȱȱȱŘŖŖŝǯȱȱȱȱ volume has decreased by 75% over the previous decade. • ȱȱęȱȱȱȱȱȱ ȱȱȱȱǯȱȱ ȱ¢ȱȱ¢ȱȱ ȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱ ȱ¢ȱȱȱȱ mean sea level rise of more than 1 meter above present day sea level by 2100. • Reductions in ice may occur more rapidly than previously suggested by coupled ȬȬȱȱǯȱȱȱ¢ȱȱȱȱDzȱ more recent modeling predicts that a seasonal ice-free state could occur as early as 2030. xxvii xxviii OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE řǯȲȱȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ2. • The annual accumulation of atmospheric CO2 has increased. In 2010, the overall CO2ȱȱ ȱřşȱȱȱȱȱȱȱȱȱȱ Industrial Revolution in 1750. • ȱ ȱȱ¡¢ȱśŖȱȱȱ2 than the atmosphere and ȱȱ¢ȱȱȱȱȱǰȱȱ Dzȱ ǰȱȱ¢ȱȱ oceans to absorb CO2ȱȱ ȱȱȱȱȱ ǯ • ¢ȱȱ ȱȱěȱȱȱȱȱǯȱȱ ȱȱȱȱȱȃȱȱǯȄȱ¢ǰȱȱȱȱȱ ȱȱȱȱȱ ȱȱȱȱŘŖŖȱ¢ǯȱ ŚǯȲȱȱȱȱ¡ǰȱȱȱȱȱȱȱȱȱ ȱ ǰȱȱȱ ȱȱȱęǯ • ȱȱȱ¢ǰȱȱȱȱ ȱȱȱ¢ȱřŖȱDzȱ ǰȱȱȱȱȱȱ¢ȱȱȱȱ ȱ ȱ events. • ȱȱȱȱęȱ ȱȱȱȱȬȱȱ ȱȱȱȱ ȱ¢ȱȱ¢ȱŘŖśŖǯȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱęȱȱȱȱ¢ȱȱȱ ȱ¡ȱȱȱȱȱǯ • ȱ¢ȱ¢ȱ¡ȱ¡ȱȱęȱȱ2 is ȱȱȱȱ ȱȱȱȱ¢ȱȱȱǯ śǯȲȱȱȱȦȱȱȱȱȱĚȱȱȱ Ȃȱ ȱȱȱĴȱȱ ȱ¢ȱȱȱ¢ȱȱ ȱǻȱȱȱěȱǼȱȱ¢ǯȱ • ȱȱȱȱ ȱ¢ȱȱȱȱ¢ȱ¢ȱȱ ȱȱȱȱȱ ȱȱ¢ǯ • ȱȱȱĴȱȱ ȱȱȱȱ¢ǰȱȱȱ ȱ ȱȱȱȱ ȱȱȱ¢ȱȱ ȱ¢ǯȱ • ȱ¢ȱȱ¢ȱȱȱȱȱȱȱȱǰȱ¢ȱȱ coastal communities because of the increases in coastal populations and infraȱ¡ȱȱȱ¡ȱ¢ǯȱȱȱȱȱȱ ȱȱ ȱȱȱȱȱȱ ȱȱȱ¡ȱȱȱȱǯ ŜǯȲȱȱȱȱȱȱȱȱȬȱȱȬȱ¢ȱ ȱȱǰȱ ǰȱȱȬȱǰȱȱȱ ȱ¢ȱ Ěȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱȱ ǯȱ • ȱȱȱȱ ȱȱȱ¢ǰȱȱȱȱ¢ǰȱȱȱ ǰȱ ȱȱ ȱȱȱȱ ȱȱ ȱǰȱ¢ȱ impairing circulation. Executive Summary • ǰȱ¢ȱȱȱȱ¢ȱȱ ȱȱ¢ȱ ȱ ȱȱȱȱȱȱǯȱȱ Chapter 3: Impacts of Climate Change on Marine Organisms ŗǯȲȱǯǯȱȱ¢ǰȱȱȱȱȱȱȱȱ ȱ¢ȱ¢ȱȱȱȱȱǯȱ • ȱȱȱȱȱȱȱȱǰȱěȱȱ ǰȱ ǰȱǰȱǰȱȱȱȱȱȬ¢ȱĴǰȱ and alterations in species interactions, among others. • ȱȱȱȱȱ ȱ¢ȱȱ¡ȱȱȱǯǯȱȱǰȱ but high-latitude and tropical areas appear to be particularly vulnerable. ŘǯȲȱ¢ȱȱȱȱȱȱȱȱȱ¢ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ǰȱ ȱ ȃ ǰȄȱ ȱ ȱ ȱ ȱ negatively impacted, or “losers.” • ȱ ȱȱȱȱȱȦȱȱ¢ȱȱȱ ȱȱȱȱȱȱȱ ȱ¢ȱ¡ȱ ȱȬȱȱȱ¢ȱȱȬȱȱȱ species. • Species such as corals and other calcifying organisms that are exposed to ocean ȱȱȱȱ¢ȱȱȱȱȱǰȱ ȱ ¢ȱ¡ȱǯȱȱȱȱ¢ȱȱȱȱěȱȱ marine ecosystems. řǯȲȱȱȱ ȱȱȱ¡ȱȱȱȱȱ¢ȱȱ non-climatic stressors such as pollution, overharvesting, disease and invasive species. • Climate-related stressors such as changes in temperature can operate as threat ǰȱ ȱȱȱȱȬȱǯ • Opportunities exist for ameliorating some of the impacts of climate change through reductions in non-climatic stressors at local-to-regional scales. • ȱȱěȱȱȱȱȱĜȱȱȱ¡ȱ¢ȱěȱȱȱ ȱǯ ŚǯȲȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ěȱȱȱȱȱȱȱ¢ǯȱ • Observed responses to ongoing environmental change often vary in magnitude across space and time, suggesting that extrapolations of responses from one location to another may be challenging. • ȱȱȱȱȱȱ¢ȱǰȱȱȱěǰȱ or “tipping points,” that could result in rapid ecosystem change are a particular area of concern. xxix xxx OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Chapter 4: Impacts of Climate Change on Human Uses of the Ocean ŗǯȲęȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱȱȱȱȱęǰȱ¢ǰȱǰȱ¢ǰȱȱ health, tourism, and maritime governance, are already being observed and are predicted to continue into the future. • ȱěȱȱȱȱȱȃǰȄȱȱȱ¢ȱ¡ȱȱ¡ȱȱ ȱǰȱ ȱȱȱȱȱȱȃǰȄȱȱȱ¢ȱ reduce the ability of humans to use the ocean in a given sector, and virtually all ěȱ ȱȱȱȱȱȱȱ ȱȱ ǰȱȱ ȱȱ¢ȱ ǰȱȱȱȱǯ • ȱȱȱěȱȱȱȱȱǯǯȱęȱ ȱȱȱȱȱ ȱȱęȱȱȱȱ¢ȱȱȱȱȱȱȱ ¢ȱȱDzȱȱȱȱȱȱȱȱȱȱęȱȱȱ ȱȱęȬȱȱȱȱ¢ǰȱ ȱȱ¡ȱȱȱȱȱȱȱȱȱ ǯ • ȱȱȱ¡ȱȱȱȱȱȱȱȱȱ ȱ ȱȱȱȱȱȱǯ • ȱȱȬȱěȱȱȱȱȱȱ¢ȱȱȱȱ ȱȱȱȱȱ ȱǰȱȱȱȱȱȱ ȱ ȱ ȱȱǰȱȱȱȱȱ¡ȱȱęȱ assets and resources as energy production moves from the traditional oil and ȱ¢ȱȱ ȱȱȱ¢ǯ • In the face of climate change, impacts to marine resource distribution, variable ȱǰȱȱ¡ȱȱȱȱ¢ȱȱȱȱ ¡ȱȱȱȱȱęȱȱȱȱȱ¢Dzȱȱ ěȱ ȱȱȱȱȱȱȱȱ¢ǰȱȱȱǰȱȱ mixed in others. • The scale and scope of climate impacts such as increased economic access and ¢ȱȱȱȱȱǻǰȱǼȱȱ¢ȱȱęȱ ȱȱȱȱȱǯȱȱȱȱȱȱȱȱȱ ȱ ȱȱȱȱȱȱ ȱȱȱȱȱ uses of the oceans in the future. ŘǯȲȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱ ȱȱȱǰȱ ȱȱǰȱȱ ȱ¢ȱȱȱȱ ę¢ȱȱȱȱęǯȱ • ȱȱȱȱȱȱę¢ȱǰȱȱ¢ȱ¡ǰȱȱȱȱȱ¢ȱȱȱ¢ȱȱȱ ȱȱȱ¢ȱȱȱ¢ȱȱȱ¢ȱ ȱ ȱ¢ȱ ǯ Executive Summary řǯȲȱ ȃǰȄȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ȱȱȱȱȱȱȱȱȱ ȱ¢ȱȱěȱ¢ȱȱ change. • ȱȱȱȱȱ Ȭȱȱȱȱȱ ¡ȱȱȱę¢ȱȱȱȱȱȱǯ • ȱȱȱȱȱȱěȱȱȱȱȱȱ ȱȱȱęǰȱȱȱȱ¡ȱ Ȭȱǰȱ¢ȱȱ¢ǰȱȱȱȱȱȱ ǰȱȱ food insecurity and malnutrition, rising pollutant-related respiratory problems, and spread of infectious disease. ŚǯȲȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ insight into societal responses and adaptation options. • ȱ¢ȱȱ¢ȱȱ ȱȱ¢ȱȱ ȱȱȱȱȱ ȱ¢ǰȱǰȱ economic, and social systems in the future. Chapter 5: International Implications of Climate Change ŗǯȲ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ distribution and abundance. • ȱ¢ȱȱȱȱȱȱ¢ǰȱ ȱȱ no longer the case. • ¢ȱȱ ȱȱȱȱę¢ǰȱ¡ȱȱȱȱȱ ȱ¢ȱ¢ȱȱȱǯȱȱȱǰȱȱȱȱ ȱ¢ȱȱȱȱ¡ȱȱȱȱȱȱȱȱǯȱ • ȱȱǰȱȱ ȱȱȱȱȱ¢ȱȱ ǰȱȱ ȬȱȱȱǰȱȬ¢ȱȱ ȱȱěȱȱȱȱ¢ȱǯȱ ŘǯȲȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ǰȱ ȱǰȱȱȱȱȱȱȱȱȱěȱ long-term implementation on shared marine resources. • ȱȬȱȱȬȱ ȱȱȱȱĴȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱǯ • ȱ¢ȱȱ¡ȱȱȱȱ ȱȱ Ĵȱȱȱȱȱȱȱȱȱȱȱ priorities. řǯȲȱ ȱȱȱǰȱ¢ȱȱȱȱ¡ȱȱȱȱ£ȱǻǼȱȱȱȱǯ • ǰȱȱȱȱǰȱ ȱȱĚ¡¢ȱȱȱȱ changing circumstances, particularly unanticipated, climate-driven changes in ȱȱȱȱȱ¡ȱȱȱȱȬȱǯȱ xxxi xxxii OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE • ȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱ ȱȱ¡ȱȱȱȱȱ to be strengthened or enhanced. Śǯȱ ȱ ȱ ȱ ěȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ long term. • Changes in available shipping lanes in the Arctic created by a loss of sea ice have generated an expanded geopolitical discussion involving the relationship among politics, territory, and state sovereignty on local, national, and international scales. śǯȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱtential to be a transformational tool in the implementation of improved coastal policy and management. • A number of countries including Indonesia, Costa Rica, and Ecuador have idenęȱȃȱȄȱȱȱ¢ȱȱȱȱ¢ȱȱȱ and approaches. Chapter 6: Ocean Management Challenges, Adaptation Approaches, and Opportunities in a Changing Climate ŗǯȲȱȱȱȱȱȱȱȱȱȱȱȱȱǯȱ • ȱȱȱǰȱ ǰȱȱȱ¢ǰȱ¢ȱ ȱ adaptation actions have been designed and implemented for marine systems. • ȱȱȱȱ¢ȱ¡ȱȱȱȱȱȱȱęȱ ǰȱ ǰȱȱȱ¢ǯȱ • Despite barriers, creative solutions are emerging for advancing adaptation planning and implementation for ocean systems. ŘǯȲȬȱȱǰȱǰȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱǯ • Long-term observations and monitoring of ocean physical, ecological, social, and economic systems provide essential information on past and current trends as ȱȱȱȱȱǯȱȱȱȱȱȱȱ ȱȱȱ¢ȱȱȬ¢ȱȱȱȱ ȱȱ ȱȱȱȱ ȱȱȱȱǯ • Ȭ¢ȱǰȱǰȱȱȱȱȱȱȱǰȱ ȱ communities of practice, and inform and support decisions to enhance ocean resilience in the face of climate change. řǯȲȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱǰȱǰȱȱȱěǯ Executive Summary • ȱȱȱȱȱȱęȱȱȱȱ ǰȱȱ ȱȱȱȱȱȱȱȱȱȱȱience and adaptive capacity. • ȱȱ¡ȱȱȱ¢ȱ ȱȱȱ ȱȱěȱȱȱȱǯ ŚǯȲȱȱȱȱȱȱǯǯȱȱȱȱȱȱȱȱ ȱǰȱǰȱǰȱǰȱȱȬȱȱ ȱ ȱDzȱ ǰȱȱ ȱȱǯ Chapter 7: Sustaining the Assessment of Climate Impacts on Oceans and Marine Resources ŗǯȲȱȱȱȱȱȱǯǯȱȱ¢ȱȱȱȱȱȱǰȱȱȱȱǰȱȱȱȱȱěȱ adaptation to a changing climate. ŘǯȲȱ ȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱ¢ȱȱǯȱ¢ȱȱȱȱȱ¡ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ marine ecosystems. řǯȲȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ advance assessment of impacts of climate change on oceans and marine resources. • Identify and collect information on a set of core indicators of the condition of ȱ¢ȱȱȱę¢ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱęȱȱ ȱȱȱěȱȱȱȱȱěȱȱȱȱȱȱȱǯ • ȱ¢ȱȱěȱȱ¡ȱȬȱ¢ȱȱǰȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱ¢ical, chemical, biological, and social/economic impacts of climate change on oceans and marine resources. • Increase capacity and coordination of existing observing systems to collect, ¢£ǰȱȱȱȱȱȱ¢ǰȱǰȱǰȱ ȱȦȱȱȱȱȱȱǯǯȱȱ¢ǯ • ȱȬȱȱȱȱȱȱȱȱȱ ȱȱȱęȱȱȱ¢ǰȱǰȱȱȱ components and human uses. • ȱǰȱǰȱȱ¢ȱȱȱȱȱȱȱȱ climate change on marine ecosystems. • Build and support mechanisms for sustained coordination and communication ȱȱȱȱȱȱȱȱȱȱȱmation needs related to impacts, vulnerabilities, mitigation, and adaptation of ocean ecosystems in a changing climate are being met. xxxiii xxxiv OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE • ȱȱȱȱȱĴȱȱȱȱȱ ȱȱǰȱǰȱȱȱȱǯǯȱȱ¢ȱ in a changing climate. • ȱȱȱȱ ȱȱȱȱȱnational partners for assessing and addressing impacts of climate change and ȱęȱȱȱ¢ȱȱ¢ȱȱȱȱǯǯ Chapter 1 Introduction ȱ ǯǯȱ ȱ ȱ ȱ ȯȱ ǰȱ ȱ ȱ ȱ ȱ ¡¢ȱ ȱ ȱȱȱȱȱȱȱǯȱȱ¢ȱȱȱǯǯȱport an incredible diversity of species and habitats (NMFS, 2009a,b) and provide many ȱ¢ȱǰȱȱǰȱǰȱȱǰȱȱǰȱȱęǰȱȱǰȱȱȱǰȱȱěȱǰȱ ǰȱȱȱȱȱ¢ȱ¢ȱȱȱěȱȱȂȱȱȱȱ¢ȱ ¢ȱǻǰȱŘŖŗŘDzȱǰȱŘŖŗŗDzȱǯǯȱǰȱŘŖŖŚǼǯȱȱŘŖŖŚǰȱ ȱȬȱ¢ǰȱ ȱȱȱȱ¡ȱȱǰȱȱ ǞŗřŞȱȱȱŗǯŘȱȱȱǯǯȱȱȱȱǻǼȱǻ ȱȱǯǰȱŘŖŖşǼǯȱ ǯǯȱȱȱȱȱ¢ȱȱ ȱȱȂȱȱȱǰȱ ȱ ȱ ȱ ¢ȱ ŗŞȱ ȱ ȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ȱ ȱ řŜȱ ȱ ȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ȱ ŚŖȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻ ȱȱǯǰȱŘŖŖşǼǯ ȱ ¢ȱ ȱ ǯǯȱ ¢ȱ ¢ȱ ¡ȱ ȱ ȱ ȱ ȱ ŘŖřȱ ȱȱ ȱȱȱȱȱǻŖȬřȱȱȱ¡ȱŖȬşȱȱȱěȱȱȱȱ¡ǰȱȱȱȱȱǰȱȱȱǼȱȱȱ ǻřȬŘŖŖȱȱǼȱǯȱȱȱȱȱȱȱřǯŚȱȱ ȱȱȱȱǰȱȱȱȱȱȱȱǯǯȱ¡ȱȱ£ȱ ǻǼȱ ǻȱ ȱ ȱ ǰȱ ŘŖŖşǼǯȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱȱŗǯŝȱȱȱȱȱȱȱȱǯǯȱȱȱŗŗȱferent large marine ecosystems (LMEs) (Figure 1-1). ȱȱȱ¢ȱȱȱȱ¢ȱȱȱȱȱ¢ȱ ȱȱǰȱȱȱȱȱȱęǯȱȱȱ ȱęȱȱěȱȱȱȱȱȱ ¢ȱȱȱȱȱ ȱȱǻȱŗȬŘǼȱǻ¢ȱȱǯǰȱŘŖŗŘDzȱǰȱŘŖŖŞǼǯȱȱǰȱȬȱ ȱȱȱȱ¢ȱȱȱǰȱȱǰȱęȱǰȱ ȱ Ȭǰȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ǯȱ lectively, climatic and non-climatic pressures are having profound and diverse impacts on marine ecosystems (Figure 1-2b). These impacts are expected to increase in the future ȱȱȱȱȱȱȱ¢ȱȱȱȱȱȱ levels. ȱȱȱěȱȱ¢ǰȱǰȱȱȱ¢ǰȱȱ ȱ as human uses of these systems. Rising levels of atmospheric CO2 is one of the most seȱȱȱȱěȱȱ¢ȱȱȱȱȱȱ ȱǻǰȱŘŖŗŗǼǯȱȱ ȱ¢ȱȱȱȱȱȱ CO2 in marine ecosystems are increasing ocean temperatures (IPCC, 2007a) and acidity (Doney et al., 2009). Increasing temperatures produce a variety of other ocean changes ȱȱȱǰȱȱȱęǰȱȱ¡ȱȱȱǰȱȱ R. Griffis and J. Howard (eds.), Oceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment, NCA Regional Input Reports, DOI 10.5822/978-1-61091-480-2_1, © 2013 The National Oceanic and Atmospheric Administration 1 2 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Alaska Ecosystem Complex Great Lakes Northeast Shelf Figure 1-1 Large marine ecosystems within the U.S. Exclusive Economic Zone (NOAA Fisheries 2009c). Southeast Shelf California Current Gulf of Mexico Caribbean Sea Pacific Islands Ecosystem Complex Legend noaa_eco_outer_eez US EEZ States [email protected] 06/09 ȱĴȱȱȱǰȱǰȱǰȱȱ ȱȱǻ¢ȱ et al., 2012). These and other changes in ocean physical and chemical conditions, such as changes in oxygen concentrations and nutrient availability, are impacting a variety of ocean biological features including primary production, phenology, species distribuǰȱȱǰȱȱ¢ȱǰȱ ȱȱȱȱȱȱ ȱȱȱȱȱǻȱŗȬřǼǯȱȱȱȱȱ ȱȱȱ ȱ¢ȱȱȱ¢ȱȱǯǯȱȱȱǯǯȱȱ¢ȱ ȱȱȱȱěȱ¢ȱȬȱȱȱȱȱȱȱ atmospheric CO2. Interactions of climate impacts vary by region and complexity. Figure ŗȬŚȱȱȱȱ¡ȱȱȱȱȱȱǯȱ 1.1 Scope and Purpose ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ěȱ ȱ ȱ ǯǯȱ ȱ ȱ ȱ ǯȱȱȱ ȱȱ¢ȱȱȱȱ¡ȱȱ ȱ¢£ȱȱ ȱȬȱȱȱǯǯȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱǻǼǰȱ ȱ ȱȱȱȱȱȱȱǯǯȱȱȱȱȱǻǼǯȱȱǯǯȱȱȱ ȱȱȱŗşşŖȱȱȱȱȱȱȱȱȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱȱȱŘŖŖŖȱȱŘŖŖşȱȱĴȱȱȱȱȱȱ ǯǯȱȱȱȱǯȱȱȱȱȱȱȱȱȱ emphasis on this topic for the 2013 NCA. Introduction 2 3 4 0 –50 –100 –150 11 10 9 8 7 6 10 5 0 –5 Sea-surface temperature (°C) 50 12 0–700-m ocean heat content (1022 J) 100 6 900 8.2 0.4 0.2 0.0 –0.2 –0.4 –10 –0.6 800 8.1 700 8.0 600 500 7.9 pCO2 (μatm) Global mean sea level (mm) 150 Summer Arctic sea-ice area (106 km2) a 5 0.6 13 Mean ocean-surface pH (total scale) 1 400 7.8 300 7.7 1000 1800 1900 2000 200 2100 Year 2.0 b 10 9 8 7 6 1.0 5 4 Relative change Relative change 1.5 World population U.S. coastal population Anthropogenic nitrogen fixation North American marine biological invasions Global marine wild fish harvest Cumulative seagrass loss Cumulative Caribbean coral cover loss Cumulative mangrove loss Cumulative global hypoxic zones Global mariculture production 3 0.5 2 1 0.0 1800 1850 1900 1950 2000 0 Year Figure 1-2 (a) Changes in (1) global mean sea level (data starting in 1800 with an upward trend; Jevrejeva et al., 2008), (2) summer Arctic sea-ice area (data starting just prior to 1900 with a downward trend; Walsh and Chapman, 2001),(3) 0-700-m ocean heat content (data starting around the mid 1900's with an upward trend; Levitus et al., 2009),(4) sea-surface temperature (data starting around the mid1800's with a general upward trend; Rayner et al., 2006), (5) mean ocean surface pH (data starting around 1000 with an downward trend into the future; NRC, 2010b), and (6) pCO2 (data starting around 1000 with an upward trend tinto the future; Petit et al., 1999). Shaded region denotes projected changes in pH and pCO2 consistent with the Intergovernmental Panel on Climate Change’s 21st-century A2 emissions scenario with rapid population growth. (b) Time series (as identified in figure key): trends in world population (solid line, data starting in the 1800s with an upward trend; Goldewijk, 2005), U.S. coastal population (solid line, data staring in the 1950s with a general upward trend; Wilson and Fischetti, 2010), anthropogenic nitrogen fixation (solid line, data starting in the late 1850s with a general upward trend; Davidson, 2009), North American marine biological invasions (solid line, data starting in the 1800s with a general upward trend; Ruiz et al., 2000), global marine wild fish harvest (solid line, data starting in the 1950s with a general upward trend; Food Agricultural Organization [FAO] U.N., 2010), cumulative seagrass loss (dotted line, data starting around the mid 1920's with a general upward trend and a sharp increase after the mid 1970s; Waycott et al., 2009), cumulative Caribbean coral cover loss (dotted line, data starting around the mid 1970s with a general upward trend; Gardner et al., 2003), cumulative mangrove loss (dotted line, data starting around the mid 1920's with a general upward trend and a sharp increase after the mid 1970s; FAO U.N., 2007), cumulative global hypoxic zones (dotted line, data starting in the early 1900's with a general upward trend; Diaz and Rosenberg, 2008), and global mariculture production (dotted line, data starting around 1950 with an upward trend; FAO U.N., 2010). All time series in (b) are normalized to 1980 levels. Trends with <1.5-fold variation are depicted as solid lines (left axis), and trends with >1.5-fold variation are depicted as dotted lines (right axis) (Source: Doney et al., 2012). 3 4 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Figure 1-3 Imapcts of Climate Change on Marine Ecosystems. This table is intended to provide illustrative examples of how climate change is currently affecting U.S. ecosystems, the species they support, and the resulting impacts on ocean services. It is not intended to be comprehensive or to provide any ranking or prioritization. Black arrows represent impacts driven by climate change either directly or indirectly. Gray arrows represent countering effects of various adaptation efforts. n indicates where climate change is predicted to increase the incidence or magnitude of that attribute and ' indicates attributes where the impact of climate change on that attribute is variable. ȱȱȱ£ȱȱȱ ȱȱDZ • ȱŘȬŚȱȱȱȱȱ ȱȱȱȱȱȱȱ ocean physical and chemical conditions (Section 2), biological systems (Section řǼǰȱȱȱȱȱȱǻȱŚǼȱȱȱȱǯȱ • Section 5 assesses the international implications of these climate impacts ȱȱȱǯǯȱȱȱȱȱȱ¢ȱ ȱȱȱȱ¢ȱǯǯȱǯȱ • ȱŜȱȱȱȱȱěȱȱȱȱȱȱȱȱȱȱ ȱȱȱǯǯȱȱȱȱǯ Introduction • ȱŝȱęȱ¢ȱȱȱȱȱȱȱȱȱ ȱȱǯǯȱȱȱȱ 1.2 Linkages with Other Parts of the National Climate Assessment ǯȱ ȱ ¢ȱ ȱ ¢ȱ ȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ȱ¢ȱȱȱȱDZ • ȱȱ ǰȱȱĴǰȱȱȱȱȱȱDzȱ • ěȱȱȱȱȱ¢ȱȱ¢ǰȱȱ ǰȱ ǰȱȱȱ energy; • Connectivity and movement of species; and • Extensive and diverse uses of marine resources and services that occur throughout the Nation. ȱȱȱȱȱȱȱ¢ȱȱ ǰȱȱȱȱ implications for, many regions and sectors across the nation that are also considered in ȱǯȱȱȱȱȱȱ¢ȱȱȱǰȱǯǯȱȱ¢ȱ Ěȱ ȱ ȱ ¢ȱ Ěȱ ¢ȱ ȱ ȱ ¢ȱ ǯǯȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ǯǯȱ ěȱ internationally. ȱ ȱȱȱȱ¢ȱȱȱȱȱ¢ȱȱ ȱȱȱȱ the NCA: • ȱDZ Seven of the eight regions of the NCA include coastal areas and marine ecosystems. Climate change impacts on marine ecosystems ¢ȱȱęȱȱȱȱȱ¢ȱȱȬdent species, habitats, users, and communities; • ȱDZ The oceans and marine resources considered in this report are ¢ȱȱȱǰȱǰȱȱȱȱȱȱ£ǯȱȱ ȱȱȱȱ¢ȱȱęȱȱȱ coastal areas, especially for marine-dependent species, habitats, users, and communities; • ȱ DZȱMarine ecosystem conditions can directly impact public health through harmful algal blooms, contaminated seafood, the spread of disease, and other mechanisms. Climate change impacts that increase these conditions ȱȱ¢ȱȱȱęȱǰȱ¢ȱȱȱ areas; • DZȱMarine transportation is critical to the nation’s economy, health, ȱ¢ǰȱȱ ȱȱȱ¢ǯȱȱȱȱȱȱ ecosystems, such as changes in ocean circulation, storms, and other features, ȱȱęȱȱȱȱȂȱȱȱȱ system; • ¢ȱ¢DZȱThe nation’s energy supply from marine-related sources is ȱȱ¢ȱ ȱȱȱȱȱȱȱȱ¢ǯȱ 5 6 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Climate change impacts on marine ecosystems, such as changes in ocean circulaǰȱǰȱȱȱǰȱȱȱęȱȱȱȱȱ energy sector; and • ¢ȱȱ¢DZȱMarine ecosystems are some of the nation’s most complex, biologically rich, and valued ecosystems. Climate change is already impacting marine ecosystems and biodiversity and these impacts are expected ȱȱ ȱęȱȱȱȱȱȱdent on marine resources. Figure 1- 4 Summary of climate-dependent changes in the California Current. Observed physical changes include surface warming, strengthened stratification, and a deepening thermocline that is superimposed on strengthened upwelling wind stress and resultant increases in coastal and curl-driven upwelling. Long-term declines in dissolved oxygen have resulted in intensification of shelf hypoxia and vertical displacement of the hypoxia horizon, which reduces the habitat for certain oxygen-sensitive demersal fish species and increases the inorganic carbon burden and potential for N2O flux. The surface inorganic carbon load has also increased because of anthropogenic CO2 uptake. Time series from the past two to three decades indicate increasing trends in phytoplankton biomass; longer time series for zooplankton indicate decreasing biovolumes over the past six decades as well as shifts toward an earlier and narrower window of peak abundance. Increases in oceanic larval fish have been observed as have declines in salmon and rockfish productivity. Seabirds have experienced more variable and, in some cases, declining breeding success. Distributional shifts toward species with subtropical or southern ranges that are warmer and away from species with subarctic or northern ranges that are cooler have been evident in intertidal invertebrate, zooplankton, and seabird communities (Source: Doney et al., 2012). Chapter 2 Climate-Driven Physical and Chemical Changes in Marine Ecosystems Executive Summary ȱȂȱȱȱ¢ȱ ȱȱȱȱȱȱȱȱ carbon dioxide and other greenhouse gasses. The Intergovernmental Panel on Climate ȱ ǻǼȱ ȱ ǰȱ ȱ ŗşŜŗȱ ȱ ŘŖŖřǰȱ ȱ ȱ ȱ ȱ ȱ ȱŝŖŖȱȱȱ ȱȱ¢ȱŖǯŘǚȱȱǻǰȱŘŖŖŝǼǯȱȱȱȱ ȱȱȱȱȱ¢ȱDzȱŘŖŗŖȂȱȱ ȱȱ ĴȱȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱȂȱȱȱȱǰȱȱȱȱǰȱȱȱȱȱĴǰȱȱęȱȱȱ ȱǰȱȱȱȱȱȱȱ¢ǯȱȱȱȱ ȱȱǰȱ2 is being absorbed by the oceans, causing a series of chemical ȱȱȱȱȱȱȱȱ ǯ ȱȱȱȱȱȱ¢ȱŝśƖȱȱȱȱȱǻ¡ȱȱǯȱŘŖŗřǼDzȱ ȱȱ¢¡ȱǻȱ ȱȱ¡¢ȱȱȱȱǼȱ ȱǯǯȱȱȱȱ¢ȬȱȱŗşŜŖȱǻ£ȱȱǰȱŘŖŖŞǼDzȱȱ ȱ¢ȱȱȱ¢ȱřŖȱȱȱȱȱ¢ȱǻ¢ȱȱǯǰȱŘŖŖŚǼǯȱȱȱȱ ȱȱȱȱ¢ȱȱȱȱȬȱǰȱȱ ȱȱ¢ȱȱȱȱ¢ȱ¢ȱȱǰȱȱ ȱȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ǻȱ ȱ ǯǰȱ ŘŖŗŖǼǯȱ ȱ ȱ ȱ ȱ ǰȱęȱǰȱȱȱȱ ȱ ȱȱȱȱȱ ȱȱ¡ȱ ȱȱȱ ȱ ǯȱȱ ȱȱȱȱĜȱȱing CO2ǰȱȱ ȱȱȱȱȱ ȱěȱȱȱęǰȱȱȱȱȱȱȱȱȱȱ2 by the oceans. While ȱȱȱ¢ȱȱ¢ȱȱ¢ǰȱȱ¢ȱȱ ȱ¢ȱȱ atmospheric data collected from 1970-2005 suggests that there are overriding changes, ȱǰȱȱȱȱ¢ȱ¢ȱǻ ȱŘŖŗŖǼǯ ȱȱȱȱ ȱȱěȱ¢ǰȱȱĴǰȱȱ ȱǰȱȱ¢ȱǯȱ¢ȱȱȱ ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǰȱ ȱȱȱȱĜȱȱȱȱȱĴȱȱ¢ȱȱȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱȱȱĴȱȱȱȱ ȱȱȱȱǰȱȱ ȱȱȱ ȱȱęȱȱȱ ǰȱȱ¢ǰȱȱȱ ȱǯ ȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱěȱȱȱȱǻȱřǼǰȱǯǯȱȱȱȱ R. Griffis and J. Howard (eds.), Oceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment, NCA Regional Input Reports, DOI 10.5822/978-1-61091-480-2_2, © 2013 The National Oceanic and Atmospheric Administration 7 8 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱȱǻȱŚǼǰȱǯǯȱȱȱȱ ȱȱȱǻȱśǼǰȱȱȱȱȱǻȱŜǼǯȱ Key Findings ŗǯȲȱ Ȃȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ spheric carbon dioxide and other greenhouse gases. • ȱŗşśśȱȱŘŖŖŞǰȱ¡¢ȱŞŚȱȱȱȱȱȱȱȱ change has been absorbed by the oceans, thereby increasing the average temperȱȱȱȱŝŖŖȱȱȱ ȱ¢ȱŖǯŘǚȱDzȱȱȱȱ¢ȱȱ continue. • ȱȱȱȱ¢ȱȱȱȱȱȱȱ ȱǰȱ ȱȱȱȱȱǰȱȱȱǰȱȱ¢ȱ ȱȱȱȱǯ ŘǯȲȱȱȱȱȱȱ¡ȱȱȱȱȱȱȱŘŖȱ¢ȱȱȱ ȱȱȱȱȱ ǯȱ • Arctic ice has been decreasing throughout the early 20th century. The summer of ŘŖŗŘȱ ȱȱȱ ǰȱ ȱȱȱ¡ȱȱȱřǯŜȱȱŘǰȱ¡¢ȱŗȱȱŘȱȱȱȱȱȱȱŘŖŖŝǯȱȱȱȱ volume has decreased by 75% over the previous decade. • ȱȱęȱȱȱȱȱȱ ȱȱȱȱǯȱȱ ȱ¢ȱȱ¢ȱȱ ȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱ ȱ¢ȱȱȱȱ mean sea level rise of more than 1 meter above present day sea level by 2100. • Reductions in ice may occur more rapidly than previously suggested by coupled ȬȬȱȱǯȱȱȱ¢ȱȱȱȱDzȱ more recent modeling predicts that a seasonal ice-free state could occur as early as 2030. řǯȲȱȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ2. • The annual accumulation of atmospheric CO2 has been increasing and in 2010 the overall CO2ȱȱ ȱřşȱȱȱȱȱȱȱȱ of the Industrial Revolution in 1750. • ȱ ȱȱ¡¢ȱśŖȱȱȱ2 than the atmosphere and ȱȱ¢ȱȱȱȱȱǰȱȱ Dzȱ ǰȱȱ¢ȱȱ oceans to absorb CO2ȱȱ ȱȱȱȱȱ ǯ • ¢ȱȱ ȱȱěȱȱȱȱȱǯȱȱ ȱȱȱȱȱȃȱȱǯȄȱ¢ǰȱȱȱȱȱ ȱȱȱȱȱ ȱȱȱȱŘŖŖȱ¢ǯȱ ŚǯȲȱȱȱȱ¡ǰȱȱȱȱȱȱȱȱȱ ȱ ǰȱȱȱ ȱȱȱęǯ Climate-Driven Physical and Chemical Changes in Marine Ecosystems • ȱȱȱ¢ǰȱȱȱȱ ȱȱȱ¢ȱřŖȱDzȱ ǰȱȱȱȱȱȱ¢ȱȱȱȱ ȱ ȱ events. • ȱȱȱȱęȱ ȱȱȱȱȬȱȱ ȱȱȱȱ ȱ¢ȱȱ¢ȱŘŖśŖǯȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱęȱȱȱȱ¢ȱȱȱ ȱ¡ȱȱȱȱȱǯ • ȱ¢ȱ¢ȱ¡ȱ¡ȱȱęȱȱ2 is ȱȱȱȱ ȱȱȱȱ¢ȱȱȱǯ śǯȲȱȱȱȦȱȱȱȱȱĚȱȱȱ Ȃȱ ȱȱȱĴȱȱ ȱ¢ȱȱȱ¢ȱȱ ȱǻȱȱȱěȱǼȱȱ¢ǯȱ • ȱȱȱȱ ȱ¢ȱȱȱȱ¢ȱ¢ȱȱ precipitation events are predicted to become more intense. • ȱȱȱĴȱȱ ȱȱȱȱ¢ǰȱȱȱ ȱ ȱȱȱȱ ȱȱȱ¢ȱȱ ȱ¢ǯȱ • ȱ¢ȱȱ¢ȱȱȱȱȱȱȱȱǰȱ¢ȱȱ coastal communities because of the increases in coastal populations and infraȱ¡ȱȱȱ¡ȱ¢ǯȱȱȱȱȱȱ ȱȱ ȱȱȱȱȱȱ ȱȱȱ¡ȱȱȱȱǯ ŜǯȲȱȱȱȱȱȱȱȱȬȱȱȬȱ¢ȱ ȱȱǰȱ ǰȱȱȬȱǰȱȱȱ ȱ¢ȱ Ěȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱȱ ǯȱ • ȱȱȱȱ ȱȱȱ¢ȱȱȱ¢ȱȱȱ ǰȱ ȱȱ ȱȱȱȱ ȱȱ ȱǰȱ¢ȱȱ circulation. • ǰȱ¢ȱȱȱȱ¢ȱȱ ȱȱ¢ȱ ȱ ȱȱȱȱȱȱǯȱ Key Science Gaps/Knowledge Needs Many critical research gaps related to impacts of climate change on physical and chemical ocean systems remain, including: • ȱȱȱȱȱȱȱȱ¡ȱȱȱ oceans and associated sea level rise; • ȱȱȱȱȱȱȱȱȱȱȱȱ ȂȱȱȱęDz • Advanced integration of observations and predictive modeling, particularly at regional scales, in order to gain insight into future impacts of climate change; 9 10 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE • ȱȱ ȱȱȱȱȱȱȱȱ the atmosphere; • Successful monitoring of tropical cyclone activity globally for emergence of ǰȱȱ ȱȱȱȱȱȱȱȦȱtion of future storms; and • Improved understanding of the role of “blue carbon” science in ecosystem ȱȱȱ ȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱǯ 2.1 Introduction ȱȱȱ ȬȱȱȱȂȱǰȱȱȱȱȱȱnent of the global climate system. The oceans help to control the timing and regional distribution of the Earth’s response to climate change, primarily through their absorption of carbon dioxide (CO2) and heat. Changes to the physical and chemical properties ȱ ȱ ȱ ȱ ¢ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ǰȱ ȱ level rise is accelerating, the oceans are becoming increasingly acidic, and the rate of sea ice melt is steadily increasing. The International Panel on Climate Change (IPCC) ȱȱȱŘŖŖŝȱȱǰȱȱȱȱȱȱȱȱȱ ȱǰȱȱȱ¢ȱ¢ȱȱȱȱ ȱȱȱ ȱȱȱȱ ȱȱȱȱȱǻǰȱŘŖŖŝǼǯȱȱȱȱȱȱ¢ȱȱȱ changes currently being observed in the Earth’s oceans, including changes in temperaǰȱęǰȱ¢ǰȱȱǰȱȱǰȱȱǰȱȱȱęǯȱ ȱȱȱȱȱ ȱȱȱǯȱȱȱȱȱ ȱȱȱȱȱ ȱȱȱ ȱȱȱ¢ȱȱȱ ǰȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ Ȃȱǰȱȱ ȱȱȱȱȱǯǯȱ 2.2 Ocean Temperature and Heat Trapping ȱ Ȃȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ tions of atmospheric carbon dioxide and other greenhouse gases that increase air temperatures. Air temperature and sea surface temperature are strongly correlated, and the ȱȱ ȱ¡ȱȱȱȱȱȱȱǯȱȱȱ the IPCC, “most of the observed increase in globally averaged temperatures since the ȬŘŖȱ ¢ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱǰȄȱȱȱȱ¢ȱȱȱȱȱ¢ȱ¢ȱ ȱȱȱȱ ȱ ȱȱȱȱ¡ȱ ȱǯȱȱ ȱǰȱ ȱ ŗşśśȱ ȱ ŘŖŖŞǰȱ ¡¢ȱ ŞŚȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ absorbed by the oceans (Levitus et al., 2009), thereby increasing the average temperature ȱȱȱŝŖŖȱȱȱ ȱ¢ȱŖǯŘǚȱȱǻǰȱŘŖŖŝǼȱǻȱŘȬŗǼǯ ȱȱ¢ȱȱȱȱȱ¡ȱ ȱǰȱ ȱȱȱȱȱ ȱȱȱȱȱ ȱŗǯŗǚȱȱȱ ȱ2 emission sceȱŗȱȱŜǯŚǚȱȱȱȱ2 emission scenario A1FI by the end of the 21st ¢ȱǻǰȱŘŖŖŝǼǰȱ ȱ ȱȱȱȱȱǯȱȱ¡ǰȱ Climate-Driven Physical and Chemical Changes in Marine Ecosystems Figure 2-1 Time series of global annual ocean heat content (1022 J for the 0-700 m layer (black) and 0-100 m layer (thick red line; thin red lines indicate estimates of one standard deviation error) and equivalent sea surface temperature (blue; right-hand scale). All time series were smoothed with a three-year running average and are relative to 1961 (Source: Barange and Perry, 2009). ȱȱȱȱȱ¢ȱŘŖŗŖȱ ȱȱȱ ȱȱȱ ȱȱȱȱȱŗŞŞŖȱǰȱȱŘŖŖşǰȱȱȱȱȱȱȱ ȱȱŖǯśŞǚȱȱȱȱȱȱȱȱȱŘŖȱ¢ȱ ǻ ȬǰȱŘŖŗŖǼǯȱȱȱȱȱȱȱȱȱ¢ȱ ȱȱȱȱȱȱȱȱȱȱȱ ȱǰȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȂȱĚȱȱȱȱȱǯȱȱ ȱȱȱȱ ¢ȱȱȱȱȱȱȱȱȱȱȱȱǰȱȱȱface temperatures to increase at a faster rate than previously observed (Friedlingstein, 2001). The present CO2ȱȱȱȱȱȱȱȱȱȱȱȱŞŖŖǰŖŖŖȱ ¢ȱȱȱȱȱȱǻûȱȱǯǰȱŘŖŖŞǼDzȱ ǰȱȱȱȱ2 is ȱȱ ȱȱȱ ȱȱȱȱȱ¢ȱȱȱ ȱĜȱȱ ȱ ȱȱ ȱȱȱȱȱǯȱ Ocean sea surface temperature The oceans play a dominant role in the Earth’s climate system through storage and transport of heat (Levitus et al., 2009). Observed temperature increases are uneven around the globe and both gains and losses in sea surface temperatures are governed by atmospheric and oceanic processes. Dominant atmospheric factors driving ocean ȱȱ ȱǰȱȱǰȱǰȱȱ¢Dzȱȱ oceanic factors include heat transport by currents and vertical mixing. Fluctuations in ȱȱȱ¢ȱ ȱȱDzȱȱ¡ǰȱȱ ȱȱȱȱ ȱ ȱěȱȱȱȱȱȱǯǯȱȱȱ¢ȱȱȱ ȱȱǻȱȱ ǰȱŘŖŖŝǼǰȱ ȱ ȱȱ ȱȱȱȱŘŖŗŖǰȱ ȱ ȱ ȱȱȱȱȱȬȱȱǻ¢ǰȱŘŖŗŗǼǯȱȱ ȱȱ¢ȱȱȱȱĴȱȱȱȱȱȱȱ¡ȱȱȱ 11 12 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE is a driving force of atmospheric circulation. Evaporation rates are expected to increase ȱȱǰȱȱȱȱȱȱ ȱǯȱȱȱȱ ȱȱȱȱȱȱȱȱ¡Dzȱǰȱȱ ȱȱ ȱȱȱȱ ȱ ȱȱĚ¡ȱȱȱ the amount of heat retained in the atmosphere (IPCC, 2007a). The potential exists for ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ ȱǰȱ ȱ ȱȱȱȱȃ ¢ȱȱěȄȱǻȱȱǯǰȱŘŖŖşǼDzȱ ǰȱ ȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ŘȬŘǼǯȱ ȱ ȱ ȱ ȱ ȱ Dzȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ Ȭ ȱ ǰȱ ȱ ȱ ȱ¢ȱȱȱȱěǰȱȱ ȱȱȱĚȱȱȱ ǰȱ ȱȱȱȱǻȱȱǯǰȱŘŖŖŞǼǯȱȱȱȱ ȱěȱ ȱ ȱȱȱǰȱȱȱȱȱȱȱȱȱ ȱȱȱ ȱȱ ȱǻǰȱŘŖŗŗǼǰȱ ȱȱ¢ȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱ ȱȱǻǰȱŘŖŖŗǼǯ ȱ¢ȱ ȱȱȬȱȱ¡ȱȱȱȱȱȱ ȱȱȱĴDzȱȱ¡ǰȱȱȱȱȱ ȱęȱȱĚȱ ȱȱȱȱ ȱǯǯȱǻǰȱŘŖŗŖǼǯȱ Observations indicate that changes in sea surface temperature in the tropical North Atȱěȱȱȱȱȱȱǰȱȱȱȱȱ ȱȱȱȱǯǯȱȱ¡ȱǻȱȱǯǰȱŘŖŗŖǼǯȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱȱȱǻǰȱŘŖŖŝǼǯȱ¢ǰȱȱȱȱȱȱǰȱ ȱȱ ȱȱȱȱȱȱȱȱǻ ȱȱǯǰȱŘŖŗŖǼǯȱȱę¢ȱȱȱ¢ȱȱȱȱȱȱ¢ȱȱ ȱȱ ȱȱȱȱȱȱǰȱ ȱȱȱȱȬȱȱǯȱ ȱȱȱ¡ȱ¢ȱ¢ǰȱ ǰȱȱ ȱȱȱȱȱ ȱȱȱȱ¢ǯȱ ȱ¢ȱȱȱȱȱȱȱȱǰȱ ȱ£ȱȱȂȱȱȱ ȱȱěȱȱȱȱǻ ȱ et al., 2007a). ȱȱȱȱȱȱěȱȱȱ ȱȱȱȱȱȱ sea level rise (discussed in greater detail in the Coastal Impacts, Adaptation and VulnerDZȱȱȱȱȱȱŘŖŗřȱȱȱǰȱǰȱȱ ŘŖŗŘǰȱȱŘǯŘȱ ȱȱȱȱȱȱȱȱěȱȱǼǯȱȱ ȱȱȬȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱ ȱ ȱDZȱȱȱȱ ȱȱȱȱȱ¢ȱȬȱȱȱ ice sheets and the thermal expansion or contraction of the oceans. In the case of thermal ¡ǰȱȱȱȱǰȱȱȱȱȱȱ ȱȱ ȱȱ ȱȱȱ¡ȱ ȱȱǯȱȱȱȱŗşŜŗȬŘŖŖřǰȱ ȱ¡ȱ ȱȱȱ¡¢ȱřŖȱȱȱȱȱȱȱȱ ǻ£ȱȱǰȱŘŖŗŖǼǯȱȱȱȱȱȱǰȱȱ¡ȱ ȱȱȱȱȱȱ¢ȱȱȱȱ¡ȱȱȱǯǯȱȱ ȱȱ ȱȱȱȱȱȱǰȱǰȱȱȱȱȱ on coastal areas for breeding or haul-out areas. Climate-Driven Physical and Chemical Changes in Marine Ecosystems Figure 2-2 Idealized depiction of how solar energy is absorbed by the earth’s surface, causing the earth to warm and to emit infrared radiation. The greenhouse gases then trap the infrared radiation, thus warming the atmosphere (Source: Philippe Rekacewicz, UNEP/GRID-Arendal http://www.grida. no/graphicslib/detail/greenhouse-effect_156e). 2.3 Loss of Arctic Ice ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ throughout the second half of the 20th century and the early 21st century (Figure 2-3) ǻǰȱ ŘŖŖşDzȱȱ ȱ ǯǰȱ ŘŖŖşDzȱ ȱ ȱ ǰȱ ŘŖŖŞDzȱ ȱ ȱ ǰȱ ŘŖŖŞDzȱ ȱȱǯǰȱŘŖŖŝDzȱȱȱǯǰȱŘŖŖŝǼǯȱȱȱȱ¢ȱ¡ȱȱȱȱ ȱȱȱȱǰȱȱȱȱȱȱȱȱȱ ȱȱȱŗşŝŞȱȱȱǻǰȱŘŖŖŝǼǯȱȱȱȱŘŖŗŘȱ ȱȱȱ ǰȱ ȱȱȱ¡ȱȱȱ¡¢ȱřǯŜȱȱŘǰȱ¡¢ȱŗȱȱŘȱȱȱȱȱȱȱŘŖŖŝǯȱȱȱȱȱȱȱ¢ȱ 75% over the last decade (Laxton et al. 2013). Every year since then, September ice extent ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ŘŖŖŝǰȱ ȱ ȱ ŘŖŗŗȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ŘŖŖŝȱ ǻȱ ȱ ǯǰȱ ŘŖŗŗDzȱ ȱ ȱ ǯǰȱ ŘŖŗŗǼǯȱ ǰȱ ȱ ȱ ȱȱ¡ȱȱȱ¢ȱŗşŝşȱȱŘŖŖŜȱȱȱȱȱȱ¡¢ȱřǯŝȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞǼȱ ȱ ȱ ȱ ŚŘȱ ȱ ȱ ȱ ǰȱ Ȭ¢ȱȱ ȱŘŖŖŚȱȱŘŖŖŞȱǻȱȱǯǰȱŘŖŖŞDzȱ ȱȱǰȱŘŖŗŗǼǯȱ ȱȱȱȱȱȱȱǰȱȱȱȱȱ¢ǰȱȱȱȱ ¢ȱȱ Ȭǯȱ 13 14 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Figure 2-3 Arctic sea ice extent. Satellite imagery of sea ice extent in September 1979 (outlines in red), and at a record low in September 2007 (Source: NASA). Sea ice plays an important role in reducing the ocean-atmosphere exchanges of heat, ǰȱȱȱǰȱ ȱȱȱȱȱǯȱȱȱĚȱ ¢ȱȱȱȱȱȱȱȱȱȱ¢ȱȱĚȱȱ¢ǯȱȱȱ ȱĜȱȱĚȱȱ¢Dzȱȱȱȱȱȱȱȱěȱȱ ȱ ȱ ¢ǯȱ ǰȱ ȱ Ěȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱǰȱȱȱȱȱȱǻ£ȱȱ¢ǰȱŘŖŗŗǼǯȱȱȱ ȱ ȱȱȱ¢ȱ¢ȱȱȱǰȱ ȱȱȱĚȱȱȱȧǰȱȱ¢ȱ ǰȱ¢ȱȱȱȱǻȱȱ ǰȱ ŘŖŖŜȱȱ¢ȱȱǯǰȱŘŖŖŜǼǯȱȱ¡ȱȱȱȱ¢ȱȱȱ ȱȱȱȱ¡¢ȱȱȱ ȱ ȱȱȱȱȱǰȱǰȱȱȱȱ¢ǰȱ ȱȱȱȱȱȱ beyond. ȱȱǰȱȱȱȱ ȱȱȱȬȱȱȱ ȱȱ¡¢ȱ ȱȱȱȱȱȱǰȱȱȱ ȱȱ ȱęȱǻȱȱǯǰȱŘŖŗŖǰȱ£ȱȱǰȱŘŖŖŜǼǯȱȱȱȱ ȱȱȱȱȱȱȱȱȱęȱǻȱȱǰȱ 2010). Enhanced heat storage occurs in the ice-free regions of the Arctic Ocean and heat ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞDzȱ £ȱ ȱ ¢ǰȱ ŘŖŗŗDzȱ ȱ ȱ ǯǰȱ ŘŖŗŗǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱȱęȱȱȱǯȱǰȱȱȱȱȱȱ Ȭȱȱȱȱȱȱǰȱȱȱȱȱȱ ȱ ȱȱȱȱǯȱȱȱȱ¢ȱȱěȱȱ¢ȱȱ Climate-Driven Physical and Chemical Changes in Marine Ecosystems ȱȱǻȱȱřȱȱŚǼǯȱȱȱȱȱȱěȱȱ ȱ ȱȱȱǯȱȱȱǯǯȱȱȱȱ¡ȱ ȱȱȱȱȱřŖȱ¢ȱȱȱȱȱȱȱ¢ȱȱ ȱȱ ȱȱȱȦȱȱȱȱǻȱȱǯǰȱŘŖŖŞǼǯȱȱȱȱȱȱȱ ȱȱȱȱǯȱȱ ȱ¢ȱȱ¢ȱȱ ȱȱȱ increasing loss of the great polar ice sheets in Greenland and Antarctica could result in global mean sea level rise of substantially more than 1 meter above present day sea level ¢ȱŘŗŖŖȱǻȱȱǯǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŗŖDzȱěȱȱǯǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŗŗǼǯ ȱȱȱ¢ȱȱ ȱȱ ȱȱȱȱȱȱȱȱȱȱ ȱ ȱȱȱȱȱǯȱȱȱǻŘŖŖŝǼȱȱȱȱȱ ȱ¢ȱȱ¢ȱȬȱȱȱȱ¢ȱȱȱŘŗȱ¢Dzȱ ǰȱȱ predict that reductions may actually happen more rapidly than previously indicated. ȱȱȱȱȱȱȬȬȱȱȱȱȱȱȱȱǰȱȱȱȱȬȱȱȱȱȱȱȱ¢ȱȱ ŘŖřŖȱǻȱȱǯǰȱŘŖŖŞǼǯȱ 2.4 Salinity Salinity refers to the salt content of the oceans. Contributors to salinity are terrestrial ȱǰȱǰȱ ȱǰȱ ȱȱȱȱȱȱȱ¢ȱǰȱȱǰȱ ȱȱȱȱȱȱȱ¢ȱ present. Ocean salinity changes are an indirect but potentially sensitive indicator for ȱȱȱǰȱǰȱȱěǰȱȱȱǯȱǰȱ¢ȱ may function as a proxy for identifying climate-driven changes in the Earth’s hydrologiȱ¢ȱǻ ȱȱǯǰȱŘŖŗŖǼǯȱ ȱ¢Ȭȱȱ¢ȱȱȱȱȱǰȱ ȱȱȱȱȱ ¢DZȱȱ¢ȱȱȱǰȱȱȱȱęǰȱȱ ȱȬȱȱȱȱȱȱǻěȱȱǰȱŘŖŖşǼǯȱȱȱ¢ȱ¢ȱ ĴȱȱǯȱǻŘŖŖşǼȱȱȱȱȱȱȱȱȱȱ ȱ ęǰȱȱȱȱȱȱ¢ȱȱȱȱȱȱŗşśśȬŘŖŖřȱ period. Despite an overall increase in salinity for the Atlantic, studies conducted in the ȱȱȱȱȱȱ ȱ ȱȱȱȱ¢ȱǻȱȱǯǰȱŘŖŖŞǼǯȱ One of the main reasons for this is the melting of Arctic sea ice and the resulting fresh ȱ ȱ ȱ ȱ ȱ ǯȱȱ Ěȱ ȱ ȱ ȱ ȱ ¢ȱ in the Gulf of Maine is increased precipitation. Many climate models predict that all ȱȱȱ ȱȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŜǼǰȱ ȱ ȱȱȱĚ ȱȱȱěȱȱȱǯȱȱȱȱ ȱ ȱ ȱ¢ȱȱȱȱȱ ȱȱȱȱ ȱȱ ȱȱȱ ¢¢ȱȱȱĚ ȱǻȱȱǯǰȱŘŖŖŜǼǯȱȱȱȱȱȱ ȱȱ ȱȱ¡ȱȱȱȱȱȱȱ ȱȱ ȱȱȱȱǯȱ ȱęȱȱȱȱȱȱȱȱȱ¢ȱȱ¢ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ěȱ ¢ȱ Ǒ¢ǰȱ ȱȱȱȱȱȱȱ ǰȱȱȱȱěȱ ȱȱ ȱȱȱǑȱȱęȱȱȱȱǻȱȱřǼǯ ȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱǻǰȱŘŖŖŝDzȱ ȱȱǰȱŘŖŖŜǼǯȱȱȱȱ 15 16 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱ¢ȱȱȱȱȱěȱȱȱ ȱ¢ȱȱȱǻ ȱ ȱǯǰȱŘŖŖŗǼǯȱȱȱ ȱȱȱȱȱ ǰȱȱȱ¢ȱěȱ¢ȱǰȱ ȱȱȱěȱęȱǻȱȱŘǯśǼǯȱ¢ȱȱȱ ȱȱȱǰȱ ȱȱȱ¢ȱȱȱ¢ȱǻȱ Ǽǯȱȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱǻȱȱŘǯŝǼȱǻǰȱŗşşŗǼǯȱȱ¢ȱȱȱȱ climate-related increases in precipitation and glacial melt, ocean circulation may begin ȱ ȱǻǰȱŘŖŖŝǼǰȱ ȱȱȱȱ¢ȱȱȱȱȱȂȱ climate. 2.5 Stratification ęǰȱ ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱ ȱȱǰȱǰȱȱȱ¢ǯȱȱ¢ȱ ȱ ¢ȱ Ěȱ ¢ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ǰȱ ȱ ȱ ȱĚȱȱȱȱǰȱȱ ǯȱȱȱȱȱ¢ȱȱȱ ȱȱȱ¢ȱěȱ ȱȱȬ¡ȱ¢ȱȱȱȱ ȱǯȱȱȱȱǰȱȱ ȱ ǰȱȱȱ¢ȱěȱ ȱȱȱęȱȱȱȱȱȱȱ¡ȱȱ ȱ¢ȱǯȱȱȱȱȱěȱȱȱȱȱ¢ȱ ȱ¢ȱ ǯȱȱȱȱǰȱęȱȱȱĚ¡ȱȱ ǰȱȬȱ ȱȱȱȬ¡ȱ¢ǰȱȱȱȱ¢ȱȱ ȱȱ¢ȱ ȱǻȱȱǯǰȱŘŖŖŜDzȱ ȱȱǯǰȱŘŖŖŜǼǯȱȱ ȱ ȱ ǰȱ ęȱ ȱ ¢ȱ ȱ ȱ Ȭ¡ȱ ¢ǰȱ ȱȱȱȱȱȱ ȱǻȱȱǯǰȱŘŖŖŝDzȱ ȱȱǯǰȱŗşşşǼǯȱ ȱęȱȱȱěȱȱ¢ȱ¢ȱȱȱȱ ȱ ȱ ȱ ¢Dzȱ ȱ ¡ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ŗşśŗȱ ȱ ŗşşřȱ ȱ ȱ ȱ ȱ ŞŖȱ ȱ ȱ ȱ ¢ȱ ȱ £ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ¢ȱǻȱȱǯǰȱŘŖŖŚǼǯ ęȱȱ¢ȱȱȱ¡ǰȱ ǰȱȱȱȱȱ ȱȱȱǯȱ¢ȱ ȱȱȱȱȱǰȱȱȱȱ ȱȱęȱǰȱȱ¢ȱęǯȱȱȱȱ ȱȬ¡ȱ¢ȱȱȱ ȱȱ¢ȱȱȱȱ£ȱ¢ȱ ¡¢ȱ ȱ¢ȱǯȱȬȱȱȱǰȱ¢ȱȱ¢ȱŘŖśŖǰȱ ȱȱȱȱ¢ȱȱęȱ ȱȱ¡ȱ¢ȱŚǯŖȱȱ ȱşǯŚȱȱȱȱȱȱȱǰȱ¢ǰȱȱȱȱ ȱǻȱȱǯǰȱŘŖŖŚǼǰȱ¢ȱȱȱȱ¢ȱǻȱȱǯǰȱŘŖŖŜǼDzȱ ǰȱȱȱȱȱ¢ȱȱȱȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ Ȃȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ¢ȱǻȱȱǯǰȱŘŖŖŞǼǯȱȱȱȱ£ȱȱȱȱǰȱ ȱȱ ȱ¢ȱęȱȱȱ¡ȱȱȱ ȱȦȱȱȱ ȱȱȱȱ¢ǯȱȱȱǰȱ¢ȱ ȱȱȱȬ ȱȱ ȱȱȱȱ¢ȱȱȱȱȱ¡ǯȱȱȱȱȱȱȱȱęȱȱǰȱ ȱȱ¢ȱȱȱ Climate-Driven Physical and Chemical Changes in Marine Ecosystems Ȭȱȱ¢ȱ ȱ¢ȱȱȱȱȱȱȱȱȱ¢ȱȱ ǰȱ¢ȱȱȱ ǯȱȱȱȱȱȱȱȱȱȱ ȱȱȱ¢ȱȱ ȱȱȱȱȱ£ȱǻȱȱ ǰȱŘŖŖŚDzȱȱȱǯǰȱŘŖŖŝǼǯ ęȱȱȱȱěȱȱȱȱǯȱȬȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ¢ȱȱǰȱȱ¢ȱȱȱěȱȱȱȱǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ęǰȱ ȱ ȱ ȱ ěȱ ȱ ¡¢ȱ ȱ ǯȱ ȱ ¡¢ȱ ȱ ȱ ¢ȱ ěȱȱȱȱ¢ȱȱȱȱȱȱȱ ¢ȱ ǻǰȱ ŘŖŖşǼǯȱ ǰȱ Ȭȱ ȱ ȱ ęȱ ȱ ¢ȱȱȱȱȱȱȱ¢ȱȱȱ¢ȱȱȱ ȱȱȱǯǯȱ¢ǯȱ 2.6 Changes in Precipitation and Extreme Weather Events ȱȱȱěȱȱȂȱ ȱȱȱĴǯȱȱȱȱȱŘǯŘǰȱ ȱȱȱȱȱ ȱ¢ȱ¢ȱȱȱȱȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ¢ȱ ¢ȱ ȱ ǯȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ¢ȱȱȱȱ¡ȱȱȱ ȱǯȱ¢ǰȱȱȱ ȱǰȱȱǰȱȱȱȱǰȱ ȱ¡ȱȱȱ¢ǰȱȱȱȱȱĚȱ ȱȱȱȱǻǰȱŘŖŗŗǼǯȱ ȱȱȱȱ ȱȱȱ¢ȱȱȱȱ¢ȱ¢ǰȱȱȱȱȱȱ¢ȱ ȱȱǰȱ¢ȱȱȱȱȱǰȱ¢ȱȱ ĴȱǻǰȱŘŖŗŗǼǯȱȱȱ ȱ¢ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǯȱȱǰȱȱȱȱ¢ȱȱĚȱȱȂȱ¢ȱ¢ȱȱȱȱȱ ȱǯȱ Winds ȱȱȱȱȱĚȱȱȱ¢ǯȱȱǰȱ ȱȱ¢ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ǻǰȱ ŘŖŖşǼǯȱ ȱȱȱ ȱȱ¢ȱȱȱȱȱȱȱȱȱȱ ȱǻǼǰȱęȱȱȱǻǼǰȱȱȱȱÛȱȱȱǻǼǰȱȱ ȱȱȱ ȱȱȱȱȱȱȱȱȱǻȱȱ ǰȱŘŖŖŞǼǯȱȱȱȱ¢ȱȱȱ¢ȱȱȱ ȱĴǰȱȱȱȱȱȱȱ¡ǯȱȱ ȱĴȱȱȱǰȱȱȱȱěȱȱȱ ȱȱǰȱ¢ȱȱ ¡¢ȱ ǯȱ ȱ ¡ǰȱ ěȱ ȱ ȱ ȱ ȱ ǰȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ŘŖŖŗȱ ȱ ȱ ¢ǰȱȱ ȱ¢ȱȱȱȱ¡ȱ¢¡ȱȱȱȱ ȱȱǻȱȱǯǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŖŚǼǯȱȬȱȱȱ 17 18 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱȱȱȱ¢ȱȱȱ ȱȬȱȱȱȱȱ ȱȱ¡ȱȱȱȱěǰȱ ȱ ȱȱȱȱ incidence of hypoxic and anoxic events (see Section 2.11). Precipitation ȬȱȱȱȱȱȱȱȱȂȱȱ¢ȱ¢ȱȱ ȱȱ ȱȱ¢ȱ¢ȱȱȱȱȱȱȱ ȱ¢ȱȱȱ¢ȱ¢ȱȱȱȱȱȱȱȱ ǻȱȱŘǯŘǯŗǼǯȱȱȱȱ ȱȱȱȱ¢ȱȱȱȱ ȱ¡ȱȱǯȱȱȱȱȱȱ¢ȱȱȱȱ ȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱ ǻȱȱǯǰȱŘŖŖřǼǯȱȱȱȱ ǰȱȱȱȱȱȱȱ ȱ ȱȱ¢ȱȱǰȱȱȱȱ ȱȱȱ ȱǰȱ ȱȱȱȱȱȱęȱȱȱȱȱȱȱ ȱȱȱ coastal and marine systems (see Section 2.5). Storms ȱȱȱȱȱȱȱȬȱȱȱȱ¢ȱ ȱȱȱǯȱȱȬȱȱȱȱȱȱȱȱ ŘŖŖśȱȱȱȱȱȱȱȱǻŘŞǼǰȱȱȱȱȱȱǻŗśǼǰȱ ȱȱȱȱȱȱȱȱ¡ȱǻǰȱŞşŝȱǼǰȱȱȱȱȱ ȱȱȱǻǼǰȱ ȱ ȱȱȱȱȱȱǯǯȱȱŗşŘŞȱǻǰȱ ŘŖŖŝǼǯȱ¢ȱȱȱȱȱěȱȱȱȱȱȱ¢ǯȱȬ ȱ¢ȱȱȱȱȱȬ¢ȱȱ¢ȱȱȱȱȱ satellite observations that began in approximately 1970 complicate the detection of longȱȱȱ¡ȱ ȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱ Sea surface temperatures are related to the maximum potential intensity of tropical ǰȱ ȱ ¢ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱȱ ȱǰȱȱ ȱ¢ȱȱȱȱȱǰȱ¢ȱȱ ¢ȱřȬŗŗȱȱ¢ȱŘŗŖŖȱǻǰȱŘŖŗŖǼǯȱȱȱȱ¢ȱȱ ȱȱ ȱȬȱ¢ȱŚȱȱśȱȱȱ¢ǰȱȱȱȱȱǰȱȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱ¡ȱȱȱȱȱ ȱȱȱ ȱȱ¢ȱǻȱȱǰȱŘŖŖŝǼǰȱȱ¢ȱȱ ȱ ȱȱȱ ȱȱȱǻȱȱǯǰȱŘŖŗŖǼǯȱȱȱȱȱȱěȱ ȱȱ ȱȱ ȱǰȱ ȱȱ ȱȱǰȱȱȱȱȱȱ ȱȱȱǯȱ ǰȱȱ¢ȱȱ¢ȱȱȱȱŘŖȱȱȱ ȱȱȱǻǰȱŘŖŗŖǼǰȱȱȱȱȬȱȱȱ ǯȱ ȱȱȱǰȱȱȱ ȱȱȱȱȱȱȱȱȱȱ ¡ȱȱȱȱȱȱȱȱȱȱǰȱ ȱȱȱȱȱ ȱȱȱ ȱǻȱȱǰȱŘŖŖŝDzȱȱȱǯǰȱŘŖŖśǼǯȱ ǰȱȱ ȱ¢ȱȱȱȱȱȱȱ ȱȱȱǰȱ ¢ȱȱ ȱȱȱȱȱȱȱȱ¡ȱȱȱȱȱ ȱȱǯȱĴȱȱȱȱȱȱȱȱȱ Climate-Driven Physical and Chemical Changes in Marine Ecosystems ȱ ȱ ȱ ȱ ȱ Dzȱ ǰȱ ȱ ȱ ȱ ȱ Ě¡ǰȱ ȱ¢ǰȱȱȱ¡ȱȱȱ¢ȱȱȱȱ ǯȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ¢ǯȱȱ ȱȱȱȃȱȄȱȱȱȱȱ¡ǰȱ ȱȱȱ¢ȱȱ¢ȱȱȱȱęȱȱ ȱȱǻȱȱǯǰȱŘŖŖśǼǰȱ ȱǻȱŘȬŚǼǰȱȱȱǻǰȱŘŖŖŝǼȱȱ¢Ȭǰȱ¢ȱ evidence of this theory. Moreover, because current climate models do not include these processes, the role of hurricane-induced mixing in the ocean on currents and the therȱȱǻȱȱǯǰȱŘŖŖŚDzȱȱȱŘǯŝǼȱȱȱȱȱȱ ȱ ȱȱ ȱȱȱ¢ȱǯ Figure 2- 4 This image was created from AMSR-E data on NASA's Aqua satellite and shows a 3-day average of actual sea surface temperatures (SSTs) for the Caribbean Sea and Atlantic Ocean from August 25–27, 2005. 80 degrees Fahrenheit is necessary to maintain hurricanes, during this time period the Gulf of Mexico up to the coast of North Carolina averaged 82 degrees Fahrenheit or above (Source: NASA Goddard's Scientific Visualization Studio). ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ęǰȱ ǰȱ and coastal ecosystems, storm activity is expected to increase in the Aleutian Islands ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱ ȱ ȱ ŘŖŗŗǰȱ ¢Ȭȱ ȱ ȱ ȱȱǻȂǰȱŘŖŗŗǼȱȱȱ ȱȱȱŚŖȱ¢ȱȱȱȱȱ ȱ 19 20 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Ȭȱ ȱȱȱȱǯȱȱȱ¢ȱȱ¡ȱ ȱ ¢ȱ ȱ ęȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ¢¢ȱ ěȱȱěȱȱ ȱȱȱȱȱǯȱȱȱȱȱ ȱ ȱȱȱȱȱ ¢ȱȬȱȱǻȱȱ ǰȱŘŖŗŗǼȱȱȱ impact larger regions (Overland et al., 2011). ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ DZȱǻŗǼȱȱȱ¡¢ȱ ȱ ȱǰȱǻŘǼȱȱȱȱ ȱ ȱȱȱȱ¢ǰȱ ȱ ȱȱȱȱ¢ȱ to strong storms, (3) storm surge has historically been responsible for the greatest loss ȱȱȱ¢ȱȱ ȱȱȱȱȱȱȱȱȱǻȱȱ ¢ȱŘȬǼǰȱȱǻŚǼȱȱȱȱȱȱȱȱȱȱȱȱ¡pected rise in sea level (for more information please see Coastal Impacts, Adaptation ȱ DZȱȱ ȱ ȱ ȱ ȱ ŘŖŗřȱ ȱ ȱǰȱ ǰȱȱŘŖŗŘǰȱȱŘǯŘȱ ȱȱȱȱȱȱȱȱěȱ on Coasts). 2.7 Ocean Circulation ȱ ȱȱȱȱ¢ȱǰȱ ǰȱǰȱȱȬ ȱĚ¡ȱȱȱ ocean surface are responsible for global ocean circulation, mixing, and the formation of ȱȱȱȱ ȱǯȱȱȱȱǰȱȱ ȱȱȬȱ ȱȱȱȱĴȱ ȱȱȱȱȱǻ Ǽǰȱ ȱ ȱ ȱ ȱ ȱ ȃȱ ¢ȱ Ȅȱ ǻǰȱ ŗşşŗǼǯȱ ȱ ȱ ȱ ȱ ȱȱ¢ȱȱȱȱȱȱȱȱǰȱ ȱǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱȱȱǯȱȱ ǰȱȱǰȱȱ ȱȱȱ ȱȱȱ ȱȱȱȱǰȱȱ ǯȱ ǰȱȱǰȱȱ ȱȱ ȱ ȱȱȱ¡ȱȱȱȱ ȱȱȱȱȱ ¢ǰȱȱȱȱ¡ȱȱǻǰȱŗşşŗǼǯȱȱ ȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱ ȱȱ ȱȱȱǰȱȱ ȱȱ¢ȱȱȱȱȱȱȱȱ ȱ ¢ȱ ȱ ȱ ǻȱ ȱ ǰȱ ŘŖŖŝDzȱ £ ȱ ȱ ǯǰȱ ŘŖŗŖǼǯȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱ ȱȱȱȱȱȱĚȱȱȱȂȱǯȱ ȱȱȱȱȱ ȱ¢ȱ ȱ¢ȱȱȱȱȱŘŗȱ¢ȱȱȱȱȱ ȱȱǻǰȱŘŖŖŝǼǯȱȱȱȱȱ ȱȱȱ¢ȱȱȱȱ ¢ȱȱȱ ǰȱ ȱȱ ȱȱȱȱ ȱȱ ȱȱȱ¢ȱȱȱǻ ȱȱǯǰȱŘŖŗŗǼǯȱ ǰȱȱ¢ȱȱ ȱȱ¢ȱȱȱ ȱȱȱ ȱȱȱǻȱȱǯǰȱŘŖŖşǼǯȱȱĴȱȱ ȱȱȱȱȱȱ ȱ ȱȱ¡ǰȱ ȱȱȱȱȱȱȱǻȱȱǰȱŘŖŖŚDzȱȱȱǯǰȱŘŖŖřǰȱŘŖŖŜǼȱȱ ȱȱȱȱǻěȱȱǯǰȱŘŖŖŜǼǯȱȱȱȱȱ ȱ circulation may be an increase in sea level rise as a result of circulation-induced pressure ȱǻǰȱŗşŝŚǼǯȱȱȱȱ ȱȱ¢ȱȱȱȱȱȱ¢ȱ Climate-Driven Physical and Chemical Changes in Marine Ecosystems Case Study 2-A The "garbage patches" The “garbage patches” are areas of marine debris ȱȱȱȱęȱǯȱȱ Ĵȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱǰȱȱ¡ȱ£ȱȱȱȱȱȱȱĜȱȱȱ¢ǯȱ What’s In a Name? The name “garbage patch” is a misnomer. No island of trash forms in the middle of the ocean nor ȱȱȱȱȱȱȱ ȱȱȱal photographs. Instead, much of the debris found ȱȱȱȱȱȱȱĚȱȱȱ seen easily from a boat. Eastern and Western Patches • ȱ ȱ – Concentrations of marine debris have been noted in an area ¢ȱ ȱ ȱ ȱ ȱ ȱȱȱȱęȱȱ ȱ ȱȱȃȱȱǯȄȱȱ ȱȱ not a stationary area, but one that rotates, moves, and changes. • ȱ ȱ – Another area of ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ it to be a small recirculation gyre (ocean feature made up of currents that spiral ȱ ȱ ȱ Ǽȱ ¢ȱ ȱ ¢ȱ ȱȱȱǯȱ Impact of Climate Change • Floatable marine debris from land- and ocean-based sources (e.g., tiny pieces of plastic) enter the marine environment ȱ ȱ ¢Dzȱ ȱ ¡ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ the ocean. The number of intense storms capable of this action is predicted to increase ȱȱȱǻȱŘǯŜǼǯȱ • Ocean currents and atmospheric condiȱ ǻǯǯǰȱ ȱ ȯȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȯȱ ¢Ȭ ȱ Ǽȱ ȱ ȱ ȱ ȱ ȱ marine debris; changes in current location and strength may result in more or less conȱȱǯȱ ǰȱȱȱȱ climate change on these processes is uncertain (Section 2.7). This map shows the locations of the eastern and western "garbage patches.” Keep in mind that this is an over simplification of the constantly moving and changing features of the North Pacific Ocean. Source: NOAA 21 22 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 2-A (Continued) Can It Be Cleaned Up? ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǯȱȱȱȱȱȱȱȃȱȄȱ ȱȱȱȱlenge because: • Concentration areas move and change throughout the year • These areas are typically large • The marine debris is not distributed evenly in these areas • ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱȱȱȱ • Most of the marine debris found in these areas is small bits of plastic This all adds up to a bigger challenge than even sifting beach sand to remove bits Image of marine debris on a coral reef. Source: NOAA ȱȱǯȱȱȱȱ ȱrine debris concentrates so does marine life. ȱȱȱȱȱȱȱ¢Dzȱ if not conducted carefully, clean-up may result in more harm than good for marine life. ¡¢ȱŘŖȱȱȱȱȱȱȱȱǯǯȱȱȱ¢ȱ ȱ is predicted as a result of thermal expansion and glacial melt (Yin et al., 2010). Thus, the ǯǯȱȱȱȱ¢ȱȱ¡ȱȱȱȱȱȬȱȱ ȱȱ ǯȱ ȱ ȱȱȱȱ ȱȱȱȱȱȱȱȱ ȱȱ ȱ¢DZȱȱȱȱȱȱȱǯȱȱȱ ȱsen due to the amount information available related to climate change impacts. Addiȱȱȱȱȱǯǯǰȱȱȱȱȱǰȱ¢ȱȱ¡ȱ changes in behavior as a result of climate change, but the information on those currents ȱȱȱȱ ȱȱȱȱȱȱǯȱ ¢ǰȱȱ ȱȱcluded in the 2017 report. California Current ȱȱȱȱȱęȱȱȱȱȱ ȱȱȱ ȱ ȱ ȱ ȱǰȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱȱȱȱ¡ǯȱȱȱȱȱȱ¢ȱȱȱȱȱ ȱȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱȱȱ Climate-Driven Physical and Chemical Changes in Marine Ecosystems ȱȱ¢ȱǰȱȱęȱ ȱȱȱȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŚǼDzȱ ȱ ¡ǰȱ ȱ ȱ ¡¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞDzȱ ȱ ȱ ǯǰȱ ŘŖŖŞDzȱ ȱ ȱ ǯǰȱ ŘŖŖŚǼǯȱ ȱ Ȭȱ ěȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱȱȱȱȱ ȱȱǰȱ ȱȱȱ¢ȱ¢ȱ ȱ ȱ ǯǯȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŗŗǼǯȱ ȱ ȱ ¢ȱ ȱ ȱȱȱȱȱȱ ȱȱ¢ȱ¢ȱȱ ȱȱ Ȭȱ ȱȱȱȱȱȱȱǰȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱŘŖŗŖǼǯȱ ȱȱȱȱȱȱȱ ȱȱȱ ȱ ȱ ȱ Ěȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ¢ǰȱȱ ȱȱȱȱȬȱ¢ȱȱȱ ȱ ȱ¡ȱȱȱȱȱȱȱȱȱȱǻȱ£ȱ et al., 2005). Gulf Stream The Gulf Stream transitions from the Gulf of Mexico, passes through the Straits of Florǰȱ ȱ ěȱ ȱ ǯǯȱ ȱ ȱ ȱ Ĵǰȱ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ǯȱ Ȭȱȱȱȱȱȱ¡ȱȱ¢ȱȱȱ ȱȱȱȱǯȱ ȱȱǰȱȱȱȱȱȱȱ Ȭ ȱȱȱ ȱȱ the Atlantic over the next several decades. The Gulf Stream is one component of the ǰȱȱȱ ȱȱȱȱȱȱȱȱȱDzȱ ǰȱȱ ȱȱȱȱȱ ȱ¢ȱĚ ȱȱȱȱ Ȭȱ¢ǯȱ ȱ ȱ ¢ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱȱȱ Ȭȱ¢ǰȱȱȱȱȱȱȱȱȱǯȱȱȱȱ ȱȱȱǯȱȱȱȱȱ ȱȱȱȱǰȱȱȱȱ ȱȱǯǯȱȱȱ¢ȱȱȱȱȱȱȱ¡ȱȱȱȱent created by the Gulf Stream (Kelly et al., 1999). For example, an anomalously high sea ȱȱȱǯǯȱȱȱȱȱȱȱŘŖŖşȱ ȱȱȱȱȬȱ ȱȱȱȱȱǻ ȱȱǯǰȱŘŖŖşǼǯȱȱȱȱȱȱȱȱ ȱȱȱȱęȱȱȱȱĴǰȱȱǰȱ and surface air temperatures throughout the northern hemisphere. The long-term variaȱȱȱȱȱȱȱ¢ȱȱȱ ȱȱȱȱ¢ǯ 2.8 Climate Regimes ȱȱȱȱȱȱȱȱȱȬ ȱȱȱȱȱior of the physical environment, such as persistent increases in ocean and atmospheric temperatures or shorter-term perturbations related to climatic events. These shifts have ȱȱȱȱȱȱȱȱǯȱȱȱȱȱȱ ȱȱȱȱȱȱ ȱ¢ȱȱȱȱȱȱ 23 24 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱ¢ȱȱȱȱȱǻǼǰȱęȱȱȱǻǼǰȱȱȱȱÛȱȱȱǻǼDzȱ ǰȱȱȱȱȱ oscillations over varying time scales creates challenges for climate prediction models, ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ Establishing a clear set of considerations for assessing uncertainty in regional climate change impacts assessments is vital for enabling an informed response to potential cliȱȱȱȱȂȱȱȱȱȬȱȱ¢ȱȱȱǻȱȱ¢ȱ ŘȬǼǯȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱ ȱ ȱȱȱȱ¢ȱěȱȱǰȱȱȱ¢ǰȱȱ in climate regime shifts. ȱ ȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱDZȱȱȱȱǰȱȱęȱȱǰȱȱȱȱ ÛȦȱǯȱȱȱ ȱȱȱȱȱȱȱ ȱȱȱȱȱǯȱȱȱȱȱȱǯǯǰȱ ȱȱȱȱęȱ¢ȱǰȱ¢ȱȱ¡ȱȱȱȱȱȱ ȱȱȱDzȱ ǰȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱǯȱ ¢ǰȱȱ ȱȱȱȱȱŘŖŗŝȱǯȱ North Atlantic Oscillation (NAO) ȱȱȱȱȱȱ¡ȱȱ¢ȱȱȱ ȱȱȱ ȱǯȱȱȱȱȱȱ¢ȱȱȱ ȱȱȱǻȱ ȱ ǯǰȱ ŘŖŖŘǼǰȱ ȱ ȱ ȱ ȱ Ěȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ£ȱ ȱ ȱ ǰȱ ǯȱ ȱ ȱ Ěȱ ȱ ȱ ȱ ȱ ȱ ǻ£ȱ ȱ ǯǰȱ ŘŖŗŗDzȱ £ȱ ȱ al., 2003). When the NAO index is high (positive NAO state), precipitation increases ȱȱȱȱȱȱǯǯȱȱȱȱȱ¢ȱ ǯȱ¢ǰȱ ȱȱȱ¡ȱȱ ȱǻȱȱǼǰȱȱǰȱȱ ǰȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ǻ ȱ and Deser, 2010). Although the NAO index varies from year-to-year, it also exhibits a tendency to remain in one phase for intervals lasting more than a decade. An unusually ȱȱȱȱȱȱŗşŝŖȬŘŖŖŖȱȱȱȱ¢ȱȱȱȱ ȱ ¢ȱěȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŞǼǯȱ¢ȱȱȱ ȱ ȱȱȱȱĚȱȱȱȱȱȱǰȱȱȱ indicates that the strength of its variability is increasing as phases are becoming more strongly positive and negative (Rind et al., 2005). Pacific Decadal Oscillation (PDO) ȱ ȱ ęȱ ȱ ȱ ¡ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱęȱȱȱȱȬȱęȱȱȱǻǼȱǰȱ ȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ ¢ȱ ŘśȬřŖȱ ¢ǰȱ ȱ ȱ Ȭȱ ȱ ÛȬȱ ȱ ǻǰȱ ȱ Ǽȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡¢ȱ řȬŝȱ ¢ȱ ǻȱ ȱ ǯǰȱ ŗşşŝǼǯȱ ȱ ǰȱ ȱ ȱ ǰȱ Ěȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ Climate-Driven Physical and Chemical Changes in Marine Ecosystems Case Study 2-B Assessing confidence in regional climate ecosystem projections Establishing a clear set of considerations for assessing uncertainty in regional climate change impacts assessments is vital for enabling an informed ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȃȱ oceans. Global climate model simulations are a ¢ȱ ȱ ȱ ȱ ¢£ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ on multi-decadal to century time scales. Climate model outputs are routinely used in a variety of climate change impact studies and assessment prodǰȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ǰȱ a number of global climate model limitations must ȱ¢ȱȱ ȱȱȱsessing uncertainty in regional climate-marine eco¢ȱȱȱǻȱȱǯǰȱŘŖŗŗǼǯ 1. The spatial resolution of most global climate models is coarse. At regional scales, model ȱ Ěȱ ȱ Ěȱ ȱ Ȭ scale radiative and circulation changes and may not capture the impact of unresolved reȱǯȱȱȱ¢ȱęcantly alter broad-scale trends. 2. Changes in climate are driven by changes in radiative forcing arising from greenhouse gases, aerosols, and other factors (often referred to as the “forced change”) and internal climate variability. Climate variability is often ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ ȱ ȱȱȱĜȱȱȬȱȱȱ ȱȱȱǯ 3. ȱ ȱ ȱ ȱ ȱ on the direction and magnitude of multidecadal changes in many climate variables at continental scales and above, disagreements are common at smaller spatial and temporal scales. Consideration of “inter-model spread” is essential for establishing uncertainty in ȱǯ Śǯȱ ȱ ȱ ȱ ȱ ȱ ęȱ regional biases. Although progress can be made using simple bias corrections, these ȱ ȱ ȱ ȱ ȱ ȱ ȱ long observational records to establish mean climate conditions. ȱȱȱ¢ȱȱ¢ȱȱ only part of the challenge. To assess the ecosystem ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ¢ȱȱȱȱȱȱ ȱ ȱǯȱęȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ similar to climate models, according to their reliance on fundamental ecological and physiological principles expected to be robust as climate changes, and according to their ability to match past observed ecological changes. Continuing developments in climate and ecoȱ ȱ ȱ ȱ ȱ ȱ scribed above and improve our understanding of ȱ ȱ ȱ ȱ ¢ǯȱ ǰȱ existing tools and understanding have progressed ȱȱȱ ȱȱȱȱȱǰȱ ¢ȱȱȱęȱȱȱȱȱȱȱȱȱǯȱěȱ ȱȱȱȱȱȱ ȱȱ informed by applications of present tools. Provided by Dr. Charles Stock, NOAA ȬȬȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱǰȱ ȱȱȱǰȱȱȱ ȱtion near the coast (King et al., 2011). The opposite occurs during the negative phase. Overland and Wang (2007) suggest that under the A1B (middle range) CO2 emission 25 26 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱȱȱȱ ȱȱȱȱȱȱȱĚȱ ȱȱȱȱ¢ȱȱȱȱȱȱęȱȱȱȱśŖȱ¢ǯ El Niño/Southern Oscillation (ENSO) ȱ ȱ ¡ȱ ȱ Ȭ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ ȱȱȱȱ ȱȱęǯȱȱȱ¢ȱȱ ȱȱ ȱȱȱDZȱȱÛǰȱ ȱȱ ȱȱȱȱȱȱȱȱęǰȱȱȱÛǰȱ ȱȱȱ ȱǻȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱ¢ȱȱȱȱ in ocean-atmosphere exchange controls year-to-year ENSO variability and one or more of the physical processes responsible for determining the characteristics and global imȱȱȱ ȱ¢ȱȱęȱ¢ȱȱDzȱȱ¡ǰȱȬȱ ȱȱȱ ȱ¢ǰȱ ȱ¢ȱȱ ȱȱ ǰȱȱȱ documented in the central California Current region during El Niño years (Bograd et ǯǰȱŘŖŖşǼǯȱ ȬȬȱȱȱȱȱȱȱ ȱ circulation in the proximity of the southern California coast has occurred during the latȱǻŘŖŗŖȬŘŖŗŗǼȱȱÛȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱȱȱĚȱȱ¢ǰȱȱ ȱȱȱǰȱǰȱ¢ǰȱȱȱȱȱ ¡ȱ ȱȱȱȱȱǯȱȱȱȱȱȱ understanding of the impact of climate change on many of the processes that contribute ȱȱ¢ǰȱȱȱȱ¢ȱȱȱ¢ȱ ȱȱ¢ȱ ȱȱȱ ȱȱȱȱȱ¢ȱȱȱ ȱȱȱȱȱȱǻȱ et al., 2010). 2.9 Carbon Dioxide Absorption by the Oceans The annual accumulation of atmospheric CO2 has been increasing and, in 2010, the overall CO2ȱȱ ȱřşȱȱȱȱȱȱȱȱȱȱdustrial Revolution in 1750 (IPCC, 2007a). The IPCC indicates that reducing the CO2 deȱȱȱȱ¢ȱŞśȱȱ¢ȱȱ¢ȱŘŖśŖȱ ȱȱȱȱȱ ȱȱȱ¡ȱȱŘǯŖǚȱǰȱȱȱȱȱȱȱ in extreme global changes (IPCC, 2007a). CO2 reductions can be achieved both through reducing anthropogenic sources of CO2 and supporting CO2ȱȱȱȱȱ ȱȱȱȱ¢ȱ ȱȱȱȱȱȱ¢ȱǻȱȱǰȱŘŖŖŞǼǯȱȱȂȱȱȱȱ¢ǰȱȱ ȱǰȱȱǰȱȱȱǰȱȱ¢ȱȱěȱȱ ȱȱȱȱȱȱȱ¡ȱȱȱȱ¢ǯ ȱȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ2 ǻȱȱǯǰȱŘŖŖŚǼǯȱȱ ȱȱ¡¢ȱ 50 times more CO2ȱ ȱ ȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ǰȱȱȱ¢ȱȱȱȱȱ2ȱȱęǯȱ¢ȱȱȱsorb more CO2 than they release but CO2ȱȱȱȱȱ ȱ ǰȱȱȱȱȱ ȱȱǰȱȱȱȱȱȱȱ2ȱȱȱȱȱ¢ȱ ǻǰȱŘŖŖŝǼǯȱǰȱȱȱȱȱȱęȱȱ2ȱȱȱȱ Climate-Driven Physical and Chemical Changes in Marine Ecosystems ȱȱ ȱȱȱ ǰȱ ȱȱȱȱ2 is absorbed (see Section 2.10), ȱȱěȱ¢ǰȱȱȱ¢ȱȱȱȱȱȱȱȱȱ2 ǻȱȱěǰȱŗşŝŝDzȱȱȱǰȱŗşŜŜDzȱȱȱǰȱŗşśŝDzȱ ȱȱęǰȱŗşŝśDzȱȱȱǰȱŗşŝŖǼǯȱ ǰȱȱȱȱ ȱȱȱȱȱȱȱ¢ȱȱǻ¢ǰȱŘŖŗŖǼǯȱ ȃȱȄȱȱȱȱȱȱȱȱȱȱȱȱȱ ¢ȱȱȱȱǯȱȱęȱȱȱȱȱȱȱȱments, coastal seagrasses, tidal marshes, and mangroves. When degraded or disturbed, these systems release carbon dioxide into the atmosphere or ocean. Currently, carbonrich coastal ecosystems are being degraded and destroyed at a global average 2 percent ¢ǰȱȱȱęȱȱȱȱ¡ȱȱȱȱȱǯȱȱȱȱȱŘŖȱȱȱȱȱ ȱŗşŞŖȱȱ 2005 (Giri, 2010; Spaulding et al., 2010). Carbon continues to be lost from the most organic soils in coastal areas. For instance, analysis of the agricultural soils of Sacramento’s ȱȱǰȱȱȱȱȱȱȱ ǰȱȱȱȱ CO2 at rates of 5 to 7.5 million tCO2ȱȱ¢ǰȱȱŗȱȱȱȂȱȱ ȱ ǯȱȱ¢ǰȱȱȱȱȱȱȱȱȱȱ ǰȱ leading to releases of approximately 1 billion tCO2ȱȱȱȱŗśŖȱ¢ȱǻȱȱǯǰȱ ŘŖŖşDzȱȱȱǰȱŘŖŗŖǰȱ ȱȱǯǰȱŘŖŗŘǼǯȱȱȱȱ¢ȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱǯǯȱvation and improved management of these systems brings climate change mitigation ęȱȱȱȱȱȱęȱȱȱǻȱȱǯǰȱŘŖŗŗDzȱ ȱȱǯǰȱŘŖŗŗǼǯȱȱȱĴȱȱȱȱȱȱȱsystem management issues has implications for future climate adaptation strategies as ȱȱȱȱǯȱ 2.10 Ocean Acidification Ocean chemistry is changing in response to the absorption of CO2 from the atmosphere ȱȱȱȱȱȱȱȱśŖȱȱ¢ȱǻ ãȱȱǯǰȱŘŖŗŘǼǯȱ ȱęȱȱȱȱȱȱȱ ȱȱȱȂȱȱȱ ȱ ȱȱȱȱ2ȱȱȱȱǯȱȱęȱ ȱ ȱ ǰȱ ȱ ȱ ǰȱ ȱ Dzȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱęȱȱȱȱDZȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ǯȱ ęȱ ȱ ȱ ȱ mate process, but instead a direct impact of rising CO2 absorption on ocean chemistry. ȱȱ ȱȱȱȱęȱȱȱȱsions regarding both solutions and adaptation to climate change often ignore ocean ęǯ ȱȱȱȱȱȱ ȱȱȱȱȱȱ¡¢ȱŘśȱ ȱȱȱ¢ȬȱȱȱŗŞŖŖȱǻȱȱǯǰȱŘŖŖŚǼǯȱȱȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ěȱ ȱ ȱ ȱ ǰȱȱȱȱ ȱȱȱȱȱȱ2ȱ¢ȱȱȱ ȱȱ ȱȱěǰȱ2ȱȱ ȱ ȱȱ¢ȱȱȱ chemical environment (Feely et al., 2010). Carbon occurs naturally and in abundance in 27 28 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱ¢ȱȱȱȱȱȱȱȱȱǰȱȱ dissolved carbon dioxide (COŘǻǼǼǰȱȱȱǻ 2CO3Ǽǰȱȱȱǻ 3-), and carbonate ions (CO32-Ǽǯȱȱȱȱȱȱȱȱȱȱȱ maintain the ionic charge balance in the ocean. The addition of CO2ȱȱ ȱȱ ȱȱǰȱ ȱȱȱȱȱ ȱȱȱȱȱȱ excess hydrogen ions, and changes in the relative concentrations of bicarbonate and carȱȱǻȱȱěǰȱŗşŝŝDzȱȱȱǰȱŗşŜŜDzȱȱȱ ǰȱŗşśŝDzȱ ȱȱęǰȱŗşŝśDzȱȱȱǰȱŗşŝŖDzȱȱŘȬŜǼǯȱ Figure 2-6 As CO2 is absorbed by the atmosphere it bonds with sea-water to form carbonic acid. This acid then releases a bicarbonate ion and a hydrogen ion. The hydrogen ion bonds with free carbonate ions in the water to form another bicarbonate ion. This free carbonate would otherwise be available to marine animals for making calcium carbonate shells and skeletons. (Source: NOAA). ȱȱ ȱȱȱȱ¢ȱȱȱ Ȃȱȱȱ¢ȱȱȱ ȱȱȱȱŞǯŘȱȱŞǯŗȱȱȱȱ¢ǯȱȱȱ ȱȱȱȱȱȱǰȱȱȱȱřŖȱȱȱȱȱ¢ȱǻȱȱĴǰȱŘŖŖřǰȱŘŖŖśDzȱ¢ȱȱǯǰȱŘŖŖŚǼǯȱȱȱ2 emission rates, a further decline in ȱȱŖǯřȱȱŖǯŚȱȱȱȱ¢ȱȱ¢ȱŘŗŖŖȱǻȱȱǯǰȱŘŖŖśǼǯȱȱęȱ ȱ¢ȱȱȱĴȱȱȱěȱȱȱȱ¢ȱȱ ȱȱȱȱȱȱȱȱȱǻȱ ȱ¢ȱ¢ȱȱǯǰȱ 2009 and Riebesell et al., 2007). Climate-Driven Physical and Chemical Changes in Marine Ecosystems ěȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ¢ȱ ȱ ȱ ¢ȱ ǻȱŘȬŝǼǯȱȱ ȱȱ ȱǰȱȱȱȱǯǯȱȱǰȱȱ ȱȱȱȱ ȱ ȱȱ¢ȱȱȱ2ȱȱȱ ȱ ȱ ǯȱȱ ȱȱ ȱȱ ȱȱȱ¢Ȭȱ2 ȱǻ¢ȱȱǯǰȱŘŖŖŞǼǯȱȱȱ ȱȱ ȱǰȱȱȱȱȱȱ ȱ¢ȱȱȱȱȱȱȱǰȱ¢ȱȱȱȱȱȱ ęȱȱȱ ȱȱȱȱ¢ǰȱȱǰȱȱ£ȱȱ ȱ¢ȱ¢ȱȱ¢ȱȱǻ¢ȱȱǯǰȱŘŖŗŗDzȱ¢ȱȱǯǰȱŘŖŖŞǼǯȱȱ ęȱ ȱȱȱ¡ȱȱȱ¢ȱȱȱȱȱȱcause CO2ȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ¡ȱ ȱ 2 ȱȱȬȱǯȱȱ ȱȱȱȱȱȱȱȱȱ¡ȱęȱȱȱȱȱȱȱȱ ǻȱȱǯǰȱŘŖŗŗǼǯȱ¢ǰȱȱȱȱȱ ȱȱȱȱ ȱ ȱȱ ȱȱȱǰȱȱȱȱȱȱȱǰȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ ȱ ȱȱȱȱȱȱȱȱ ȱȱȱȱȱǻȱȱǯǰȱ ŘŖŖśDzȱȱȱǯǰȱŘŖŖşǼǯȱ¢ǰȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱ¢ȱȱȱȱ ȱȱȱȱ¢ȱȱ¢ȱŘŖśŖȱǻȱȱǯǰȱŘŖŖśǼǯȱ ǰȱȱȱȱȱȱ ȱȱ systems are not immune to such changes. In fact, the greatest rate of change in carbonate ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ ȱ ǯȱ ȱ ȱ ěȱȱȱȱȱȱ¢ȱȱȱěȱǻǯǯǰȱȱȱ ȱ rates decline in proportion to a changing carbonate mineral saturation state) but a conȱěǰȱȱȱ¢ȱȱȱȱȱȱȱȱ¢ȱ ȱ ȱȱ ȱȱ ȱȱȱȱȱǯȱ ęȱȱȱȱ¡ȱ¢ȱȱȱȱǯȱȱ ȱ ȱȱ ȱȱ¢ȱǰȱ ȱȱ¢ȱȱȱǯȱ ęȱ ȱȱȱ ȱȱ¢ȱȱ ȱȱ¢ȱěȱ ¢ȱȱȱȱǯǯȱęȱ ȱǻȱȱřǼǯȱȱȱȱȱ ȱęȱȱȱȱȱȱȱȱȱ ȱȱȱȱ ȱȱȃȱ Ȅȱȱȱ¢ȱ ȱȱ ǯȱȱȱ ȱ¢ȱȱȱȱȱȱȱȱĴȱȱȱȱȱ ȱȱȱȱȱȱ¢ǯȱȱȱȱ ȱ ȱȱȱȱ Current, it is naturally rich in CO2ȱȱȱȱȱȱǰȱȱ ȱȱȱ¡¢ǰȱȱȱ ȱ ǯȱ ȱȱȱȱȱȱ2ȱȱ ȱ ȱ ȱ ȱȱȱȱǰȱȱȱȱȱȱ ȱ ȱȱȱ ȱȱȱȱȱȱȱ ȱȱŝǯŜȱȱŝǯŝȱǻ¢ȱ ȱ ǯǰȱ ŘŖŖŞǼǰȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ¢ȱ ŘŗŖŖǯȱȱȱȱȱȱȱ¢ȱȱȱǯǯȱȱȱ¢ȱ ȱȱȱȱęȱȱȱǰȱȱ ȱȱȱȱȱ ȱęȱȱȱȱȱȱȱǻȱȱřȮŚǼǯ ȱȱȱȱȱěȱȱȱȂȱ¢ȱȱ ȱȱȱȱ ȱ Ȭ¢ȱ ȱ ȱ ǻ ȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱ ȱ ȱ ȱ ȱ ȱ ¢product of many anthropogenic activities such as shipping, oil and gas exploration, etc., 29 30 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱ ȱȱȱȱȱȱȱȱȱȱȱȱǰȱ ǰȱǰȱǯȱȱȱȱ ȱȱ¡¢ȱŖǯřȱȱȱŚŖȱȱȱȱȱ ȱȱȱȱȱȱ ȱǻ ȱȱǯǰȱŘŖŖŞǼǯȱȱ acoustic properties are measured on a logarithmic scale, and neglecting other losses, ȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱŝŖȱȱȱ ȱȱȱȱȱ ȱ expected from a doubling of CO2ȱǻ ȱȱ ǰȱŘŖŖşǼǯȱ¢ǰȱȱȱ modeling suggests that, due to the complexities of sound traveling through the ocean, ȱȱȱȱȱȱ¢ȱȱȱȱȱȱǻȱ ȱ ǰȱ ŘŖŗŖDzȱ ȱ ȱ ǰȱ ŘŖŗŖǼȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ŗŖŖȱ ¢ȱ ǻ¢ȱ ȱ ǯǰȱ ŘŖŗŖǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱǰȱȱěȱȱȱęȱȱȱ sound levels in the ocean is an area that deserves further study. Figure 2-7 Calculated saturation states of aragonite, a form of calcium carbonate often used by calcifying organisms. By the end of this century, polar and temperate oceans may no longer be conducive for the growth of calcifying organisms such as some mollusks, crustaceans, and corals. (Source: Feely, Doney, and Cooley, 2009). 2.11 Hypoxia ¢¡ȱ ȱ ȱ £ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǯȱȱȱȃ¢¡Ȅȱȱȱȱȱ ȱȱȱȱȱ ¡¢ȱȱȱȱĜȱȱȱȱȱȱǻ£ȱȱǰȱŗşşśDzȱȬ¢ȱȱǰȱŘŖŖŞǼȱȱȱȱȱȱ£ǯȱȱȱȱ Climate-Driven Physical and Chemical Changes in Marine Ecosystems ȱȱ ȱȱȱȱȱȱ¢¡ȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ śŖȱ ȱ ȱ ŗşŜŖȱ ȱ ¡¢ȱ ŚŖŖȱ ¢ȱ ŘŖŖŞȱ ǻ£ȱ ȱ ǰȱ ŘŖŖŞǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ȱ ȱ ¢¡ȱ ȱȱȱǰȱȱȱŗŘȱȱȱŗşŜŖȱǻȱȱǯǰȱŘŖŖŝǼȱȱȱřŖŖȱ ¢ȱŘŖŖŞȱǻǰȱŘŖŗŖǼǯȱ ¢¡ȱ¢ȱȱ ȱȱ ȱȱȱęǰȱȱȱ ¡¢Ȭȱ¢ȱȱĴȱ ȱȱȱȱȱȱȱȱȱȱĴȱȱȱ¢ȱ Ȭ¡¢ȱȱ¢ȱȱ¢ȱ ȱ ȱȱǯȱęȱȱȱ¢¡ȱȱȱȱȱȱȱȱ ȱȱȱǻȱȱǰȱŗşşŗDzȱȱȱ £ǰȱŘŖŖŝǼǯȱ ȱȱȱȱ¢¡ȱȱ¢ȱěȱ¢ȱȱ¡ȱȱ ȱ ǯȱȱȱǰȱȱȱȱȱ ȱȱȱ£ȱȱęǰȱȱȱ¢ȱȱ¡ǰȱȱȃȄǰȱȱȱ ȱȱȱȱȱ¢¡ǯȱȱȱ¡ȱȱ ȱȱęȱȱ¢ȱȱȱ¢ǯȱȱȱȱȱȱȱ ¡ǰȱȱȱȱ¢ǰȱǰȱȱȱ¢ǰȱǰȱȱ ȱȱ ȱǻ ¢ȱȱǰȱŘŖŖŝǼǰȱȱǰȱȱȱȱȬȱȱ ¢ȱȱȱȱȱǰȱȱ¢ȱȱǻĴȱȱǯǰȱŘŖŖŘǼǯȱȱ ǰȱ ȱȱȱȱȱ ȱȱȱȱ ȱ ǰȱȱ¢ȱȱȱęȱȱ¢¡ȱǻ ¢ȱȱǰȱŘŖŖŝDzȱȱȱǯǰȱŘŖŖŝDzȱ ¢ȬȱȱĴǰȱŘŖŖŚǼǯ ¢¡ȱȱȱȱȱǰȱȱȱȱȱȱȱ¢ǰȱǰȱȱ¢ȱȱ¢Ȭȱ¢¡ȱǻȱȱǰȱŗşşŗDzȱ£ȱ ȱǰȱŘŖŖŞDzȱ ¢ȱȱǰȱŘŖŖŚǼǯȱǰȱȃȱȱȱȱȱȱ ¢ȱȱȱĴȱȱȱ¢ǰȄȱȱȱȱȱ ȱȱ ȱȱȱȱȱȱ ȱȱȱȱȱȱěǰȱ ȱȱȱǰȱȱȱȱȱȱǻȱŘȬŞǼȱ ǻȱȱǯǰȱŘŖŖŝDzȱ ¢ȱȱǯǰȱŘŖŖŞǼǯȱȱȱȱȱǰȱ ¢ǰȱȱȱ ȱȱȱȱȱȱǯȱȱȱĴȱ ȱȱȱȱ ǰȱȱ¢ȱȱȱȱ ȱȱȱȱȱȱȱȱȱ¢ȱ£ȱȱ¡¢ȱȱȱȱ¡ȱȱȱ ȱ ǯȱȱȱȱȱ¡¢ȱ¢ȱȱȱȱȱȱ¢¡ȱ ǯȱ ȱȬȱȬȱ¢¡ȱȱȱȱ ǰȱȱȱȱǰȱ ȱȱ¡¢ȱŞŖǰŖŖŖȱ2ȱǻ ȱȱǯǰȱŘŖŖŝDzȱȱȱǯǰȱŘŖŖŘǼǰȱȱȱ ȱǯǯǰȱȱȱȱ ȱȱȱȱȱȦ¢ȱȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ǻ¡ȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱ ȱ ȱ ȱ ȱ ¡ȱ ¢¡ȱ ȱ ȱ ȱ ¢ȱ ȱ £ȱ ȱ ȱ ȬŗşŞŖȱ ȱ ȱ ȱ ęȱ ȱȱȱŚǰŖŖŖȱ2ȱǻȱȱǯǰȱŘŖŖŝǼǯȱȱŘŖŖŞǰȱȱȱŘŖǰŝŗşȱ2, ȱȱȱȱȱȱǻĴDZȦȦ ǯĢ¢¡ǯǼǯȱȱȱ¢ȱported eutrophication-related problems included hypoxia, losses of submerged grasses, numerous occurrences of nuisance and toxic harmful algal blooms, and excessive algal ǰȱ ȱȱȱȱ¢ȱȱȱǻȱȱ¢ȱŘȬǰȱȱřǰȱ ȱȱŚǼǯȱ ȱȱȬȱȱȱ ȱȱ ȱȱȱȱ ȱȱȱȱ¢ȱǻȱȱǯǰȱŘŖŖŞǼȱȱ¢ȱȱȱ¢¡ǯȱ Ȭȱȱȱȱ ȱĴȱȱ¢ȱȱȱȱ¡ȱ 31 32 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱ¢ȱȱ¢¡ȱěȱȱȱȱǰȱȱ¢ȱȱ¢ȱ ȱǻȱ ȱǯǰȱŘŖŖŞǼǯȱȱȱȱȱȱȱȱȱ ȱ¢¡ȱǰȱ ȱŘŖŖŜǰȱȱȱęȱǰȱ¡ȱȱȂȱȱȱȱǻȱȱǯǰȱŘŖŖŞDzȱ ȱȱǯǰȱŘŖŖŚǼǯȱȱȱ¢¡ȱ ȱȱȱȱȱȱȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻ ȱ ȱ ǯǰȱ ŘŖŖŝǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱȱ¢ȱȱ ȱ ǰȱ¡¢ȱȱȱ ȱ ǰȱ ȱ ȱȱȱǻȱȱǯǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŖŚǼǯȱȱ ȱȱȱȱȱȱȱ ȱ¢ȱȱȱȱȱȱȱȱ ȱȱȱ¢¡ȱǻȱȱǯǰȱŗşşŜǰȱŘŖŖŚǼǯȱ Figure 2-8 Relative magnitude and contribution (the larger the arrow, the larger the contribution) of land management practices versus climate change factors to the expansion or contraction of lowdissolved oxygen. (Source: modified from Diaz and Breitberg, 2009). ȱȱ ȱȱ¢ȱ¡ȱȱ¢ȱȱȱȬȱȱ¢¡ȱȱ ȱȱȱȱȱȱȱǯȱȱǰȱ the expected long-term ecological changes favor progressively earlier onset of hypoxia each year and, possibly, longer overall duration (Boesch et al., 2007). Increasing average ȱȱȱȱȱ¢ȱ ȱȱȱ¢ȱȱ¢ȱȱ¢ȱȱ¢¡ǯȱ ȱ ȱȱȱȱ ȱȱ ęǰȱȱ¢ȱȱ¡¢ǰȱȱȱȱǰȱȱ oxygen consumption and nutrient recycling. ȱȱȱȱȱȱȱȱĴǰȱȱ ȱęȱ¢ȱȱ ȱȱ ȱȱȱ¢ȱȱ ȱǻǰȱ Climate-Driven Physical and Chemical Changes in Marine Ecosystems ŘŖŖŝǼǯȱȱȱȱȱ¡ȱȱȱȱěȱȱȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ¡¢ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖşDzȱ °ȱ et al., 2007). Climate predictions for the Mississippi River basin suggest a 20 percent ȱȱȱȱǻȱȱǰȱŗşşŘǼǰȱ ȱȱ¡ȱȱȱȱ average extent of hypoxia on the northern Gulf of Mexico shelf (Greene et al., 2009). Ȭȱȱȱȱ ȱĴȱ¢ȱ¢ȱȱȱȱ¡ȱ ȱ¢ȱȱ¢¡ȱěȱȱȱȱǰȱȱ¢ȱȱ¢ȱ ȱǻȱ ȱǯǰȱŘŖŖŞǼǯ Case Study 2-C Hypoxia in the Gulf of Mexico In August 1972, scientists found severe hypoxia in Ĵȱ ȱȱȱȱȱǯȱ ȱŗşŞśǰȱȱ¢ȱȱȱȱȱ¡ȱ of this seasonally hypoxic region in the Gulf of ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ largest eutrophication-related hypoxic area in the ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ŘŖǰŝŗşȱ ŘȱȱŘŖŖŞȱȱȱȱ ȱȱȱ from the Mississippi/Atchafalaya Rivers. Because ȱ¡¢ȱȱ ȱŘȱȱȱȱ ȱěȱȱ¢ȱęȱǰȱȱȱ ȱȱȱȱ ȱȱȱȃȱȱ¡ȱ Dead Zone.” Not surprisingly, discovery of the Dead ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ cause of hypoxic conditions. Investigators soon agreed that the most probable cause of these ȱ ȱȱĚ¡ȱȱ£ȱȱȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱȱȱ ȱǯȱ £ȱ ȱ ȱ ȱ ȱ trients such as nitrogen and phosphorus that ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ systems. An overabundance of nutrients can ȱ ¡ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ganisms in the system. Excess algae can reduce ǰȱ ȱȱȱǰȱȱȱ ȱ¡¢ȱȱ ȱȱȱȱȱȱ to decompose. ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ěǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ southern boundaries of the Gulf of Mexico, along ȱ¡Ȭȱǰȱ ȱ¡ȱǰȱ ȱȱȱȱȱȱǯȱȱȱ ŗşşŞȱ ȱ Ûȱ ǰȱ ȱ ȱ ȱ Algal blooms in Gulf of Mexico. Dead zones are areas of oxygen-depleted waters that form when nutrients stimulate the growth of algae blooms (Source: NASA). 33 34 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 2-C (Continued) ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱȱȱ¢ȱ ǰȱȱ ȱǯȱ ȱęȱȱȱ ȱumn suppressed aeration, created hypoxic condiǰȱȱȱȱȱęȱ¢ǯ ȱ ȱ ȱ ȱ ¢ȱ ¡bate both naturally occurring and eutrophication ȱ¢¡ǰȱȱ ȱȱȱȱȱful algal blooms. Changes in temperature, preǰȱȱ ȱ ȱ¢ȱȱȱȬȱ ecological changes that favor progressively earlier onset and duration of hypoxia each year. Climate predictions for the Mississippi River basin suggest ȱŘŖȱȱȱȱȱǰȱ ȱȱ expected to increase the average extent of hypoxia on the northern Gulf of Mexico and result in the continued expansion of the Gulf of Mexico Dead Zone. These displaced surface waters are replaced by cold, nutrientrich water that wells up from below (Source: NOAA). Chapter 3 Impacts of Climate Change on Marine Organisms Executive Summary ȱȱěȱȱȱȱȱ¢ȱȱȱȱ ȱ ǯǯȱ ȱ ěȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ¢¢ȱ ȱ ǰȱǰȱȱǰȱȱȱȱȱ ȱǰȱ to changes in the timing of life-history events, and ecosystem regime shifts. Climaterelated impacts on ocean systems include shifts in species’ phenology and ranges, increases in species’ invasions and disease, and changes in the abundance and diversity of marine plants and animals, among others. Observations and research have demonstrated high variability in the vulnerability and responses of organisms to changes in ǰȱȱȱȱȱȱ¢ȱǰȱȱȃ Ȅǰȱȱȱȱ are negatively impacted, or “losers.” ȱȱȱěȱȱȱȱȱ¢ȱȱ¢ȱ¢ȱȱ ȱȱȱȱȱȱȱȱȱ¢ȱȱǰȱ ȱ ǰȱȱȱȱȱȱȱȱŘǯȱȱȱ ȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱ¡ȱ ǯȱȱǰȱȱěȱ¢ȱȱȱȱȱȱ¡¢ȱȱȱ ecosystems and the nonlinear interactions of multiple stressors on organisms and ecosystems. Progress is being made in forecasting the ecological responses of ocean systems ȱȱǰȱȱȱȱȱȱȱȱȱȱȱture, including potentially novel environments, remains a challenge. Climate change is often a threat multiplier, meaning that it impacts marine organȱ ¢ȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ pressure. Although in many cases these “multiple stressors” are simply additive in their ǰȱȱȱȱ¢ǰȱȱȱȱȱȱȱȱȱěǰȱ ȱǰȱȱȱȱȱȱȱȱȱěǰȱȱȱǯȱęȱȱȱȱȱȱȱȬȱȱȱȱȱȱȱȱȱȱǯȱȱȱ¢ȱȱȱǰȱ reducing non-climatic stressors at local-to-regional scales can provide an opportunity to enhance the resilience of marine ecosystems to climate change. ȱȱȱȱȱȱȱȱ¢ȱěȱȱȱȱ ȱȱȱěȱȱȱȱȱȱ ȱ ȱ¢ȱǯȱ ȱǰȱȱȱȱȱȬǰȱȱȱěǰȱȱȃȱ points”, an area of concern. The sustained, long-term monitoring of ecological responses, R. Griffis and J. Howard (eds.), Oceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment, NCA Regional Input Reports, DOI 10.5822/978-1-61091-480-2_3, © 2013 The National Oceanic and Atmospheric Administration 35 36 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱȱ¢ȱȱȱȱȬȱǰȱ ȱȱ¢ȱȱȱ ȱȱȱȱȱǯȱ Research is also needed to improve understanding of the processes and mechanisms ¢ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ¢ǯȱ ȱ ȱ ȱ sponses of marine organisms and ecosystems to climate change can provide important ȱȱĴǰȱǰȱȱȱȱDzȱ ǰȱ¡ȱȱȱȱȱȱȱ ȱǰȱȱȱȱȱȱ ȱǯȱ¢ǰȱȬȬȱ¡ȱȱȱȱȱĚȱȱismal responses to climate change, meaning that conclusions regarding responses to environmental change at one location cannot necessarily be used to predict responses in ȱȱ ȱȱȱȱȱȱ¢ȱȱȱ ǯȱȱ¡ǰȱȱȱȱ ȱȱȱȱȱȱ can genetically adapt to climate-driven environmental change is highly uncertain. Key Findings ŗǯȲȱǯǯȱȱ¢ǰȱȱȱȱȱȱȱȱ ȱ¢ȱ¢ȱȱȱȱȱǯȱ • ȱȱȱȱȱȱȱȱǰȱěȱȱ ǰȱ ǰȱǰȱǰȱȱȱȱȱȬ¢ȱĴǰȱ and alterations in species interactions, among others. • ȱȱȱȱȱ ȱ¢ȱȱ¡ȱȱȱǯǯȱȱǰȱ but high-latitude and tropical areas appear to be particularly vulnerable. ŘǯȲȱ¢ȱȱȱȱȱȱȱȱȱ¢ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ǰȱ ȱ ȃ Ȅǰȱ ȱ ȱ ȱ ȱ negatively impacted, or “losers”. • ȱ ȱȱȱȱȱȦȱȱ¢ȱȱȱ ȱȱȱȱȱȱȱ ȱ¢ȱ¡ȱ ȱȬȱȱȱ¢ȱȱȬȱȱȱ species. • Species such as corals and other calcifying organisms that are exposed to ocean ȱȱȱȱ¢ȱȱȱȱȱǰȱ ȱ ¢ȱ¡ȱǯȱȱȱȱ¢ȱȱȱȱěȱȱ marine ecosystems. řǯȲȱȱȱ ȱȱȱ¡ȱȱȱȱȱ¢ȱȱ non-climatic stressors such as pollution, overharvesting,disease and invasive species. • Climate-related stressors such as changes in temperature can operate as threat ǰȱ ȱȱȱȱȬȱǯ • Opportunities exist for ameliorating some of the impacts of climate change through reductions in non-climatic stressors at local-to-regional scales. • ȱȱěȱȱȱȱȱĜȱȱȱ¡ȱ¢ȱěȱȱȱ ȱǯ Impacts of Climate Change on Marine Organisms ŚǯȲȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ěȱȱȱȱȱȱȱ¢ǯȱ • Observed responses to ongoing environmental change often vary in magnitude across space and time, suggesting that extrapolations of responses from one location to another may be challenging. • ȱȱȱȱȱȱ¢ȱǰȱȱȱěǰȱ or “tipping points”, that could result in rapid ecosystem change are a particular area of concern. Key Science Gaps/Knowledge Needs ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ǯȱ ȱ ǰȱ ǰȱ ȱ ¢ȱ ȱȱ ȱȱ¢ȱȱȱȱȱȱȱ ȱȱȱȱ¡ȱ¢ȱȱĜȱȱǯȱȱǰȱȱȱ ȱȱȱȬȱȱȱȱȱȃȄǰȱȱȱ ȱȱȱǯȱǰȱȱȱȱ ȱȱDZ • ȱȱȱȱ ȱȱȱȱȱȱȱ can genetically adapt to rapid environmental change. • Determine the cumulative impacts of multiple climatic and non-climatic ȱȱȱȱ ȱ¢Ȭȱ¡ǯ • Improve understanding and prediction of environmental and ecological conditions that lead to non-linearities and tipping points in coastal and marine ecosystems. • Enhance the development of spatially-explicit predictions of ecosystem responses to climate change, particularly for local-to-regional scales, including estimates of uncertainty. • Further the ability to measure and forecast physical variables at scales and resolutions that are relevant to ecological responses. • Improve understanding and valuation of climate-related impacts on ocean ecosystem services. 3.1 Physiological Responses Considerable progress has been made in understanding physiological responses of ȱ ȱ ȱ ȱ ȱ ǻãȱ ȱ ǰȱ ŘŖŖŞDzȱ ǰȱ ŘŖŗŗǼȱ ȱ ȱ ȱȱȱȱȱȱǻ ȱȱǰȱŘŖŖŞDzȱ ǰȱ ŘŖŖşǼǯȱ¢ȱȱȱȱȱęȱȱȱȱȱȬȱ and non-climate-related stressors interact in their impacts on marine organisms, and that physiological responses to these stressors can be highly variable across species and life-history stages. 37 38 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱ¢ȱȱȱȱȱ ǰȱǰȱȱȱȱěȱ¢ȱȱ ȱȱ ȱȱȱȱȱȱȱ ȱ ȱ¢ȱǯȱ¢ȱȱ¢ȱȱȱěȱ¢ȱȱȂȱ¢ȱȱǻro, 2011) and recent studies have also begun to explore the important impacts of the Ȃȱȱ ȱǻȱęDzȱ ȬȱȱǯǰȱŘŖŖŝDzȱ ȱȱǯǰȱ ŘŖŗŖDzȱȱȱǰȱŘŖŖŞǼǰȱȱȱ¢ȱǻȱȱǰȱŘŖŗŖDzȱ ȱȱǰȱŘŖŗŗǼȱȱȱȱȱ¢ȱǻȱȱǯǰȱŘŖŗŖǼǯȱ¢ȱȱȱȱȱȱȱȱȱěȱȱȱǻȱȱǯǰȱŘŖŖşǼǰȱ ȱǻȱȱǯǰȱŘŖŖŞǼǰȱȱȱȱȱǻȱȱǯǰȱ ŘŖŗŖǼȱȱȱǻȱȱǯǰȱŘŖŖŞǼȱȱǰȱȱȱǻȱȱǯǰȱ ŘŖŖŝǼǰȱȱ ȱȱȱǰȱȱȱȱ¢ȱȱȱǻȱ ȱǯǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŖŖǼǯȱ¢ǰȱȱȱȬȱȱȱ ȱȱǻȱȱǰȱŘŖŖŞǼǰȱ¢ȱȱǻȱȱǯǰȱŘŖŖŞǼǰȱȱ ȱǻ ȱȱǯǰȱŘŖŖŞǰȱȱȱǯǰȱŘŖŗŗǼǰȱȱ ȱȱǰȱȱ ȱȱ¢ȱěȱȱȱǻ ȱȱǰȱŘŖŗŖDzȱ ȱȱ ǯǰȱŘŖŖŝǼȱȱȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŞǰȱ ȱȱǯǰȱŘŖŗŗǰȱęȱȱǯǰȱŘŖŗŗǼǯȱǰȱȱȱȱȱȱ made in understanding physiological and ecological responses to climate change, and in ȱȱȱȱȱȱȱ¢ȱȱȱȱ ǻ ǰȱŘŖŖşDzȱȱȱ¢ǰȱŘŖŗŗDzȱ¢ȱȱǯǰȱŘŖŗŗǼǰȱȱ ȱȱȱȱ more clearly understand the impacts of the temporally- and spatially-complex changing environment on marine organisms and ecosystems. Advances in molecular technology for detecting physiological responses of organisms to stress and the genetic underpinȱȱȱȱěȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱǻěǰȱŘŖŖŚDzȱ ȱȱǰȱŘŖŖŝDzȱ ȱ ȱ ǯǰȱ ŘŖŗŘDzȱ ãǰȱ ŘŖŗŖDzȱ ǰȱ ŘŖŗŗDzȱ ǰȱ ŘŖŗŗDzȱ ȱ ȱ £ ǰȱ ŘŖŗŖDzȱȱȱĴǰȱŘŖŖŗǼǯ ȱȱȱ¢ȱȱȱ¢ȱȱȱȱȱ£ǰȱȱȱȱ¢ȱǰȱȱ ȱȱ¢ȱȱȱȱǻȱȱ ǰȱŘŖŖŞDzȱ ȱȱǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŗŗDzȱȱȱĴǰȱŘŖŖŗǼǯȱ Some evidence exists for local adaptation of marine organisms to high-stress environments. For example, marine snails on the Oregon coast experience higher levels of aerial ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ southern populations of the same species in California (Kuo and Sanford, 2009). Adult snails in Oregon have higher thermal tolerance than do their counterparts at cooler Caliȱȱȱ¢ȱȱȱȱȱȱȱěǰȱȱȱȱ populations have genetically adapted to the more extreme conditions they experience ǻȱȱǰȱŘŖŖşǼǯȱȱȱȱȱȱȱ£ȱȱ adaptation to thermal stress by corals and their symbionts may help reefs to maintain ȱȱȱȱȱǻĴȱȱǯǰȱŘŖŖşDzȱęȱȱǯǰȱŘŖŗŗǼǰȱȱȱȱ ȱȱȱǻ ȬȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱȱȱȱ ȱȱȱ¢ǰȱȱ ȱȱǻȱȱǰȱŘŖŖŞDzȱȱȱǰȱŘŖŖŚǼȱȱȱǻ¢ȱ ȱǯǰȱŘŖŗŘǼǯȱȱȱȱȱȱĴȱȱȱȱȱȱ£ȱȱȱȱȱȱȱȱȱȱȱȱ ǻ¢ȱȱǯǰȱŘŖŗŘDzȱȱȱǯǰȱŘŖŖŞǼǯȱ Impacts of Climate Change on Marine Organisms Effects of temperature change ȱȱȱȱěȱȱ¢ȱȱ¢ȱȱȱȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱȱěȱȱ¢ȱȱȱȱȱǻǰȱŘŖŗŗǼǰȱȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŝǼȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ £¢ȱ ǻǰȱ ŘŖŗŗǼǯȱ ȱ ȱ ȱ lead to an increase in the metabolic oxygen organisms need, and ultimately to oxygen ę¢ȱȱȱȱȱǻãǰȱŘŖŗŖDzȱãȱȱǰȱŘŖŖŞǼǯȱȱ¡¢ȱ ę¢ȱ ȱ ¢ȱ ȱ ȱ ȱ ¢Ȭȱ ȱ ȱ ȱȱȱǻãȱȱǯǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŖřǼȱȱ¢ȱȱ¢ȱ problematic in the future as increasing ocean temperatures are expected to exacerbate ȱ Ȭ¡¢ȱȱȱȱ¡¢ȱ¢ȱȱȱ ¡¢ȱȱ¢ȱȱǻ ȱȱǯǰȱŘŖŗŗǼǯȱ ȱȱ¢ȱȱȱǰȱ ȱ¡ǰȱȱȱȱȱǰȱ ǰȱ ǰȱ Ȧȱ ǯȱ ǰȱ ȱ ȃ ȬǰȄȱ organisms such as mammals and birds must maintain a relatively constant body temperature; therefore, changes in the ambient temperature outside of their preferred range ȱȱ¡ȱȱ¢ǯȱȱȱȱȱȱ ȱȱ ȱȱȱȱ¢ȱȱ ȱȱǰȱȬȱȱȱfects can occur. For example, manatees living in Florida experience a cold stress synȱ ȱ ȱ ȱ ȱ ȱ ŘŖǚȱ ȱ ȱ ¢Dzȱ ȱ ȱ include emaciation, immunosuppression, and increased mortality (Bossart et al., 2002). ȱȱȱ¢ȱȱȱȱ¢ȱȱȱŘŖŗŖǰȱ ȱȱȱȱ ŚŞŖȱǰȱŝŖȱȱȱ ȱ ȱǰȱ ȱȱǰȱ ȱȱȱśŖȱ ȱȱȱ¢ȱĴȱȱȱȱǻȱȱǯǰȱŘŖŗŗǼȱȱ ȱȱȬĴȱȱȱȱȱȱȱǻǰȱŘŖŗŖǼǯȱȱȱ ȱ¡ȱ ȱȱȱȱȱȱ ȱȱȱȱȱ have negative impacts on endothermic marine species and repeated mortality events resulting from thermal stress can lead to population decreases. ȱ ȱ ¢ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ǰȱȱȃȬǰȄȱ ȱȱȱȱȱȱȱȱ¢ȱ ambient environmental conditions. Although some marine organisms exhibit broad tolǰȱȱ¢ȱȱȱȱȱȱȱȱȱȱǻ ȱȱ ǰȱŘŖŖŘDzȱǰȱŘŖŗŗǼǯȱ¡ȱȱȱȱȱ ȱȱȱȱ ȱȱȬȱěȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŗŗDzȱȱȱǯǰȱŘŖŖŞǼȱ ȱ ȱȱ¢ȱǻ ¢ǰȱŘŖŖřDzȱ ¢ȱȱǰȱŘŖŖşDzȱȱȱǯǰȱŘŖŖŝǼǯȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ǰȱ ¢ȱ ȱ¢ȱǰȱȱȂȱ¢ȱȱ¢ǰȱ¢ȱȱ¢ȱȱ ȱ ȱǻȱȱǯǰȱŘŖŖŜǼǯȱȱȱȱ ȱȱȱȱȱȱȱ diversity because hundreds of invertebrate species rely on mussel beds for habitat (Smith ȱǯǰȱŘŖŖŜǼǯȱȱȱȱ¢¢ȱȱȃȱȄȱ¢ȱtiply the detrimental impacts of climate change on ocean ecosystems (Gedan and BertǰȱŘŖŗŖǼǯȱȱǰȱ Ȭȱȱ¢ȱȱȱȱȱȱȱ ¢ȱȱȱȱȱ ȱ¢ȱȱȱ ȱȱǻȱȱǯǰȱŘŖŗŗǼǯ 39 40 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Ȭȱȱȱȱ ǰȱȱȱȱǯǯȱȱȱǰȱ ȱȱ¢ȱȱ¢ȱȱ ȱǯȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ¡ȱȃȄȱȱ¡ȱ¢ȱȱĴȱȱŗȬŘǚȱȱȱřȬŚȱ ȱ ǻȱȱǰȱŗşşśǼǰȱȱȱȱ¢ȱĚǰȱ ȱȱ£¡ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱǻ ȬȱȱǯǰȱŘŖŖŝǼǯȱȱǰȱ ȱȱȃȱ bleaching,” is not necessarily immediately fatal, but it can lead to severe reductions in ȱȱȱȱǻ ȬȱȱǯǰȱŘŖŖŝǼǯȱȱȱȱ£¡ȱ ȱȱȱȱȱ ȱȱȱǰȱȱȱěȱ¢ȱȱȱȬȱȱȬȱǻęȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱ¢ȱȱ¢ȱ ȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖşǼǯȱȱȱȱ ȱ¢ȱȱȱȱȱȱȱȱȱ¡ȱǻ Ȭȱȱǯǰȱ ŘŖŗŗDzȱęȱȱǯǰȱŘŖŗŗǼǰȱȱȱȱ¢ȱȱȱȱȱǻȱȱǯǰȱ ŘŖŗŗǼȱȱȱŝśȱȱȱȱ Ȃȱȱǰȱȱȱȱȱȱȱ ȱȱȱȱǰȱȱȱ¢ȱȱȱěȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ¢ȱśŖȱȱȱȱ Ȃȱȱ ȱ¡ȱȱȱȱȱȱ ȱ¢ȱȱŘŖřŖȂǰȱȱȱȱşśȱȱ¢ȱȱŘŖśŖȂȱȱȱȱȱ ȱȱȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱȱȱǯȱǻŘŖŖŞǼȱȱȱŗȦřȱ ȱȱȬȱȱȱȱȱȱȱ¡ȱȱȱȱȱěȱȱ climate change and local stressors. Loss of coral cover and reef three-dimensional com¡¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ¢ȱȱ¢ȱȱȱǻ£ȬȱȱǯǰȱŘŖŖşDzȱȱȱǯǰȱŘŖŖŜDzȱ ȱȱǰȱŘŖŖŜǼǯȱǰȱȱȱȱȱȱȱ¢ȱ¢ȱȱ ȱȱěȱȱ¢ǰȱǰȱǰȱȱȱȱ¢ȱȱȱ ȱȱȱǻ¢ȱȱǰȱŘŖŗŗǼǯ ȱ ȱȱȱȱȱ¢ȱȱȱěȱ¢¢ǯȱ For some marine animal species, increasing food supply can result in higher levels of thermal tolerance (Schneider et al., 2010). Climate change is expected to impact individual nutrition status as prey species shift geographic and depth ranges, altering the ¢ȱ ȱ ȱ ȱ ǻȱ ȱ ǰȱ ŘŖŖŞǼǯȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱȱȱȱȱęȱ¢ȱǰȱȱȱȱǰȱȱ ȱȱȱ£ȱǯȱȱȱȱȱȱȱȱ Ȭ ȱȱȱȱȱȱȱ¡ȱǻȱȱǯǰȱŘŖŖŞǼǯȱcreased exposure to unfavorable environmental conditions may exacerbate nutritional ęǰȱȱȱ ȱȱȱȱȱǯ Ocean acidification impacts As the oceans absorb increasing levels of atmospheric carbon dioxide, chemical reactions ȱȱȱȱȱȱȱ ǰȱȱȱ ȱȱȱęȱ ǻȱȱŘǼǰȱȱȱȱȱȱȱ¢ȱȱȱǰȱ ȱ ¢ȱȱȱȱȱǯȱȱȱ ȱȱȱěȱ¢ȱȱ ęȱȱęǰȱ¢ǰȱȱę¡ȱȱęǰȱȱ Impacts of Climate Change on Marine Organisms ǰȱ£¢ȱ¢ǰȱȱȱȱǻĴȱȱ ǰȱŘŖŗŗDzȱ ȱ ȱǯǰȱŘŖŖşDzȱ ȱȱǯǰȱŘŖŗŖǼǯȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱęȱȱ¢ȱȱǻ¢ȱȱǯǰȱŘŖŖşDzȱ¢ǰȱŘŖŖŞDzȱ Ĵȱȱ ǰȱŘŖŗŗǼǯȱȱȱȬ¢ȱǻȱȱǯǰȱŘŖŗŖǼȱȱȱȱȱěȱȱȱ¢ȱ¢ȱȱȱDzȱ ǰȱȱȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ǯȱ ¢ȱ ȱ ȱ ȱ ȱȱȱȱ¢ȱ¢ȱȱȱȱȱȱ ǰȱȱȱ ¢Ȭȱȱǻ¢ǰȱŘŖŗŗDzȱ¢ȱȱǯǰȱŘŖŖşDzȱ¢ȱȱǯǰȱŘŖŖŞDzȱ ȱȱ ǯǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŖşǼǯȱȱȱȱȱȱȱȱ ȱȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ǻ ãȱ ȱ ǯǰȱ ŘŖŗŘǼDzȱ ǰȱȱȱȱ¡ȱȱ ȱȱȱ ȱȱȱǻȱȱǯǰȱŘŖŗŗDzȱ ȬȱȱǯǰȱŘŖŖŞDzȱ£ȱȱǯǰȱŘŖŗŗǼȱȱęȱȱȱȱȱǻȱȱǯǰȱŘŖŗŗDzȱ ãȱȱǯǰȱŘŖŗŘDzȱęȱȱǯǰȱŘŖŗŗDzȱ ǰȱŘŖŗŖǼȱȱȱȱȱęȱǯȱ ȱ ȱ ǰȱȱęȱȱ¢ȱȱ ȱȱǻ Ȭ Guldberg and Bruno, 2010). The higher solubility of CO2ȱȱȱ ȱȱȱ¢ȱȱ ȱȱȱ¢ȱȱȱȱȱȱȱ ǻȱ ȱ ǰȱ ŘŖŖŞDzȱ ȱ ȱ ǯǰȱ ŘŖŖśǼǯȱ ȱ ȱ ȱ ȱ ȱ ęȱȱȱȱ¢ȱȱȱȱȱȱǰȱȱȱ ȱȱǯȱęȱ¢ȱȱȱȱȱǰȱ ȱ ȱȱȱȱǰȱ ȱȱ¢ȱȱ¢ȱȱǻȱȱ ǯǰȱ ŘŖŗŗDzȱ ȱ ȱ ǯǰȱ ŘŖŖŞDzȱ ǰȱ ŘŖŗŗDzȱ ȱ ȱ ǯǰȱ ŘŖŖŖǼǯȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱ ȱȱȱ ¢ȱěȱǻȱȱǯǰȱŘŖŗŖDzȱ¢ȱȱǯǰȱŘŖŖşDzȱȱȱǯǰȱŘŖŖśǼǯȱȱȱ ȱ ¢ȱ ȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ ¢Ȭȱ species such as salmon depend heavily on them as prey (Fabry et al., 2009). ȱ ȱ ȱ ęǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ¢ȱȱ¢ȱȱęȱȱęǯȱȱȱȱȱ¢ȱȱȱ ȱ Ȃȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ǰȱ ¢ȱȱ¡£ȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱ ȱ¢ȱȱȱȱ¢ȱęȱȱȱ ȱ2 ǯȱȱǰȱȱę¡ȱȱȱȱȱȱ¢ȱȱ¢ȱȱ ȱ ȱǻȱȱǯǰȱŘŖŖŞDzȱ ȱȱǯǰȱŘŖŖŝǼǰȱȱȱȱ¡ȱȱ¢ȱȱȱȱȱȱǻȱȱǯǰȱŘŖŗŗDzȱĴȱȱǯǰȱŘŖŗŘǼǯ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ Dzȱ ȱ example, increased acidity can decrease thermal tolerance of some marine animals due ȱ¡¢ȱȱǻãǰȱŘŖŗŖǼǯȱȱȱȱȱȱȱDzȱȱ ¢ȱȱȱ£ȱȱȱ¢ȱȱ ȱȱěȱ¢ȱȱȱ ȱȱȱȱȱęȱǻ¢ȱȱǯǰȱŘŖŗŖǼǯȱȱ¡ȱ £ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ǰȱ ¢ȱ in the responses of ecologically and economically important species, and long-term imȱǻ¢ǰȱŘŖŗŖDzȱ ȱȱǯǰȱŘŖŗŖǼǯȱ ȱȱȱ¢ȱȱ¢ȱȱȱȱęǯȱȱȱȱȱȱȱȱǰȱȱȱȱȱȱȱ 41 42 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱęȱȱȱȱĴǯȱȱȱȱȱȱ accretion stops at atmospheric CO2ȱȱȱŚŞŖȱȱǻ¢ȱȱǰȱ ŘŖŖŜǼǰȱȱȱȱȱȱȱ ȱȱȱȱȱȱble at atmospheric CO2 levels of 550 ppm (Silverman et al., 2009). A study based on cores ȱȱȱȱȱȱȱ ȱȱȱęȱȱȱŘŗȱ ȱ ȱŗşŞŞȱȱŘŖŖřȱǻȱȱǯǰȱŘŖŖŞǼǯȱȱȱȱ¡ȱȱ ȱ ¢ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱǰȱȱȱȱęǰȱǰȱȱȱǻȱȱǯǰȱ ŘŖŖŞDzȱ¢ȱȱǯǰȱŘŖŖşǼǯȱȱȱȱȱȱ¢ȱȱȱȱ CO2ȱȱȱȱȱȱȱȱȱ¢ȱ£ǰȱȱȱǰȱȱȱǰȱ ȱȱȱȱĴȱȱȱȱǰȱȱ ȱ ȱǻȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱȱȱȱěȱȱ ȱęȱȱęȱ¢ȱęȱǻ£ȱȱǯǰȱŘŖŖŝǼǰȱ¢ȱȱȱ ȱ ȱ ȱ ǯǯȱ ęȱ ȱ ǻȱ ȱ ¢ȱ řȬǼǰȱ ȱ ęȱ ȱ ȱ ȱȱǻ¢ȱȱǯǰȱŘŖŖŞǼǯ ȱȱȱ ȱȱȱȱȱ¢ȱȱ¢ȱȱ ȱȱ ȱȱȱȱ2 are rapidly released into the atmosphere (Zachos ȱǯǰȱŘŖŖśǼDzȱ ǰȱȱȱȱ¢ȱ¢ȱȱȱȱȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ changes in CO2ȱȱȱȱȱ¢ȱȱȱȱȱ¢ǰȱ ȱȱ ȱ ȱ ȱ ȱ ¢ȱ ěȱ ȱ ȱ ǻĴȱ ȱ ǰȱ ŘŖŗŗǼǯȱ ȱȱȱęȱȱȱȱȱ¢ȱǻĴȱȱ ǰȱŘŖŗŗǼǰȱing a magnitude of ocean change that is potentially unparalleled in at least the past ~300 ȱ¢ȱȱȱȂȱ¢ȱǻ ãȱȱǯǰȱŘŖŗŘǼǯȱ ¢ǰȱȱȱȱȱȱȱ¢ȱȱȱȱęȱȱ ȱȱȱȬȱ¡ȱȱȱȱȱȱȱȱ ȱǻ¢ȱȱǯǰȱŘŖŖşǼǯȱǰȱȱ ȱȱȱěȱȱȱ¡ȱ ȱȱ ȱȱȱȱ ȱȱęȱȱ ȱȱȱȱ intact ecosystems remain critically necessary topics for future research. Case Study 3-A Ocean acidification impacts on the oyster industry Commercial bivalve production on the West Coast ȱ ȱȱ ȱ ȱ ǞŘŝřȱ ǰȱ ȱ ¢ter hatcheries providing most of the seed used by ǯȱ ȱ ȱ ¢ǰȱ ȱ ¢ȱ ȱ ǻ¢Ȃȱ ȱ ¢ȱ ȱ ęȱ Ǽȱ¢ȱȱȱȱǯǯȱȱȱ¢ȱ ȱ ěȱ ȱ ȱ ǯȱ Ȭ¢ȱȱȱȱ¢ȱȱ ȱ Ȭȱ ǰȱ Ĵȱ al strain on the limited seed supply. Potential ǰȱȱ ȱ¡¢ȱȱȱǰȱ ȱ¡ȱȱǯȱȱ¢ȱ ȱęȱ ¢ȱȱȱȱȱpect elevated CO2 as the culprit and sent samples ȱȱȱ¢ȱȱȱȱęȱ Marine Environmental Laboratories for analyses. Impacts of Climate Change on Marine Organisms Case Study 3-A (Continued) ȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ ¢ȱ ȱ ǰȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ Ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Bay. In addition, larval oysters are strongly senȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱȱǯȱȱȱ ȱ ȱȱ¢ȱȱȱ ȱȱȱȱȱȱǻ̛Ǽǰȱȱȱȱ ȱȱ shell material consists. ȱ ȱ ęȱ ȱ ȱ ȱ ¢ǯȱǰȱȱȱȬȱȱresponds to atmospheric CO2 levels predicted ȱ ȱ ¡ȱ ŘȬřȱ ǯȱ ȱ ȱ ¢ȱ thus serve as a “canary in the coal mine” for other ȱ ȱȱ2 levels have not yet ȱ ǯȱ ǰȱ ȱ ¢ȱ ȱ delayed response to carbonate chemistry during ȱȱȱȱ ȱǯ Why are oyster larvae so dependent on the ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ŚŞȱ ȱ ȱ £ǰȱ ȱ ¢ȱ ȱ from having no shell at all to having 70 percent of their mass consist of shell mineral material. During this period, they depend on carbonate ȱ ȱ ȱ ȱ ȱ ȱ ȱ reserves for shell carbon. In addition, lipid (i.e., fat) reserves are severely depleted, highlighting the need for additional energy during this critical Ĵȱȱǯ Together, these results paint a picture of larval development that depends on favorable ambient conditions during critical and energetically expenȱ¢Ȭ ȱĴǰȱ ȱȱȱȱ not express themselves clearly until later in the orȂȱǯȱ ¢ȱȱ ȱȱ ¢ȱ ȱ ¢ȱ ȱ £ȱ operations for favorable conditions and even conȱȱ ȱȱȱȱĚ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ CO2 levels rise. Relative larval production at Whiskey Creek Shellfish Hatchery in response to the favorability of ambient waters with respect to aragonite (:A). Relative production is positive when growth exceeds mortality; in the waters adjacent to the Hatchery, this condition is met at :A ~1.7, corresponding to a pCO2 of ~450 μatm. Reproduced from Barton et al., 2012 43 44 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Exposure to toxicants Toxicants are poisonous substances that can be produced by organisms (i.e., biotoxins), released from geologic stores such as heavy metals and some hydrocarbons, or result from a variety of anthropogenic sources such as persistent organic pollutants, petroleum ¢ǰȱ ¢ȱ ǰȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱ ȱ change can alter toxicant exposure levels for marine organisms through changes in the ǰȱ¢ǰȱȱ¡¢ȱȱȱȱȱǻȱȱřǯŘǰȱŚǯŜǼȱȱ other toxins. Climate-related changes can also occur through alterations in ocean curǰȱ ȱȱ¢ȱȱ¡ȱȱȱȱȱǰȱȱȱ ȱǰȱ ǰȱ ȱǰȱȱȱȱȱěȱȱ¡ȱȱ estuaries. Additionally, changes in feeding ecology can propogate toxicants throughout ȱȱ ȱǻȱȱǯǰȱŘŖŖśǼȱȱȱ¡ȱ¡ȱȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱǻȱȱǯǰȱŘŖŖŞǼǯȱǰȱ ȱȱ¡ȱȱȱ ȱȱȱȬȱǰȱȱ¡ȱȱȱ¢ȱȱȱȱȱȱěȱȱȱǻȱȱǯǰȱŘŖŖŝǼǯȱȱȱȱȱȱ¢ȱȱȱȱ¡ȱ ¡ȱȱĜȱȱȱȱ ȱ¢ȱȱȱȱȱȱȱȱ ęȱ¡ȱȱ ȱ¢ȱȱ¡ȱǻǰȱŘŖŗŗǼǯȱ Effects on life history tradeoffs and larval dispersal ¢ȱěȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱ¢ȱȱȱȱ¢ȱȱȱȱ ǰȱ ǰȱǰȱȱȱȱǻěǰȱŗşşŘDzȱǰȱŗşşŘǼǯȱȱȱȱȱȱěǰȱ ȱȱ¢ȱ¢ǰȱ¢ȱȱȱȱȱȱȱȱ¢ȱȱȱ ȱȱȱȱ ȱǻęȱȱ¢ǰȱŘŖŖřǼǯȱȱȱȱȬ¢ȱěȱȱ ȱȱȱǯǯȱȱȱȱǰȱ ȱ¡ȱȱȱȱȱ¢ȱ ȱ ȱȱȱȱȱ¢ȱ ȱ ¢ȱȱȱȬȱȱǻȱȱǯǰȱŘŖŖŞǼǯȱȱȱ ȱ ȱęǰȱěȱȱȱȱȱ ȱȱȱȱȱ¢ȱǻŘŘǚǼȱȱȱǻŗŜǚǼȱȱȱȱĚȱȱȱ ȱȱȱ ȱ ȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŝǼǯȱȱȱȱȱȱȱȬȬȱȱȱȱȱȱȱ ěȱ Dzȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ¢ȱ ȱ Ȭȱ ȱ ǰȱ ȱ ȱ ȱ ǻ£ȱ ȱ ǯǰȱ ŘŖŖřǼǯȱ ȱ ȱ ȱ temperature may alter these oscillations and therefore the relative abundance of these species in the future. Phenology, the timing of annual life-history events such as migration and breeding can provide valuable insight into the impacts of climate change. Thermal stress has been ȱȱȱȱȱȱ ȱȱȱȱǰȱȱȱȱȱȱȱ ȱȱȱȱ¢ȱȱȱȱȱȱ¢ȱ ǻȱȱǯǰȱŘŖŖŝDzȱ ȱȱǰȱŘŖŖŚDzȱȱȱǯǰȱŘŖŖřǼǯȱȱȱȱȱȱǰȱ ȱ ȱȱȱǰȱȱȱ ǰȱ ȱ ȱ ȱ ǻǰȱ ŗşşŜǼǯȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ¢ȱ ǰȱ ȱ ȱ ȱ ¡ȱ Impacts of Climate Change on Marine Organisms ǰȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖřǼǯȱěȱȱȱȱ ȱȱȱȱȱȱȱȱȱěȱȱ ĴȱȱȱȱǻȱȱǯǰȱŘŖŗŖǼǯ ¡ȱȱȱǰȱǰȱǰȱȱȱȱȱȱ¢ȱ ȱǰȱȱȱȱȱȱȱȱȬȱ¢ȱǻȱȱǰȱŘŖŖŚDzȱȱȱǯǰȱŘŖŗŖǼǯȱȱȱȱǰȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ǻ ȱ ȱ ǯǰȱ ŘŖŖşǼȱ ȱ ȱȱȱ£ȱȱȱȱȱȱǻǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŗŗǼǯȱ ǰȱȱĴȱȱȱȱǻȱȱŘǼȱȱ¢ȱȱȱȱęȱĚȱȱȱ¢ȱȱȱȱȱȱǯȱȬȱȱȱȱȱȱȱ ȱȱȱ ȱȱȱȱȱȱȱ ȱǰȱȱȱȱȱ¢ȱ ȱȱ¢ȱȱȱǰȱȱȱȱȱȱȱȱ ȱǰȱȱȱ¢ȱȱȱȱǻȂȱȱǯǰȱ ŘŖŖŝǼǯȱȱȱȱǰȱȱ ȱȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱǻ ȱȱ ǰȱ 1997; Kristiansen et al., 2011). Larval stages of some marine organisms are more vulnerȱȱȱȱȱȱȱȱǻȱȱǰȱŘŖŗŗDzȱ¢ȱ ȱ ǰȱŘŖŗŖǼȱȱȱǻȱȱ ǰȱŘŖŖŝǼȱǯȱȱęȱ£ȱȱȱȱȱȱȱȱȱěȱȬ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ£ȱǻȱȱǯǰȱŘŖŗŗǼǯȱ 3.2 Population and Community Responses There is strong evidence that climate-driven changes in environmental conditions are ěȱȱǰȱ ǰȱȱȱȱȱ¢ȱȱȱǰȱȱ ȱ ȱ ȱ ȱ £ȱ ȱ ȱ ěȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱ ȱȱȱǯǯȱǯȱȱǰȱ Ȭȱȱȱȱ ȱǻȱȱǰȱŘŖŖřǼǰȱȱȱȱ are highly variable due to the impacts of local environmental conditions including nonȱȱǻ ȱȱǯǰȱŘŖŖŜǼǯȱȱ£ȱȱȱȱȱ¢ȱ ěȱ ¢ȱ Ȭȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ and predation. In addition, strong evidence indicates that many marine species appear ȱȱȱȱȱȱ ȱ¡ȱȱȬȱȱǯȱ Collectively, these impacts are leading to observed changes in community composition and ecosystem processes. Exploring the relative sensitivity of marine species and their ȱȱȱȱȱ ȱȱȱ¡ȱȱ¢ȱȱ ȱȱȱȱȱȱǯȱ Primary productivity Marine primary productivity by both microscopic and macroscopic photosynthetic orȱȱȱȱȱȱȱȱȂȱȱ ǯȱȱ¢ȱȱȱ¢ȱ ȱȱ¢ǰȱȱȱȱȱȱ¢ȱǯȱ 45 46 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱ ȱȱ ǰȱȱȱȱȱ¢ȱȱȱ also provide nearshore habitat and food sources to a diversity of marine organisms. ȱ ȱ ¢ȱ ¢ȱ ȱ ¢ȱ ȱ ȱ Ĵȱ ȱ ȱ ǯȱȱȱȱ¡ȱȱ ȱȱȱ ȱǰȱȱǰȱȱȱȱǻȱȱŘǼǰȱȱȱȱȱȱȱ ¢ȱ¢ȱȱ¢ȱȬȱȱȱȱȱȬȱ¢ǯȱȱȱȱǰȱ¢ȱ¢ȱȱȱȱȱȱ ¢ȱ¢ȱȱȱ ȱȱȱȱȱȱǻȱ¢Dzȱ ¢ȱȱǯǰȱŘŖŗŘǼȱȱȱęȱǻȱ¢Dzȱȱȱǯǰȱ ŘŖŖŜǼǯȱȱȱȱȱȱȱ¢ȱȬȱ¢ǰȱȱ¢ǰȱ ȱȱ¢ȱĚ ȱȱȱȱȱǻ ȱȱǯǰȱŘŖŖŝDzȱ¤ȱ ȱǯǰȱŘŖŗŖǼǯȱȱȱȱȱȱ ȱȱȱȱȱ¢ȱ¢ȱǰȱȱ¢ǰȱȱ£ȱȱȱȱȱęȱȱ ȱŘŗȱ¢ǰȱȱȱȱ ȱȱȱȱ£ȱǰȱ¢¢ȱ ȱ Ȭ£ȱ¢ǰȱ ȱȱȱȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱ ȱȱȱ ȱȱ¢ȱ¢ȱ ȱȱȱȱȱ future climate change scenarios. On a global scale, a recent study suggested that the past ȱȱȱ ȱȱȱȱȱȱ¢ȱ¢ȱǻ£ȱ et al., 2011). Primary productivity in the central and southern California Current System ȱȱȱȱȱȱȱǻ£ȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱ ȱ ȱȱȱ¢ȱȱȱȱ Ȭȱȱ ȱǰȱ ȱ ȱ ǰȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȬ¢ȱ ȱ ǰȱŘŖŗŖǼǯȱȱǰȱȬȱȱȱȱ¢ȱȱ ȱȱȱȱ¢ǰȱ¢ȱȱȱȱ¢Ȭȱȱȱȱ ¡ȱǻȱȱǯǰȱŘŖŖŜDzȱǰȱ ȱȱȱŘŖŖşDzȱȱȱǯǰȱŘŖŖŚDzȱȱ ȱǯǰȱŘŖŖŞǼǰȱ ȱȱȱȱȱ¢ȱ¢ǯȱȱȱȱ ȱěȱȱ¢ȱǰȱȱȱǯȱǻŘŖŗŖǼȱȱȱȱȱ ¢ȱȱȱŘȬŘŖȱȱ¢ȱŘŗŖŖǰȱ ȱȱȱȬȬ ȱȱȱȱ ȱȱȱȱȱȱ£ȱȱȱȱȱȱȱȱ ȱ ȱȱȱȱǯȱȱǰȱǰȱȱȱěȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ climate change and marine primary productivity. ȱȱȱǻ ǼȱȱȱȱǰȱȱȬǰȱȱȱȱȱȱ¢ȱȱȱȱ Ȃȱǯȱȱȱȱȱ¢ǰȱ ȱȱȱȱȱȱȱǯǯȱȱȱǻǰȱŘŖŗŘǼǯȱ ȱȱ increased in duration, number, and species diversity over the past three decades (AnderǰȱŗşŞşǰȱŘŖŖşDzȱ ěǰȱŗşşřǼȱȱȱȱȱȱȱȱȱ ǯȱȱȱ ȱȱȱȱȱȱȱȱ ¡ȱȱȱȱȱȱȱǰȱȱęǰȱǰȱȱȱ ǻȱȱŚǯŜǼǯȱȱȱȱ¡ȱȱ¢ȱȱ ȱȱȱmatically under high CO2ȱ ǰȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŗŖDzȱ ȱ ȱ ǯǰȱ ŘŖŗŗDzȱ Ĵȱ ȱ ǯǰȱ ŘŖŗŘǼǯȱ ȱ ęȱ ȱ ȱ ȱȱ ȱȱȱȱȱęǰȱęȱȱǯȱ ȱȱ the red tide organism Karenia brevisǰȱȱĚȱȱȱȱ¡ȱ ȱ¡ǰȱȱ¢ȱȱȂȱ ȱǰȱȱȱȱ Impacts of Climate Change on Marine Organisms ȱ¢ȱȱęǰȱȱǰȱǰȱĴȱǰȱȱȱǻȱȱ ǯǰȱŗşşŞDzȱ ȱȱǯǰȱŘŖŖśDzȱȱȱǯǰȱŗşŚŞDzȱȱȱǯǰȱŘŖŖŘDzȱȱȱǯǰȱ 2009). Although brevetoxin exposure increases during K. brevis blooms, the persistence ȱȱ¡ȱȱȱȱ ȱȱȱȬȱěȱȱ¡ȱȱȱȱ are unclear (Fire et al., 2007). Domoic acid, a potent neurotoxin produced by the diatom Ȭĵȱ ǯǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ Ĵǰȱ ȱǰȱȱȱȱȱȱęȱȱǻȱȱǯǰȱŘŖŖśDzȱȱȱ ǯǰȱŘŖŖŖDzȱȱȱȱȱȱǯǰȱŘŖŖşǼǯȱȱ ȱȱȱȱ¢ǰȱȱȱ ȱȱȱěȱȱȱȱ¢ǰȱ¢ȱǰȱȱȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŗŖǼǯȱĴȱȱ¢ȱ ȱȱȱěȱȱ Ȭȱȱȱȱ¡ȱȱ Ȭȱtoxins on marine organisms and humans. Blooms of “nuisance” macroalgae may shade out other benthic primary producers, either seagrasses or perennial macroalgae, and negatively impact coral reefs through ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ǻ£Ȭȱ ȱ ǯǰȱ ŘŖŗŗDz ȱȱǯǰȱŘŖŖŝDzȱȱȱǯǰȱŘŖŖśDzȱ¢ȱȱǯǰȱŗşşśDzȱȱ¢ȱřȬǼǯȱ¢ǰȱ ȱȱȱȬȱȱȱǰȱȱȱ¢ȱȱ Ȭȱȱȱȱȱȱȱȱȱ ȱ Ȭȱ ¡¢ȱȱǻȱȱǯǰȱŘŖŖŜDzȱ£ȱȱǯǰȱŘŖŖŞǼǯȱ Many mechanisms are potentially responsible for the expansion of algal blooms into ȱȱȱȱ¡ȱȱȱȬ¡ȱǯȱȱȱǰȱ ȱȱȱȱȱ ȱȱȱȱ£ȱěǰȱ¢ȱȱ¢ȱȱȱȱǻȱȱǯǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŖŞDzȱȱȱǯǰȱ ŗşşŝǼǰȱ ȱȱȱȱȱ¢ȱȱȱȱȱȱ¢ȱ ǻǰȱ ŘŖŖŘǼǯȱȱ ȱ ǰȱ ȱ ǰȱ ȱ ȱ ȱ ȱȱ ȱȱǻǰȱŘŖŖşǰȱŘŖŗŘǼǰȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱĜȱǻ ȱȱǯǰȱŘŖŖŞDzȱ ȱ ȱ ǯǰȱ ŘŖŖşǼǯȱ ȱ ǰȱ ȱ ¡ȱ ȱ ȱ ȱ ǰȱ ȱ ȱȱȱȱȱȱȱȱ ȱȱȱǯ ȱȱȱȱȱȱ¢ȱȱȱ ȱȱ ǯȱȱ¢ȱȱȱȱȱȱȱȱǰȱȱȱȱȱȱȱȱȱ¢ȱȱȱǯǯȱȱǻ¢ǰȱ ŗşŞśDzȱ ȱ ȱ ǯǰȱ ŘŖŖŞDzȱ ǰȱ ŗşŝřǼǰȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¡ȱ ȱ ¢ȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŝǼǯȱ ȱ ěȱ ȱ ȱ ȱȱȱ¢ȱȱȱȱȱȱ¢ȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ǯȱ Ȭȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻ ¢ȱȱǯǰȱŘŖŖŜDzȱ ȱȱǯǰȱŗşşŝǼȱȱ ȱȱȱ¢ȱȱ¢ȱȱ Ȭȱȱǻ¢ǰȱŗşŞśDzȱǰȱŘŖŖŚǼǯ ȱȱȱȱěȱȱȬȬȱ¢ȱȱȱȱ ȱȱ¢ȱȱȱȱȱȱȱȱ ȱȱȱȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ŘǼȱ ȱ ȱ ȱ ȱ ȱǻȱȱǰȱŘŖŖŜDzȱ¢ȱȱǯǰȱŗşşşDzȱȱȱǯǰȱŘŖŖŞǼǯȱȱȱ¡ȱȱȱȱȱȱȱ¢ȱ ǰȱȬȱȱȱȱ ȱȱȱȱǰȱ ȱȱ¡ȱȱ¢ȱȱȱȱ 47 48 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱȱȱȱ¢ȱȱȱȱȱȱ¡ȱǻȱ ȱǯǰȱŘŖŖŚǼǯȱȱȱȱ¢ǰȱȱȱȱ¢ȱȱȱȱ¢ȱȱȱȱȱ¡ȱȱȱȬęȱȱȱǻȱȱǯǰȱŘŖŖŚǼǰȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ together, resulting in an alternative habitat state (e.g., the formation of sea urchin barDzȱȱȱǯǰȱŗşŞśDzȱ ȱȱǰȱŗşŞśDzȱȱȱǯǰȱŘŖŖşǼǯȱȱȱȱ ȱȱȱ¢ȱȱȱȱȱȱȱ¢ȱȱ ǰȱȱęȱȱȱ¢ȱȱȱ ȱȱȱȱ¢ȱ ȱȱȱȱȱȱȱ¡ȱǻ£ȱȱǯǰȱŘŖŖřDzȱ£ȱȱ ȱŘŖŗŗDzȱȱȱǯǰȱŘŖŗŖǰȱŘŖŗŗǼǯȱ¢ȬȬȱȬȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱǰȱȱȱǻ¢ȱȱǯǰȱŘŖŗŗDzȱ¢ȱȱǯǰȱŗşşşDzȱȱȱǯǰȱŘŖŖŞǰǼǯȱ ǰȱȱ¢ȱȱȱȱȱ¢ȱȱ¢ȱȱȱȱ ȱȱȱȱǰȱ ȱȱȱȱȱȱǰȱ Ȭǰȱȱ ȬȱȱǻȱȱǯǰȱŘŖŗŖǼǯȱ ȬȬȱȱ¢ȱȱȱǰȱȱ ǰȱȱȱȱȱȱ¡ȱȱȱ¢ȱȱȱěȱȱȱȱȱDzȱ ǰȱȱȱȱȱȱȱȱ¢ȱ ǯȱȱȱȱęȱǰȱ ȱȱȱȱȱȱ ȱȱȱǯǯȱȱ ǰȱȱ¢ȱȱȱȱęȱ ȱ ǻ¢ȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱȱȱȱȱȱǻ£ȬȱȱǯǰȱŘŖŗŘǼȱȱȱȱ ȱǻȱȱĴǰȱŘŖŖşǼȱȱęȱǯȱȱǰȱȬęȱ ȱ¢ȱȱȱȱȱȱęȱǻ£ȬȱȱǯǰȱŘŖŗŗǼǯȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ Ȭ¢ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱęȱǻȱȱǯǰȱŘŖŗŘǼǰȱȱȱȱ ȱȱ ȱ ȱ 2ȱ ȱ ǻȱ ȱ ǰȱ ŘŖŗŖDzȱ ¢ȱ ȱ ǯǰȱ ŘŖŖŜǼǯȱ ¢Ȭȱȱ¢ȱȱȱ¢ȱȱȱ2 may be particularly sensitive to increases in CO2ȱǰȱȱȱȱȱȱȱȱȱ ¢ȱȱ¢ȱȱǻ ¢ȱȱǯǰȱŘŖŖŜǼǯȱȱȱȱȱęȱ ȱȱȱȱęȱȱȬęȱȱȱȱȱnity for future research. Shifts in species distribution ȱȬȱȱȱȱ ȱȱĚȱȱȱȱȱ ȱȱ¢ȱȱȱǻ ȱȱǯǰȱŘŖŗŗDzȱ ȬȱȱǰȱŘŖŗŖǼǯȱ Analyses of shifts in species distributions have demonstrated that marine systems apȱȱȱȱ¢ȱȱȱȱ¢ȱǻ ȱȱǯǰȱŘŖŗŗDzȱ ȱȱǯǰȱŘŖŖŜǰȱȱȱǯǰȱŘŖŗŖǼǯȱȱȱ ȱȱȱȱȱȱ ȱȱȱȱȱȱǻ¢ȱȱǯǰȱŘŖŗŖǰȱ ȱȱǰȱ ŘŖŗŗǼȱȱǰȱȱȬǰȱȱ ȱȱȱ¡ȱȱ ǻ¢ȱȱǯǰȱŘŖŖşDzȱȱȱǯǰȱŘŖŗŗDzȱ ¢ȱȱǰȱŘŖŖşDzȱ¢ȱȱǯǰȱŘŖŗŗǼǯȱmate-related shifts often occur at range boundaries, but, due to the importance of local ȱ ȱ ǻ ȱ ȱ ǯǰȱ ŘŖŗŗDzȱ ȱ ȱ ǯǰȱ ŘŖŖŜǼǰȱ ȱ ȱ ȱ ȱ ȱȱȱ¢ȱȱȱȱ ȱ ȱȱȂȱȱ Impacts of Climate Change on Marine Organisms Case Study 3-B Shifting interactions between corals and macroalgae ȱ ǰȱ ȱ ȱ şŖȱ ȱ ȱ ȱ Corals and macroalgae are the dominant comȱȱȱȱ ǰȱ ȱ ȱ¢ȱȱȱ petitors for primary space on many coral reefs. ȱ¢ǰȱȱ ȱȱśŖȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ living coral cover died from diseases (Miller et al., ǰȱ ȱ ȱ ¢ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖşǼǯȱ ȱ ęȱ ȱ ȱ ¢ǰȱ ŘŖŖŗǼǰȱ ȱ ¢¢ȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ Ĝȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ǰȱ ȱ ¢ǰȱ ȱ ȱ ȱ indirectly by substances released by macroalgae ěȱȱęȱȱȱȱȱ ǻȱ ȱ ǯǰȱ ŘŖŖŜǰȱ ȱ ȱ ǯǰȱ ŘŖŗŗǼǯȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŗŗDzȱ Ȭȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ĴǯǰȱŘŖŖŝǼǰȱȱȱĴȱȱȱȱ ȱ ȱ ǰȱ ȱ ȃ ǰȄȱ ǯȱęȱ¢ȱȱȱȱȱȱȱȱĴȱǯȱ ¢ȱȱȱȱǻ¢ȱȱǯǰȱŘŖŖŞǼǯȱ ȱȱȱȱȱęȱȱȱ ȱ ȱ ȱ ȱ ȱ ęȱ£ȱȱȱȱȱȱing and pollution is the best short-term strategy ȱȱȱ ǰȱȱȱȱfor increasing coral resilience to climate change ȱ ȱ ȱ ȱ ȱ Ĵǯȱ ȱ ǻ ȱȱǯǰȱŘŖŗŖǼǯȱȱȱȱ¢ȱȱȱ human activities tend to shift the competitive that reefs remote from local human impacts, such balance in favor of macroalgae at the expense of as the uninhabited Northern Line Islands that are ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱȱǯǯȱęȱȱȱȱ¢ȱȱȱȱ¢ȱ ǯȱ tional Monument, still remain relatively healthy ȱȱȱȱȱ ȱȱȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞDzȱ ȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱ ȱȱ ȱȱȱȱȱȱǰȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ als. On many reefs, these processes have already severely compromise the ability of corals to outȱ ȱ ȱ ȱ ǰȱ ȱ ¢ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ or gradual, from coral-dominated reefs to algal ȱȱȱȱǯȱ ȱȱǻ ȱȱǯǰȱŘŖŗŖǼǯȱ ȱ ȱȱęȱ amplify the impacts of these non-climatic stressors on corals. The dinoĚȱ ¢ȱ ǻ£¡Ǽȱ ȱ ȱ ȱ ȱ ȱ ȱ sensitive to slight increases in temperature than are the macroalgae that are commonly found on reefs. Coral ȱ ȱ ȱ ȱ ¢ȱ ŗȬŘǚȱ ȱ ȱ ȱ ¡ǰȱǰȱ ȱǰȱȱȱ ȱ ȱ ǻ Ȭȱ ȱ ǯǰȱ 2007). Even if corals do survive, they may succumb to disease after experiencing thermal stress; for example, Overgrowth of coral by the alga Boodlea in Hawaii (Photo ȱ ŘŖŖśȱ ȱ ȱ ǯǯȱ ȱ ǰȱ Credit: NOAA). 49 50 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱǻȱȱǯǰȱŘŖŖşDzȱ ¢ǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŖŞǼǯȱȱȱ ǰȱ ȱȱȱȱ ȱȱȱ¢ȱȱȱ Ȭȱǰȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ǻȱ et al., 2011). Forecasts of future responses to climate change based on observations of Ȭ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻ¢ȱ ȱ ǯǰȱ ŘŖŗŗDzȱ ȱ ȱ ǯǰȱ ŘŖŗŖǼǯȱȱ indicated above (see Section 3.1), the pace and precise location of these changes remain ȱȱȱȱȱěȱȱȱǰȱȱȬęȱfects of these changes on interacting organisms, the spatial and temporal heterogeneity ȱȱǰȱȱȱ¢ȱȱȱȱ£ȱȱȱȱing conditions (Denny et al., 2009; Nye et al., 2011; Sagarin and Gaines, 2002; Sanford and Kelly, 2011). ȱȱȱ¢ȱȱȱȱȱȱȱȱȱ ¢ȱȱȱȱȱȱȱ ȱȱ¡ȱ ȱȱȱǻȱȱǯǰȱŘŖŖŝDzȱ ěǰȱŘŖŗŖDzȱ ¢ȱȱǯǰȱŘŖŖśDzȱȱ ȱ ǯǰȱ ŘŖŖŚDzȱ £ǰȱ ŘŖŖřǼǯȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ¡¢Ȭȱ ȱȱȱȱȱȱǰȱȱ ¢ȱȱ ȱȱȱȱȱȃ¢Ȅȱȱ ȱȱȱęȱȱ ȱȱȱĚȱȱȱȱȱȱ¢ȱ ȱ¢Ȭ ȱ¢ȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖşDzȱ ȱȱǯǰȱŘŖŖŝDzȱ ȱȱǰȱŘŖŗŖǼǯ ȱȱȱȱěȱȱȱȱȱȱȱǯȱȱȱǯȱǻŘŖŖşǼȱȱȱ¢ȱȱǯǯȱȱȱȱȱ ȱȱȱȱ¢ȱȱȱȱȱȱȱȱ ȱȱ ȱ ŗşśŜȱ ȱ ŘŖŖŝǯȱȱ ¢ȱ ȱ ȱ ȱ ȱ Kelletia kelletii in California demȱȱȱȱȱ¢ȱȱ¡ȱ ȱ¢ȱȱŚŖŖȱȱ ȱȱȱŗşŝŖȱȱ¢ȱŗşŞŖǰȱ ȱ ȱȱęȱȱ¡ȱȱȱ ȱȱǻȱȱǯǰȱŘŖŖřǼǯȱȱȱȱ ȱȱ ȱ ȱȱȱȱ ȱȱȱȱĚȱȱ ȱȱȱ ǯȱȱȱǯȱǻŘŖŗŗǼȱȱȬ¢ȱȱȱȱȱȱ ȱȱ ȱ ȱ ȱȱȱȱŗşŝşǰȱȱȱȱęȱȱȱrennial species, such as barnacles and mussels, to annual native and invasive species. A ¢ȱȱȬȱęȱȱȱȱȱȱȱ ȱȱȱȱ ȱȱȱȱȱȱ ȱȱȱ ȱȱȱȱȱȱǻȱȱǯǰȱŘŖŗŖǼǯȱȱȱȱȱěȱ of climate change on larval dispersal due to changes in currents and alterations in the timing of reproduction may lead to shifts in species distributions. ȱȱěȱȱȱȱȱȱȱęȱȱȱ ȱ¢ȱȱ¢ȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱǻĴȱȱǯǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŗŖǼǯȱȱ¡ǰȱęȱȱ¢ȱȱ¢ȱȱȱȱȱȱȱȱȱ ȱȱȱȱ¢ȱǻȱȱ¢ǰȱŘŖŖşDzȱȱȱǯǰȱŘŖŖşDzȱ ȱȱǯǰȱ ŘŖŖŞDzȱ ȱȱǯǰȱŘŖŖŚǼǯȱȬȱȱȱȱȱȱȱȱ ¢ȱȱȱȱȱȱȱȱęȱǻȱ ȱ ǯǰȱ ŘŖŗŖDzȱ ȱ ȱ ŚǼǯȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ Impacts of Climate Change on Marine Organisms ȱęȱȱȱȱȱȱȱȱȱǯǯȱȱǻȱȱǯǰȱŘŖŖřǼǯȱ ȱȱǯȱǻŘŖŗŖǼȱȱȱȱȱȱęȱ ȱȱȱȱ ȱȱȱȱ¡ȱ ȱȱŗşŝŖȱȱŘŖŖŝǰȱȱȱȱȱȱęȱȱȱȱ¢ȱȱȱǯȱ¢ȱȱǯȱǻŘŖŖşǼȱ¡ȱ ȱȱȱȱřŜȱȱȱȱęȱȱȱȱĴȱ ȱ¢ȱȱ ȱȱȱěȱȱȱȱȱȱǯǯȱȱŗşŜŞȬŘŖŖŝȱȱȱ ȱȱȱȱĴȱǯȱȱęȱ ȱȱ ȱȱȱŗŝȱ ǰȱȱȱȱȱŚȱǰȱȱęȱȱ¡ȱȱŗŖȱȱǻ¢ȱȱ ǯǰȱŘŖŖşǼǯȱȱȱȱȱȱȱ ȱȱȱȱȱ Ěȱȱȱȱȱęȱȱȱȱȱȱȱȱǰȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŜǰȱ ŘŖŖŝǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ £ȱ ȱ ȱ ȱ ȱ ȱ £ȱ ¢ȱȱȱǻ ěȱȱǰȱŘŖŖŜDzȱȱȱǰȱŘŖŖřǰǼǯȱȱȱ ȱȱȱ¢ȱęȱȱ¡ȱȱĚȱȱȱȱęȱȱ ȱȱęȱȱǻ¢ȱȱǯǰȱŘŖŖřǰȱŘŖŗŖDzȱǰȱŘŖŖŝDzȱȱȱǯǰȱŘŖŗŗǼǯȱ ȱȱǰȱ ȱȱȱȱȱȱȱȱȱȱȱȱ ǰȱěȱȱ¢ȱȱȱȱȱȱȱȱȱ ¡ȱȱȱȱȱȱȱȱęȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱȱ ¡ȱȱ¢ȱȱȱȱȱȱȱȱȱ¢ȱȱ¢ȱǻǰȱŘŖŗŗǼǯȱȱ¢ȱȱȱȱȱȱ ȱȱȱȱ ¢ȱȱȱȱȱȱȱȱȱȱȱ ǯȱ ȱȱȱ¡ȱȱȱȱȱȱ ȱȱȱȱȱhavior resulting from shifting prey distribution and abundance. Arctic regions are par¢ȱȱȱȱȱȱ Ȭȱȱȱ ȱȱȱ ȱ ȱ ěȱ ȱ ¢¢ȱ ȱ ¢ȱ ȱ Ȭȱ ǯȱ ȱ ¡ǰȱ¢ȱȱȱȱȱȱȂȱȱȱȱȱȱȱ result of high ocean temperatures (Springer et al., 2007). In the same region, reduced sea ȱȱȱȱȱȱȱȱ¢ȱȱȱĴ ȱȱ ȱřŘȬ¢ȱȱǻ¢ȱȱǯǰȱŘŖŖŞǼǯȱȬȱȱȱȱȱ ȱȱȱȱĴȱȱȱȱȱȱȱȱȱȱǻ¢ȱȱǯǰȱŘŖŗŖǼǯȱȱǰȱȱȱȱȱȱ¡ȱ ȱȱ£ȱȱȱȱȱȱȱȱȱ¡ȱȱȱ¢ȱ ǻȱȱǰȱŘŖŖŞǼȱȱ ȱȱȬȱȱȱ¢ȱ¢ȱȱ ȱȱȱȱȬȱȱǻȱȱǯǰȱŘŖŖşǼǯȱ ȱȱǰȱȱȱȱȱȱȱǯǯȱȱ ȱ ȱȱěȱȱȱ¢ȱȱ¢ȱǯȱȱ ȱȱȱ ȱȱȱ¢ȬȱȱȱȬȱȱȱȱbution for coastal and marine systems (Sorte et al., 2010b). Marine diseases ȱȱǰȱȱęȱȱȱȱȱȱȱȱȱǰȱǰȱǰȱȱǰȱȱȱǻȱȱě¢ǰȱŘŖŖŚǼǯȱȱ Ȭȱȱȱ ȱȱȱȱ¢ȱȱȱȱȱ ȱ ȱ to have marine counterparts. The impacts of climate change on disease emergence and 51 52 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱ¢ȱȱȱȱȱȱȱȱǰȱȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ tion of individuals carrying disease vectors, introductions from terrestrial systems into marine environments, impacts to pathogen ability to reproduce, and increased environmental stress that leads to increased susceptibility of hosts to infection (Mills et al., 2010). ȱȱ ȱȱǰȱǰȱȱȱ ȱ¢ȱȱȱ by climate change. In some cases, these changes could limit disease; in other cases, disȱ ȱ ǰȱ ¢ȱ ȱ ȱ ȱ ǻ£ȱ ȱ ǯǰȱ ŘŖŖřDzȱ ȱ et al., 1999). Pathogens, including macro- and micro-parasites, are in a constant state of ȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȬȬȱ interactions as either the host becomes more susceptible to disease or the pathogen’s virulence increases. Variations in species’ ranges may alter pathogen distribution and ȱ ȱȱȱȱȱȱȱȱ ȱȱ ǻ ȱȱǯǰȱŘŖŖşǼǯȱȱ¡ǰȱȱȱȱȱǰȱ ȱȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ¢ǰȱȱ¢ȱȱ ȱ ȱ¢ǰȱȱ ȱ¡ȱ ȱ ȱ ȱ ȱ Dzȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱȱȱȱȱȱȱȱ ȱȱȱ ȱǻȱ ȱǯǰȱŗşşŞDzȱǰȱŗşşŜǼǯȱȱȱȱȱȱ ȱȱȱsponsible for the enhanced survival of certain marine Vibrioȱǰȱ ȱȱȱ Ȭȱȱȱȱǻ£Ȭ£ȱȱǯǰȱŘŖŗŖDzȱȱȱŚǼǯȱ¢ǰȱ ȱ¢ȱȱȱȂȱȱȱȱȱĴȱȱȱ ȬȬȱ ȱȱ ȱŗşşřȱȱŘŖŖřȱȱȱȱȱ ȱǻȱȱǰȱŘŖŖŜǼǯ Pathogens novel to marine organisms can enter coastal and oceans systems as terȱ ȱ ¡ȱ ȱ ȱ ȱ Ȭěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱǰǯȱȱ¡ǰȱȱ ȱȱȱȱȱȱȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Sarcocystis neurona, a £ȱȱȱȱȱȱȱǰȱȱȱĴȱǻȱȱ al., 2010b). In addition, the emergence and pathogenesis of the disease leptospirosis has ȱȱ ȱȱ¢ȱǻȱ¢ȱřȬǼǯȱȱȱ ¢ȱȱȱȱȱǻȱȱǯǰȱŗşşŜDzȱ¢ȬȱȱǯǰȱŘŖŖŝǼȱȱ ȱ ȱěȱȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖśDzȱȱȱǯǰȱ ŘŖŖŜǼǯȱ The impacts of climate change on future rates of marine disease are uncertain. Changes in environmental conditions may lead to range shifts of macro- and micro-parasites, ȱȱȱȱȱ¢ȱȱȱȱȱǯȱ ȱȱ¢ȱ contain barriers to the spread of disease through ecological interactions such as competiǰȱ¢ȱǰȱȱȱǻǰȱŘŖŗŖǼǯȱȱ ȱȱǰȱȱȱ ȱȱȱȱȬȱȱǻě¢ǰȱŘŖŖşǼǯȱȱȱȱ ȱȱȱȱȱȱȱȱȱ£ȱȱȱplete various stages of their life cycle are particularly sensitive to climate change because ȱȱȱȱȱȱȱȱ ȱȱȱ¢ȱȱ ȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŞDzȱ¢ȱȱǯǰȱŘŖŖŞǼǯȱȱ Impacts of Climate Change on Marine Organisms ȱǰȱ ȱȱǰȱȱȱȱȱȱȱȱ ¢ȱ¢ȱȱęȱȱȱȱ¢ȱǻǰȱŘŖŗŗǼǯȱȱ in non-climatic stressors provided by protected areas may potentially reduce disease Dzȱȱ¡ǰȱȱ¢ȱȱşŚȱ¢ȱȱȱę¢ȱȱȱ ȱ¢ȱȱę¢ȱ ȱȱȱȱ¢ȱȱȱȱ ǻ ȱȱǯǰȱŘŖŖşǼǯȱ ȱ¢ȱǰȱȱȱȱǰȱȬȱȱȱȱȱȱȱ ability to predict future climate-related changes in infection prevalence and intensity, £ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ¢ȱ ȱęȱȱȱȱ¢ȱȱȱȱȱ¢ǯȱȱȱȱȱȱǰȱȱȱȱ ȱȱȱĴȱȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱȱȱȱǯȱȱȱȱȱȱ ȱ provide insight into current and future impacts of climate change on marine diseases. Case Study 3-C Leptospirosis disease in California sea lions Leptospirosis is endemic in California sea liThe emergence and pathogenesis of a serious ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ emerging human and animal disease, leptospi¢ȱǻȱȱǯǰȱŗşşŜDzȱ¢ȬȱȱǯǰȱŘŖŖŝDzȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ǯǰȱ ŗşŝŗǼǯȱ ȱ ȱ ȱ ȱ ŘŖŖŚǰȱ ¢ȱ ěȱ ȱ ǰȱ ȱ over 300 sea lions died along the central Califorǰȱǰȱȱǰȱȱȱ ȱLepȱ ǰȱ ȱ ȱ ȱ ¢ȱ ȱ tospiraȱȱȱȱ ȱthe coasts of Oregon, Washington, and British ȱ ǰȱ ǰȱ ȱ ȱ ǻǰȱ ŘŖŖşǼǯȱ ȱ ȱ years, this disease has re-emerged ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŚDzȱ ȱȱǯǰȱŘŖŖŜǼȱȱǰȱ ȱ ȱ ȱ ȱ ȱȱȱȱǯǯȱȱȱ have been noted. Increased leptoȱ ȱ ȱ ȱ ȱ increases in precipitation and Ěȱ ȱ ȱ Ûȱ ȱ ǻĴǰȱ ŘŖŖŗDzȱ ȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱ ȱ ǰȱ ȱ ȱ ȱ ber of reported cases of leptospiȱȱȱȱȱĚȱ California sea lion being treated for leptospirosis at The ȱ ȱ ȱ ȱ ȱ Ĵȱ Marine Mammal Center, Sausalito, California (Photo: The months of the year (Gaynor et al., Marine Mammal Center). ŘŖŖŝDzȱĵȱȱǯǰȱŘŖŗŗǼǯ 53 54 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 3-A (Continued) ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱ ȱ ȱ ȱ sea lions either die at sea or are stranded on ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ creased disease transmission to terrestrial animals can occur. Leptospira bacteria has been found to ȱȱȱ ȱȱ¢ȱȱȱȱ ȱȱȱȱ ȱies, thereby increasing the possibility of transmission of the bacteria to domestic animals, terrestrial ǰȱȱȱǻȱȱǯǰȱŘŖŖŚDzȱȱ et al., 2009; Zuerner et al., 2009). Recent informaȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ chronic, or “inapparent,” carriers of Leptospirosis and that the seasonal movements of these animals may contribute to the geographical spread of the disease (Zuerner et al., 2009). In the future, the exposure to and incidence of leptospirosis in both humans and marine mammals may increase in response to the combination of human population ȱ ȱ £ȱ ȱ ȱ ȱ ȱ populations and expansions of the ranges of marine mammals and changes in environmental conȱȱȱ¡ȱ ȱǰȱȱ Ěǰȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ 2010). Invasive species ȱ ¢ȱ Ȭȱ ȱ ȱ ¢ȱ £ȱ ȱ ęȱ ȱ ȱ ȱ ¢ȱǻǰȱŗşşŜDzȱȱȱǰȱŘŖŖŞDzȱ£ȱȱǯǰȱŘŖŖŖDzȱ £ȱȱǯǰȱ ŘŖŖŘǼǯȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ centuries and species introductions have been documented in most marine habitats ȱǻ£ȱȱǯǰȱŗşşşǰȱŘŖŖŖǼǯȱȱȱ¢ȱȱȱȱȱȱ¢ȱȱ ȱ ¢ǰȱ ȱ ȱ ŘřŖȱ Ȭȱ ȱ ǻȱ ȱ ǰȱ ŗşşŞǼǯȱ ȱ¢ȱȱȱȱȱȱȱȱęȱȱȱȱ ȱ ȱȱȱǰȱȱȱȱȱȱȱȱǯȱ ȱȱ ȱȱȱǰȱȱȱęȱȱȱ¢ȱȱ ȱȱȱǻ£ȱȱǯǰȱŘŖŖŖǼǰȱȱȱȱ ȱȱ drivers have also been reported (Firth et al., 2011; Reid et al., 2007). In addition, climate ȬȱȱȱȱȂȱȱȱȱȱȱęȱ ȱȱǻ¢ȱȱǯǰȱŘŖŗŘǼǯȱȱȱȱȱȱȱȱ in as-of-yet uninvaded habitats (de Rivera et al., 2011). For example, climate change is ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ¢Ȭǰȱ Ȭ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǰȱ ŘŖŖŞǼǰȱ ȱ ¡ȱ ¢ȱ ȱ ¢ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ǰȱ ȱ that the number of species capable of invading the polar region may be limited (Sigler ȱǯǰȱŘŖŗŗǼǯȱȱȱȱǰȱȱȱȱȱ¢ȱȱ ȱȱ movement for the introduced Asian green mussel, Perna viridis, may be currently limȱ¢ȱȱDzȱǰȱȱȱ¢ȱ ȱȱȱ¡ȱȱȱȱȱǻȱȱǯǰȱŘŖŗŗǼǯ Impacts of Climate Change on Marine Organisms ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱȱǻ ȱȱǯǰȱŘŖŖŞǼȱȱ¢ȱȱȱȱ ȱ temperature tolerance ranges than their native counterparts (Abreu et al., 2011; Braby ȱǰȱŘŖŖŜDzȱǰȱ ȱȱȱŘŖŗŗDzȱȱȱǯǰȱŘŖŗŖDzȱ £ȱȱǯǰȱ 2002a). Climate-mediated invasions and range shifts may also alter species interactions ȱ ȱ ȱ ǻ £ȱ ȱ ǯǰȱ ŘŖŖŘǼȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŗŗǼȱ ȱȱȱȱȱǯȱȱǰȱȱȱ¢ȱěȱȱ ȱȱ¢ȱȱȱDzȱȱȱȱȱ ǰȱȱ ȱȱȱȱȱ¢ȱȱȱ¢Ȭ ȱȱ ȱ ȱȱȱǻ¢ȱȱǯǰȱŘŖŖŝǼǯȱȱȱȱȱȱȱȱ threat to the persistence and interactions of native marine species in a changing climate. Protected species ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ěȱ ȱ ¢ȱ ȱ ȱ species such as marine mammals, sea turtles (Case Study 3-D), and sea birds, and these ȱȱ¢ȱ¢ȱȱȱȱȱǯȱȱěȱȱȱȱȱ¡ȱ to be primarily due to shifts in productivity and prey availability, changes in critical ȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱ Ȭȱǰȱȱȱȱȱȱ¡ȱȱȱ ȱȱȱ shifts in coastal currents (see Section 2). Climate change is a challenge for the sustainable ȱ ȱ ȱ ȱ ǻȱ ȱ ȱ ŚǼǯȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱĜȱȱȱȱȱ¢ȱȱ ȱȱȱȱȱ ȱȱȱ ȱȱȱȱȱȱȱ ȱǻ ȬȱȱǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŗŗDzȱȱȱȱ 2007; Wassmann et al., 2011). ¢ȱȱȱȱȱ¢ȱȱȱ¢ǰȱ¢ȱȱ£ȱȱ ȱȱȱȱȱȱȱȱȱ¢ǯȱȱȱȱ¢ȱȱȱȱDzȱȱȱǰȱȱȱǰȱȱ¢ȱ ¢ǰȱ ȱȱȱȱȱěȱȱ¢ȱ¢ȱ¡ȱȱȱȱ stages. For example, marine turtles may cross entire ocean basins throughout their lifetimes and can occupy diverse habitats such as sandy beaches, mangroves, and seagrass ȱǻ ȱȱǯǰȱŘŖŖŜDzȱȱȱǰȱŗşşŝDzȱȱȱǯǰȱŘŖŖŜDzȱȱȱ ǯǰȱŘŖŖŞDzȱȱ¢ȱřȬǼǯȱȱȱȱȱȱȱ¡ȱȱȱ ȱęȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱȱȱǻ ȱȱǯǰȱŘŖŖşǼǯȱȱǰȱȱȱȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱ ȱȱȱȱȱ¡ȱȱěǯȱ ȱȱȱȱȱǯǯǰȱȱȱȱȱȱȱ¢ȱȬ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱǻ ȱȱǯǰȱŘŖŖŝǼǰȱ ȱ ȱȱȱ¢ȱǻ£ȱ ȱǯǰȱŘŖŖşǼǯȱ¢ȱȱȱȱȱěȱǯȱȱȱȱȱ ȱȱȱȱȱ¡ȱ¡ȱǰȱȬȱȱ ȱ ȱȱȱ ȱŗŖǚȱǻ¢ȱȱǯǰȱŘŖŖŝDzȱȱȱǯǰȱŗşşŘDzȱȱ ȱǰȱŗşŞşǼǯȱȱȱǰȱȱȱȬȱȱĚȱ¢ȱ ȱȱ ȱȱȱ ȱȱǯȱȱȱȱȱȱȱ ȱȱ 55 56 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Ěǰȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ¢ȱ ȱ ěȱ ȱȱǻ ȱȱ£ǰȱŘŖŗŗǼǰȱȱȱǯ ȱȱȱȱȱěȱȱǰȱǰȱǰȱȱ phenology of protected seabirds (Bertram and Kaiser, 1993; Chastel et al., 1993; , Grémillet and Boulinier, 2009; Montevecchi and Myers 1997). For example, declines in oceanic ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ŗşŞŖȱ ȱ ȱ ȱ śŖȱ cent reduction in the survival of red-footed booby and red-tailed tropicbird eggs and ȱǻȱȱ ǰȱŗşşşǼǯȱȱ¢ȱȱ ȱȱȱ ȱ ȱ ȱ ȱ ǻ¢ȱ ȱ ǯǰȱ ŘŖŖşǼȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǻ¢ȱ ȱ ǰȱ ŘŖŗŖǼȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ěȱ ȱ ȱ Ȃȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖşǼǯȱ ȱ ȱ ǯȱ ǻŘŖŗŖǼȱ ȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ ŗŗȬŚśȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ǯȱ The common murre has also exhibited a declining trend in reproductive success in the ȱȱǰȱĚȱȱ¢ȱȱęǰȱ ȱȱȱȱ¢ȱǯȱȱŘŖŖşǰȱȱȱȱȱȱ ȱȱȱ ȱȱȱȱȱřŞȱ¢ȱȱȱ ȱȱȱȱȱȬȱÛȱ¢ȱ ǻ£¢ȱȱ¢ǰȱŘŖŗŖǼǯȱ ȱ ȱȱȱȱȱȱȱȱ¢ȱȱȱǰȱǰȱǰȱȱȱȱȱȱȱǻ Ȭson et al., 2011; Kovacs et al., 2010; Thomas and Laidre, 2011; Wassman et al., 2011), and ȱȱȱ¡ȱȱǯȱǰȱȱ¢ȱ ȱǻǰȱŘŖŖŞDzȱ ȱȱǯǰȱŘŖŖřDzȱěȱȱǯǰȱŘŖŖŝǼǰȱȱ ȱǻ ȱȱǰȱŘŖŖşǼǰȱȱ ǰȱęǰȱȱȱ ȱǻ ȱȱȱȱȱȱȱ DZȱĴDZȦȦ ǯǯǼǰȱȱȱȱȱȱȦȱȱȱȱ densities than normal. Similar impacts are occurring for pinnipeds; harbor porpoises are appearing in northern areas and harp seals are being sighted in northern locations ȱȱȱȱȱ¢ȱǻ ȱȱȱȱȱȱȱDZȱĴDZȦȦ ǯǯǼǯȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱǰȱȱȱȱ ȱ¢ǰȱȱȱȱȱȱȱȱǻȱȱǰȱŘŖŖŞDzȱȱȱǯǰȱ 2005). Polar bears are spending more time on land, resulting in declines in survival, ǰȱ¢ȱ£ǰȱȱȱȱǻȱȱǯǰȱŗşşşDzȱȱȱǰȱ ŘŖŖŜǼǯȱ ȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŝǼȱȱȱȱȱȱȱȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŜǰȱŘŖŗŖǼǯȱęȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱǰȱȱ ȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŜDzȱȬȱȱ ǯǰȱŘŖŗŗDzȱ¢ȱȱǯǰȱŘŖŖŞǼȱȱȱȱȱȱȱȱȱȱȱȬȱ resting platforms (Kovacs et al., 2010). These examples illustrate some of the challenges facing marine-protected-species managers in a changing climate. 3.3 Ecosystem Structure and Function ȱȱěȱȱȱȱȱȱ ȱȱȱȱ ǯȱȱȱȱȱȱěȱȱȱ ȱȱ¢ȱȱȱȱǻȱȱǰȱŘŖŗŖDzȱ ¢ǰȱŘŖŗŗDzȱȱȱǯǰȱŘŖŗŗǼǯȱȱȱ Impacts of Climate Change on Marine Organisms Case Study 3-D Loggerhead turtles and climate change A great deal of uncertainty remains regarding ȱ ȱ ȱ ěȱ ȱ Ěȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ¢ȱ ¢ȱ ǰȱ ȱ ȱ £ȱ ěent geographic regions during their various life ǯȱȱȱȱȱȱ¢ȱȱ exploit their environment for food as compared to adults in their species, and as such, are considered more susceptible to oceanographic variabil¢ȱǻ ȱȱǯǰȱŘŖŖřDzȱǰȱŗşŞŗDzȱĴȱ ȱ ǯǰȱ ŘŖŖŗǼǯȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ ¢ȱ ǻŘŖŗŗǼȱ ȱ ȱ ȱ ȱ ¡ȱ ȱĚȱȱȱȱ ȱ ȱ ǯȱ ȱ ęȱ ȱ that the number of turtles that reach sexual maturity is strongly correlated to ocean conditions ȱ ȱ ȱ ȱ ȱ ȱ ęǯȱ ȱ particular, the Atlantic Multidecadal Oscillation ǻǼȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱęȱȱȱǻDzȱ ȱȱŘǼȱěȱȱȱȱȱęǯȱ ȱ ȱ ǰȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱȱȱǻȱ ȱȱ ¢ǰȱ 2011). When prey items are scarce, mortality inǰȱ ěȱ ȱ ȱ ȱ ȱ ǯȱȱȱȱ ȱȱȱȱ loggerhead nesting counts over the past several ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǻȱ ȱȱ ¢ǰȱŘŖŗŗǼǯȱ ȱǰȱȱ ȱȱ ¢ȱǻŘŖŗŗǼȱ¡amined potential impacts of future climate change ȱȱȱȱȱ ȱǯȱȱȱȱǰȱ ȱ¢ȱ ȱȱȱger than average Gulf Stream current, helping ȱȱȱȱȱȱȱ¢ȱȱ leading to increased productivity and population £Dzȱ ǰȱ ȱ ȱ ęȱ ǰȱ ȱ perform best under anomalously cold conditions. Therefore, available climate data indicate the poȱ ȱ ęȱ ȱ ȱ ȱ ȱ ęȱ ȱ ¢ȱ ŘŖŚŖȱ ȱ ȱ ȱ ȱǻȱ ȱȱ ¢ǰȱŘŖŗŗǼǯǯ Adult loggerhead turtle (Photo: Sarah Dawsey) and juvenile loggerhead turtle (Photo: Steve Hillebrand). 57 58 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE species distributions and interactions are also beginning to create novel, “no-analog” ¢ȱȱȱȱ ȱĴȱȱȱȱ¢ȱ¢ȱǻ ȱȱ ǯǰȱŘŖŖŜDzȱȱȱǰȱŘŖŖŝǼǰȱȱȱȱ¢ȱȱȱ ȱȱ environmental change in the future. Although progress is being made in forecasting ȱǰȱ¡ǰȱȱěȱȱȱȱȱȱ marine communities present additional uncertainty and challenges for natural resource ȱǻȱȱǯǰȱŘŖŖŞǼǯȱ ¢ȱȱȱȱȱȱȱ ȱ¡ȱȱȱ ȱȱȱȱ¢ȱȱ ȱěȱȱǯȱ ǰȱ ȱ ęǰȱ ęǰȱ ȱ ȱ Ȭȱ ȱ ȱ ȱȱ¢ȱȱȱěȱȱȱǰȱȱ Ȭ¢ȱȱĜȱ ȱȱȱȱȱ ȱǻ¢ȱȱǯǰȱŘŖŖŞDzȱȱ ȱǯǰȱŘŖŗŘDzȱ ȱȱǯǰȱŘŖŗŖDzȱ ȱȱǯǰȱŘŖŖşDzȱãǰȱŘŖŖŞǼǯȱȱȱ ěȱȱȱȱǰȱȬȱěǰȱȱȱȱȱ ¢Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱȱ¢ȱȱĚ¡ǯȱ Species interactions and trophic relationships ȱ¢ȱȱĚȱ¢ȱȱȱěȱȱȱȱȱȱ ȱȱȱȱȱěȱȱȱȱȱȱȱȱ of species interactions, including competition, predation, parasitism, and mutualism (re ȱ¢ȱȱȱǯǰȱŘŖŗŗǼǯȱȱȱěȱȱȱȱěȱǯȱ Environmental change can alter an organism’s physiology and behavior and, thereǰȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ perature and chemistry can alter the per capita feeding rate of an individual consumer ǻȱȱǯǰȱŘŖŖşDzȱȂȱŘŖŖşDzȱȱȱǯǰȱŘŖŖŞDzȱǰȱŗşşşǼȱȱ¢ȱ ȱȂȱȱ¢ȱȱěȱȱȱ ȱȱǻȱȱǯǰȱŘŖŗŖDzȱ £ȱ ȱ ǯǰȱ ŘŖŖŘDzȱ ¢ǰȱ ŘŖŖŘǼǯȱ ¢ǰȱ ěȱ ȱ ȱ ȱ stress on predators and their prey can lead to altered species interactions (Yamane and Gilman, 2009); for example, due to temperature-related changes in metabolism, expoȱȱ ȱ ȱȱȱȱȱȱȱǯǯȱȱȱȱȱȱȱ mussel prey (Sanford. 1999) until temperatures exceed thermal optima and feeding ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱ ȱ ȱ ¢¢ȱ ȱȱěȱȱ¢ȱȱ¢ȱȱȱǰȱȱ ȱ¢ȱ¡ȱ ¡ȱȱȱȱȱ ȱȱ¢ȱȱȱěȱĚ ȱ conditions (Large et al., 2011). Climate change alters species interactions via changes in the population density of ȱǯȱȱȱěȱȱě¢ȱȱȱing increases or decreases in population abundance can trigger chains of indirect efȱ ǻȂȱ ȱ ǯǰȱ ŘŖŖşDzȱ £ȱ ȱ ǯǰȱ ŘŖŖŞǼDzȱ ȱ ¡ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱǰȱ ȱȱȱȱěȱȱȱȱȱȱȱȱȱ ǻȱȱǯǰȱŘŖŗŗDzȱȱȱǯǰȱŘŖŖŚǼǯȱǰȱȱ ȱ¢ȱȱȱȱ disproportionately to maintaining community structure and ecosystem function (Paine, 1992); for example, the salt marsh grass Spartina patens reduces salinity stresses acting Impacts of Climate Change on Marine Organisms ȱȱȱ ȱȱȱ¢ǰȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ǻȱ ȱ ǰȱ ŘŖŗŖǼǯȱ ȱ these interactions are sensitive to environmental conditions, they may act as “leverage ǰȄȱȱ ȱȱȱȱȱȱęȱȱȱȱȱ ȱȱ¢ȱȱ¢ȱȱǻȱȱǯǰȱŘŖŗŗDzȱȱȱ ǰȱŘŖŗŗDzȱ ǰȱ ŗşşşǼǯȱ ¢ǰȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ¢ȱ ȱ ȱȱȱȬȱȱȱȱǰȱȱ¢ǰȱȱǰȱȱěȱȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ǻĴȱ ȱ ǯǰȱ ŘŖŖŞDzȱ ȱ ȱ ǯǰȱ ŘŖŖŚDzȱ ȱ ȱ ǯǰȱ ŘŖŗŗDzȱĴȱȱǯǰȱŘŖŖŞǼǯȱȱȱěȱȱȱȱȱȱȱ ¡¢ȱȱȱ ȱǻ¢ȱȱǯǰȱŘŖŗŘDzȱȱȱǯǰȱŘŖŖŚǼǯȱ Climate-related shifts in the geographic distribution of marine species are altering ȱĴȱȱȬȱȱȱǻȱȱǯǰȱŘŖŗŗDzȱȱȱǯǰȱ 2010b). Analogous shifts in the vertical distribution of sessile intertidal species have inȱȱȱ ȱȱ¢ȱȱ¢ȱȱȱǻ ¢ǰȱŘŖŗŗǼǯȱ¢ǰȱȱȱǰȱȱ ȱȱȱȱȱȱȬ¢ȱȱȱ ȱ ǰȱȱȱȱȱȱȱȱ ȱȱ ȱȱȱȱǻ ȱȱǰȱŘŖŖŚDzȱȱȱǯǰȱŘŖŗŗDzȱpart et al., 2003). Climate-related shifts in species dominance have also been observed ȱȱǯǯǰȱȱȱȱǰȱȱȱȱǰȱȱȱȱ ȱǻ ȱȱǰȱŘŖŖŖǼȱȱ ȱȱȱȱȱǻȱȱǰȱŘŖŖşǼǰȱȱ ȱȱȱȱ ¢ȱȱȱȱȱȱǯȱȱ¡ǰȱȱ ȱȱǻŘŖŖşǼȱȱȱȱȬȱȱȱȱȱ ȱ ȱȱȱȱȱ¢ǰȱȱȱȱ ȱ ȱȱȱȱȱȱ ȱȱǯȱȱ¢ȱ¢ȱěȱ ȱ ¢ȱ £ȱ ȱ ȱ ǰȱ ȱ ȱ ¡ȱ ȱ ěȱ ȱ ȱȱȱ¢ǯȱ ¢ǰȱȱ¢ȱȱȱȱȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱ¢ȱȱȱȱȱȱ¢ȱ£ȱǻ ȱȱǯǰȱŘŖŗŗDzȱȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱȱȱȱ complex responses of marine species to environmental disturbance improves and coupled biophysical models of marine ecosystems become available, the ability to predict ȱ¢ȱȱȱȱȱȱȱ¢ȱ ȱȱǯȱȱȱ near-term, observations and monitoring systems provide the best method of detection ȱĴȱȱȱȱȱȱȱȱȱ¢ǰȱȱ ȱȱȱȱȱȱȬȱȱ¢Ȭȱȱǻ ǰȱŘŖŖşDzȱ¢ȱ ȱǯǰȱŘŖŗŗDzȱ¢ȱȱǰȱŘŖŖŞǼǯȱǰȱȱȱȱȱǰȱǰȱǰȱȱ¢ȱȱȱȱǰȱȱ ȱ ęȱȱ¢ȱȱȱ¢ȱȱȱȱ¢ȱǰȱ ȱȱ ǯȱȱȱȱȱĴȱȱȱȱǻȱȱǯǰȱŘŖŖŞDzȱȱȱĴǰȱŘŖŖŗǼǰȱ¢ȱȱ ȱȱȱȱĚȱ¢ȱ ȱȱȱǻȱȱǯǰȱŘŖŖŞǼǰȱȱȱ¢ǯȱȱǰȱȱȱ ȱȱěȱ ȱȱȱȱȱȱȱȱȱ¢ȱ model complex ecosystem responses to climate change. 59 60 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Biodiversity The accelerating changes in species distributions resulting from climate change and asȱȱȱȱȱȱȱ ȱȱȱ ȱȱ in the composition and diversity of marine communities, leading to the potential for eco¢ȱ£ȱǻȱȱǯǰȱŘŖŗŖDzȱȱȱǯǰȱŗşşşǼǯȱ¢ȱěȱȱȱ ȱȱǰȱ¢ǰȱȱȱ¢ȱȱǯǯȱȱ¢ȱ through initiatives such as the Census of Marine Life (Fautin et al., 2010) in order to gain baseline understanding and monitor changes through time. Climate-related distribution shifts have already altered community composition and biodiversity of many sysȱȱ¡ǰȱȱ¢ȱǻ ěȱŘŖŗŖDzȱȱȱǯǰȱŘŖŖŚDzȱ£ǰȱ ŘŖŖřǼǰȱȱȱǻȱȱǯǰȱŘŖŖŘǼǰȱ¢ȱȱȱǻ¢ȱȱ ǯǰȱŗşşśDzȱ ȱȱǯǰȱŘŖŖŜDzȱ ȱȱǯǰȱŘŖŖśDzȱ¢ȱȱǯǰȱŘŖŗŗǼǰȱęȱǻȱ ȱǯǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŗŗDzȱ¢ȱȱǯǰȱŘŖŖşDzȱ¢ȱȱǯǰȱŘŖŖśǼǰȱȱȱǻ ¢ȱ and Veit, 2003). These changes in community composition are a function of both local ¡ȱȱȱȱȱȱ ǯȱ ȱęȱȱȱěȱ¢ȱȱ¢ȱȱȱȱ ¢ǯȱȱȱȱęȱ¢ȱȱ¢ǰȱȱ ȱȱȱ¢ȱ corresponded to gradual shifts from the mussel-dominated communities typical of such ȱȱȱȱȱȱ¢ȱĚ¢ȱȱȱȱǻȱȱǯǰȱŘŖŖŞǼǯȱ¢ǰȱȱ ȱȱȱȱȱ2 seeps, calȱȱȱȱȱȱ¢ȱȬȱǰȱȱȱȱȱ ¢ȱȱȱȱȱȱȱǻ ȬȱȱǯǰȱŘŖŖŞǼǯȱ ¢ǰȱ ¢ȱ ȱ ȱ ¢ȱ ěȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ Ěȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ǯȱ ¡ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱǻȱȱǰȱŘŖŖşǼǯȱ¢ȱȱ ȱȱȱŘŖŖřȱȱ ȱȱȱ ȱȱ¢ȱȱȱ¢ȱ ǻȱȱǯǰȱŘŖŖśǼȱȱȱȱȱȱȱ£ȱ ȱȱȱȱȱ ȱȱ¡ȱ ȱȱ¢ȱĚȱ ȱȱȱȱ£ȱ ȱȱǻȱȱě¢ǰȱŘŖŗŖǼǯȱ¢ȱȱȱęȱȱȱȱ also support the hypothesis that marine biodiversity increases ecosystem stability and ȱȱȱǻȱȱǯǰȱŘŖŖŜǼǯȱ¡¢ȱȱ¢ȱȱęȱȱ ȱ ȱȱȱ¢ȱ ȱȱ¢ȱǻ ȱ ȱ ǯǰȱŘŖŖřǼȱȱȱę¢ȱȱȱȱǻȱȱǯǰȱŘŖŗŖǼǯȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ¢tems, including impacts on resilience, stability, and the provisioning of the ecosystem ȱȱ ȱȱȱǻȱȱŚǼǯȱǰȱĜȱȱ ȱ ¡ȱȱȱ ȱȱȱ¢ȱȱȱ ȱęȱǰȱȱǰȱ loss of biodiversity reduces ecosystem productivity and stability (Cardinale et al., 2011; £ȱȱǯǰȱŘŖŖŝǼǯ If species cannot migrate or adapt to a changing environment, they face local or even ȱ ¡ǯȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ŘŖȱ ȱ ȱ ǰȱ ȱ ǰȱ ȱ ǰȱ ęǰȱ ǰȱ ȱ ǰȱ ȱ ¢ȱ ȱ ȱ ¢ȱ ȱ ȱ ǻȱ ȱ ǰȱ ŘŖŖŜǼǯȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ¡ȱ ȱ ¡ȱ ȱ ȱ Impacts of Climate Change on Marine Organisms ȱȱȱȬȱǰȱȱǰȱȱȬȱȱǻȱȱǯǰȱ ŘŖŖşǼǯȱȬȱȱȬȱȱȱ¢ȱȱȱȱ ȱ degrades their preferred habitats and invasions occur from temperate regions. For exǰȱ ȱ ȱȱ¢ȱ ȱȱȱȃȄȱȱȱȱȱ ȱȱȱȱęȱȱȱŗŚȱȱ¢ǰȱ ȱ¢ȱȱȱȱ diversity and appear to have driven certain species locally extinct (Smith et al., 2011). Quantitative estimates of species losses based on historical comparisons, measured ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱ ȱǰȱȱȱ¢ȱȱȱȱǰȱȱ¡ȱȱ¡ȱ ȱȱ¢ǰȱ ȱȱȱȱȱŘȬśȱȱȱȱȱȱȱȱ ȱȱǻ¢ȱȱǯǰȱŘŖŗŗDzȱȱȱǯǰȱŘŖŗŖDzȱ£ȱȱǰȱŘŖŖřDzȱȱ ȱǯǰȱŘŖŗŖDzȱǰȱŘŖŖŞDzȱȱȱǯǰȱŗşşśǼǯȱȱȱȱȱȱȱ¡ȱ ȱȱȱǰȱ¡ǰȱǰȱȱȱȱȱȱ (Purvis et al., 2000), but changing climate has contributed to several mass extinction ȱȱȱȱǻ¢ȱȱǯǰȱŘŖŗŗǼǰȱȱ¢Ȃȱȱȱ¢ȱȱmate is expected to exacerbate the impacts of these other drivers in the coming century ǻȱȱǯǰȱŘŖŖŞǼǯ 3.4 Regime Shifts and Tipping Points As a result of environmental and ecological complexity in response to climatic and nonclimate stressors, rapid changes in ecosystem structure and function are a particular area of concern. Evidence of rapid phase, or regime, shifts is emerging across diverse ǯǯȱ ȱ ȱ ȱ ȱ ¢ȱ ǻ Ȭȱ ȱ ǰȱ ŘŖŗŖǼǯȱ ȱȱȱ ȱȱȱȱȱȱ¢ȱȱ gradually and continuously to changes in environmental conditions until a particular ȱ ȱ ȃȱ Ȅȱ ȱ ǰȱ ¢ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻěȱ ȱ ǰȱ ŘŖŖřDzȱ ěȱ et al., 2001, 2009). In many instances, these “replacement” assemblages are less desirȱȱȱȱǰȱȱȱ ȱȱȱȱȱ¢ȱȬ ȱ ȱǻȱȱǯǰȱŘŖŗŖǰȱȱ¢ȱřȬǼǯȱǰȱȱȱȱęȱ ȱȱ¢ȱȱȱǰȱ ȱȱȱȱ ecological, economic, and human social systems (Mumby et al., 2011b). Systems that ȱ¢ȱȱȱȱ¢ȱȬȱȱȱȱ ȱȱ and are therefore more susceptible to climate-related regime shifts and tipping points ǻȱȱǯǰȱŘŖŖŚǼǯȱ ǰȱȱ¢ȱȱȱǰȱȱȱ ȱȱĜȱȱȱȱęȱȱȱ¢ȱȱȱ¢ȱ ȱȱȱȱ¢ȱȱȬȱȱȱȱȱǻ ¢ȱȱ ǰȱŘŖŖşDzȱȱȱ ǰȱŘŖŗŗDzȱ¢ȱȱǯǰȱŘŖŗŗǼǯ ȱ ǯǯȱ ȱ ¢ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱȱȱȱǻ ȬȱȱǰȱŘŖŗŖǼǯȱȱȱȱ Bay, eelgrass (Zostera marina) died out almost completely during the record-hot summers of 2005 and 2010, evidently because too many days exceeded the species’ tolerance ȱ ȱ řŖǚȱ ȱ ǻȱ ȱ ǰȱ ŘŖŖŞǼǯȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱǻȱȱŘǼǰȱȱ ¢ȱŚřȱȱȱȱȱŗşŞŖȱȱȱ¢ȱŘŖŖŖȱ 61 62 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE (Lindsay and Zhang, 2005). Coral reefs are undergoing rapid phase shifts from coraldominated to macroalgal-dominated systems (Case Study 3-B) due to a combination ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ęǰȱ ǰȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŗŖDzȱ Ȭȱ ȱ ǯǰȱ ŘŖŖŝDzȱ ȱ ȱ ǯǰȱ ŘŖŗŖǼǯȱȱȱǯȱǻŘŖŖřǼȱȱȱŞŖȱȱȱȱȱȱȱȱ ȱȱȱȱȱśŖȱȱȱȱ¢ȱŗŖȱȱǯȱȱȱȱȱȱȱȱ¢ǰȱȱ Ȭ¡¢ǰȱȱ¢¡ǰȱȱ have recently emerged as a novel phenomenon due to changes in the timing and duraȱȱȱ ȱǻȱȱǯǰȱŘŖŖŝDzȱȱȱǯǰȱŘŖŖŞǼǯȱȱȱȱȱȱ ȱ¢ȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŚǼȱȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ Ȭ¡¢ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞǼǰȱ ȱ ěȱ ȱęǯȱȱ¢ȱǰȱȱȱ ȱ ȱȱȱǰȱȬ ȱȱȱȱȱȱȱ ȱȱǯȱ ǰȱȱ indicates that reducing non-climatic stressors such as overharvesting and pollution can ¢ȱȱȱȱȱȱǻ£ȬȱȱǯǰȱŘŖŖşDzȱ ȱȱǯǰȱ ŘŖŖŞDzȱȱȱǯǰȱŘŖŗŗǼǯ Case Study 3-E Cumulative impacts assessment ȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ or to the overall condition of a marine system in ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ¢ȱ ȱ ȱ ¢ȱ ěȱ ȱ ǯȱ tive Impact Assessments are designed to provide ȱ¢ȱȱȱǻ ȱȱǯǰȱŘŖŖŞǼǯȱȱȱȱ¢ȱȱȱȱȱ ȱȱȱ¢ǰȱȱȱǻ ȱ ȱ ǯǰȱ ŘŖŖŞǼȱ ȱ ȱ ȱ ȱ ȱ ȱȱǻǯǯǰȱȱDZȱ ȱȱǯǰȱ ŘŖŖşDzȱ ȱ ȱ DZȱ ȱ ȱ ǯǰȱ ŘŖŖŞǰȱ ŘŖŖşǼǰȱ ¢ȱ ȱ ȱ ¢ȱ ęȱ ȱ ȱ ȱ ȱ ǯȱ ȱ some locations, non-climatic stressors represent the dominant impact (e.g., land-based stressors: ȱȱǯǰȱŘŖŖşDzȱęDZȱ ȱȱǯǰȱŘŖŗŖǼǯ In each of the regional assessments that have ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ǰȱ ȱ ęǰȱ ȱ Ȭ ȱ ȱ ȱ ȱ ¢ȱ ęȱ ȱ in driving overall impacts to marine systems. For ęȱ Ȭȱ ǰȱ ȱ ȱ can dominate impacts over global sources; for exǰȱȱęȱȱȱ ȱȱȱ ȱȱȬȱěȱȱȱȱȱȱ ȱȱȱȱȱȱ¡ȱ and can therefore be addressed in part through ȱȱȱȱ ȱȱǻ¢ȱȱǯǰȱ 2011). Climate-related increases in precipitation ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱȱȱȱ ȱ¡¢ȱȱȱ DzȱǰȱȱȱĚ ȱȱȱ ȱȱȱȱ ȱȱȱȱ ¢ȱ ȱ ¢¡ȱ ȱ ȱ ȱ ȱȱ ȱȬȱ¢ȱȱ hypoxia is increasing (CENR 2010, Doney et al., 2012). Impacts of Climate Change on Marine Organisms Case Study 3-E (Continued) Cumulative impact map of 25 different human activities on 19 different marine ecosystems within the California Current and impact partitioned into climate change impacts alone (n = 3 layers) and other stressors (land-based sources of stress (n = 9 layers), all types of fishing (n = 6 layers), and other ocean- based commercial activities (n = 7 layers). Figure adopted from Halpern et al., 2009b. 63 Chapter 4 Impacts of Climate Change on Human Uses of the Ocean and Ocean Services Executive Summary ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ¢ǯȱȱǰȱȱȱȱȱ ȱȱȱȱȱ ȱǰȱȱǰȱȱȬęȱȱȱ¢ȱ¢ȱěȱ ȱ ȱ ǯȱȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯǰȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ climate change. ¡ȱěȱȱ ¢ȱȱȱȱȬȱȱȱȱȱȱȱǯȱȱǰȱȱȱȱ ȱȱěȱȱȱȱ ȱȱȱȱȱȱȱ ǰȱȱȱȱȱȱȱ ¡ȱȱȱȱȱȱȱȱ ȱȱȱ¢ȱěȱȱȱ ȱȱȱȱȱȱ ȱȱȱǯȱȱȱȱȱ ȱȱǰȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱȱȬȱȱȱęȱȱȱȱȱȱȱ ȱDZȱ ǰȱȱȱȱęǰȱěȱ¢ȱǰȱism, human health, maritime security, transportation, and governance. ǯǯȱȱ¢ȱȱ¢ȱȱȱȱȱ ȱ¢ȱȱȱ ȱȱȱȱȱ ȱ¢ȱȱǰȱǰȱǰȱȱȱȱȱǯȱȱȱȱęȱȱȱǯǯȱȱȱ ȱ Ȭȱ ȱ ¢ȱ ǻȱ ǰȱ ŘŖŗŖǼǯȱ ȱ ęǰȱ ęȱȱęȱȱȱȱȱȱ ȱȱȱȱȱǰȱ ȱ ȱ ę¢ȱ ȱ ȱ ȱ ȱ Ȭȱ ȱ ęȬȱ ȱȱȱȱȱȱǯǯȱȱȱȱěȱȱȱȱȱ ǯǯȱęȱ ȱȱȱȱȱȱȱęȱȱȱȱ¢ȱȱȱ indirect climate impacts on productivity and location; others stem from impacts that ȱȱȱȱęȱȱȱ ȱȱęȬȱȱȱ ȱ¢ǯȱ¢ǰȱȱȱȱȱȱȱěȱȱęȱ ȱȱǰȱȱȱęȱǰȱȱȱǰȱęȱǰȱęȱǰȱȱǰȱȱȱȱęǯȱȱȱǰȱȱtions are shifting; for others, climate-induced shifts in marine ecosystems have brought ȱĚȱȱȱȱȱȱǯ R. Griffis and J. Howard (eds.), Oceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment, NCA Regional Input Reports, DOI 10.5822/978-1-61091-480-2_4, © 2013 The National Oceanic and Atmospheric Administration 64 Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱǯǯȱȱȱȱǰȱȱ¢ȱȱȱǰȱȱȱǯȱ ȱǯǯȱȱŞŜȱȱȱȱȱȱ¡¢ȱȱȱȱȱȱȱǯȱȱȱȱȬȱȱ¢ȱȱȱ ȱȱful algal blooms that can extend the spatial or temporal scope of a bloom or release ¡ȱȱȱ ȱȱȱȱęȱȱęDzȱęȱȱȬȱȱ ¢ȱȱęȱȱȱ¢ȱȱǯȱ ȱ ȱȱ¢ȱȱ ȱȱȱȱȱȱǰȱ ȱ¢ȱȱȱ¢ȱȱ ȱ ȱȱȱȱǻȱȱřǼȱȱȱȱȱǯȱ Species cultured in temperate regions, predominantly salmon and cod species have a ¢ȱ ȱȱȱȱȱȱ ǯȱȱȱŗŝķǰȱȱ ȱȱȱȱȱȱ£ȱĜ¢ȱȱǰȱ ȱȱȱ to the salmon farming sector (DeSilva et al., 2009). On the other hand, certain aspects of ȱ¢ȱęȱȱȬȱǯȱ ȱ ȱȱ¢ȱ ȱȱȱ¢ȱȱ ȱȱǰȱ¢ȱȱȱ¢ȱȱȱ ȱȱǯȱȱȱȱ ȱȱ¢ȱȱȱȱȱěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱȱ¢ȱ ȱȱȱȱȱȱǯȱ ěȱ¢ȱȱȱǰȱǰȱȱ ȱ¢ȱȱȱȱ ȱȱȱ¢ǯȱ¢ȱȱ ȱȱȱȱȱȱȱȱȱ climate change and industry reaction to these changes involves an even larger number ȱǯȱȱ¡ǰȱ¢ȱȱȱ¢ȱȱ ȱȱȱȱȱ¢ǰȱȱȱȱ¢ǰȱȱȱȬ ȱǯȱȱ critical factors include, but are not limited to, geographic location; local, regional, and international policies and regulations; the industry’s standards of ethical practice; and ȱ¢ȂȱĚȱȱȱȱȱǯȱȱȱȬȱ ěȱȱȱȱȱȱȱȱ ȱǰȱȱȱȱȱ ȱȱȱȱ ȱ ȱȱǰȱȱȱȱ ęȱȱȱȱ¡ȱȱ¢ȱȱȱȱȱȱ ȱȱȱ¢ȱȱ ȱȱȱ¢ǯ ȱȱǯǯǰȱȱȱ¢ȱȱ¢ȱȱȱȱȱȱȱǯȱ ¢ǰȱŘǯŞȱȱȱȱȱǰȱŝǯśŘȱȱǰȱȱǞŗǯŗŗȱȱȱ travel and recreational total sales are supported by tourism (OTTI, 2011a, b). In addition, ȱŘŖŖşȬŘŖŗŖǰȱȱȱȱȱȱȱȱǯǯȱȱȱȱȱȱȱȱȱ ȱ¢ȱȱȱ ȱǰȱȱȱȱȱǻȱŘŖŗŗǰȱǼǯȱȱ ȱȱȱȱǰȱȱȱ ȱȱȱȱȱǰȱȱ ȱǰȱȱ¡ȱȱȱȱ¢ȱȱȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ¢DZȱ ¢ȱ ȱ ȱ ȱȱȱ¢ǰȱ¢ȱȱǰȱȱ ȱ¡ȱěȱȱ¢ȱǯ ȱȱȱȱȱȱěȱȱȱȱȱȱȱ ȱȱ¢ȱęǯȱȱȱȱ¢ȱȱ¡ȱȱ ȱȱȱȱ ¡ȱȱȱȱȱǻȱȱǰȱŘŖŖşǼȱȱ ȱ¢ȱ¡ȱman vulnerability and sensitivity in the future (McGeehin, 2007). These include, but are ȱȱǰȱ¢ȱȱȱȱȱǰȱȱȱęȱDzȱ¡ȱ ȬȱDzȱ¢ȱȱ¢ȱȱȱDzȱ 65 66 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱȱȱ Dzȱȱȱ¢ȱȱDzȱȱ ȱȱDzȱȱ ȱȱȱȬȱȱĚǯ Finally, security, transportation, and governance issues are also at play in terms of ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ȱ ¢ǰȱ ȱ ȱȱȱǰȱ¢ȱȱȱȱȱȱǰȱȱȱȱȱ the future of ocean governance, including marine resource and ecosystem-based manǯȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ accessibility in the Arctic. National security concerns and threats to national sovereignty ȱȱȱȱȱȱȱĴȱǻǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŖŝDzȱȱŘŖŗŗǼǯȱȱȱ ȱȱȱȱ¡ȱȱȱȱ ȱȱȱǰȱ¢ǰȱȱȱ¢ȱȱȱ ȱȱportunities for partnership and cooperation on local, national, and international scales ǻĴȱȱǰȱŘŖŖŖǼǯ ȱȱȱȱȱȱȱȱȱȱȱȱǯǯȱȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱȱ¢ȱ¢ȱȱȱȱȱȱȬȱȱȬȱǯȱȱ ȱȱ ȱ ȱȱȱȱȬȱȱ¢ȱěȱȱȱ ȱȱ ȱȱǯǯȱ¢ȱȱȱȱȱȱȱȱȱȱǯȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱęǯ Key Findings ŗǯȲęȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱȱȱȱȱęǰȱ¢ǰȱǰȱ¢ǰȱȱ health, tourism, and maritime governance, are already being observed and are predicted to continue into the future. • ȱěȱȱȱȱȱȃǰȄȱȱȱ¢ȱ¡ȱȱ¡ȱȱ ȱǰȱ ȱȱȱȱȱȱȃǰȄȱȱȱ¢ȱ reduce the ability of humans to use the ocean in a given sector, and virtually all ěȱ ȱȱȱȱȱȱȱ ȱȱ ǰȱȱ ȱȱ¢ȱ ǰȱȱȱȱǯ • ȱȱȱěȱȱȱȱȱǯǯȱęȱ ȱȱȱȱȱ ȱȱęȱȱȱȱ¢ȱȱȱȱȱȱȱ ¢ȱȱDzȱȱȱȱȱȱȱȱȱȱęȱȱȱ ȱȱęȬȱȱȱȱ¢ǰȱ ȱȱ¡ȱȱȱȱȱȱȱȱȱ ǰǯ • ȱȱȱ¡ȱȱȱȱȱȱȱȱȱ ȱ ȱȱȱȱȱȱǯ • ȱȱȬȱěȱȱȱȱȱȱ¢ȱȱȱȱ ȱȱȱȱȱ ȱǰȱȱȱȱȱȱ ȱ ȱ ȱȱǰȱȱȱȱȱ¡ȱȱęȱ assets and resources as energy production moves from the traditional oil and Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱ¢ȱȱ ȱȱȱ¢ǯ • In the face of climate change, impacts to marine resource distribution, variable ȱǰȱȱ¡ȱȱȱȱ¢ȱȱȱȱ ¡ȱȱȱȱȱęȱȱȱȱȱ¢Dzȱȱ ěȱ ȱȱȱȱȱȱȱȱ¢ǰȱȱȱǰȱȱ mixed in others. • The scale and scope of climate impacts such as increased economic access and ¢ȱȱȱȱȱǻǰȱǼȱȱ¢ȱȱęȱ ȱȱȱȱȱǯȱȱȱȱȱȱȱȱȱ ȱ ȱȱȱȱȱȱ ȱȱȱȱȱ uses of the oceans in the future. ŘǯȲȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱ ȱȱȱǰȱ ȱȱǰȱȱ ȱ¢ȱȱȱȱ ę¢ȱȱȱȱęǯȱ • ȱȱȱȱȱȱę¢ȱǰȱȱ¢ȱ¡ǰȱȱȱȱȱ¢ȱȱȱ¢ȱȱȱ ȱȱȱ¢ȱȱȱ¢ȱȱȱ¢ȱ ȱ ȱ¢ȱ ǯ řǯȲȱ ȃǰȄȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ȱȱȱȱȱȱȱȱȱ ȱ¢ȱȱěȱ¢ȱȱ change. • ȱȱȱȱȱ Ȭȱȱȱȱȱ ¡ȱȱȱę¢ȱȱȱȱȱȱǯ • ȱȱȱȱȱȱěȱȱȱȱȱȱ ȱȱȱęǰȱȱȱȱ¡ȱ Ȭȱǰȱ¢ȱȱ¢ǰȱȱȱȱȱȱ ǰȱȱ food insecurity and malnutrition, rising pollutant-related respiratory problems, and spread of infectious disease. ŚǯȲȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ insight into societal responses and adaptation options. • ȱ¢ȱȱ¢ȱȱ ȱȱ¢ȱȱ ȱȱȱȱȱ ȱ¢ǰȱǰȱ economic, and social systems in the future. 4.1 Introduction The biophysical impacts of climate change on oceans described in Sections 2 and 3 also ěȱȱȱȱ¢ȱȱȱ ȱȱǯȱȱ¡ǰȱęȬȱȱȱȱȱ¢ȱȱěȱ¢ȱȬȱȱ ȱȱȱȱȱȱȱȱȱȱęȱȱęȱȱȱȱȱȱȱȱȱȱȱȱęȱhaviors, industries, infrastructure, and communities. This leads to one of the limitations 67 68 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE in our current ability to assess these socio-economic impacts: uncertainty regarding ȱȱȱȱȱȱȱ¢ȱȱȱȱȱĴable to climate change. The direction of these changes may be clear but the rate and ¡ǰȱȱ ȱȱ¢ǰȱǰȱȱȱȱȱǰȱȱȱ clear. ȱȬȱȱȱěȱȱȱȱȱȱ ȱȱȱȬȱȱȱȱȱȱȱȱDzȱȱ¡ǰȱ ȱȱȱȱȱȱ ȱȱȱȱ¢ȱ ȱ¢ȱȱǰȱȱ¢ȱěȱȱȱȱǯȱ¢ǰȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ¢ȱ ¢ȱ ěȱ ȱ ȱ Ȭȱ ¢ǯȱȱǰȱ ǰȱ ȱȱȱȱȬȱěȱȱȱ in marine resources that are clearly related to climate change, based on our current understanding of the biophysical impacts of climate change (see Sections 2 and 3 for more detail). ȱ ȱ ȃȱ Ȅȱ ȱ ȱ ȱ ȱ ęȱ ¢ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ęȱ ȱ ęȱ ęȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ǯǯȱ ȱȱȱ¢ȱ¢ȱ£ȱȱȃȱȱȱȱȱȱ ȱǯǯȄȱȱȱ ȱ ¢DZ The ocean economy, the portion of the economy that relies directly on ocean attributes, in 2000 contributed more than $117 billion to American prosperity and supported well over two million jobs. Roughly three quarters of the jobs and half the economic value were produced by ocean-related tourism and recreation (Figure 4-1). For comparison, ocean-related employment was almost 1½ times larger than agricultural employment in 2000, and total economic output was 2 ½ times larger than that of the farm sector. (ǰȱŘŖŖŚǰȱȱřŗǼ The report also notes, “Standard government data are not designed to measure ȱ¡ȱȱ¢ǯȱ¢ȱȱȱȱȱȱȱ ȱ ¢ȱ ¢ǰȱ ȱ ȱ ǰȱ ȱ ǰȱ ¢ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ prevented Americans from fully understanding and appreciating the economic imȱȱȱȱȱȄȱǻǰȱŘŖŖŚǰȱȱřŗǼǯ As described in earlier sections, the physical changes in marine environments exȱȱȱȱȱȱȱȱȱęȱ ȱȱȱȱȱ¢ǰȱȱȱǻȱȱŘǼǯȱȱ ȱȱȱ lead to impacts on ocean organisms, such as shifts in the distribution of species, popǰȱȱȱȱȱȱȱǰȱ ȱǰȱȱȱǻȱ ȱřDzȱȱȱǯǰȱŘŖŗŖǼǯȱȱǰȱȱȱ ȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱǰȱȱȱȱȱȱęȱĚȱȱȱȱęȱǰȱȱȱȱȱ ȱȱȱȱȱȱ¡ǰȱȱ¡ȱ ȱ ȱȱȱ Ȭȱǯȱȱȱ¢ȱȱȱ critical for enhanced understanding of the socio-economic impacts of these changes Impacts of Climate Change on Human Uses of the Ocean and Ocean Services 69 Figure 4-1 Value of the oceans. The ocean economy includes activities that rely directly on ocean attributed or take place on or under the ocean. In 2000, Tourism and Recreation was the largest sector in the ocean economy, providing approximately 1.6 million jobs (Source: USCOP, 2004). ȱȱǯȱȱ¢ȱȱȱȱȱ¢£ȱȱ ȱ impacts of climate change on the socio-economic uses of marine resources. ȱ¡ǰȱȱȱ¡ȱȱȱęȬȱȱ¢ȱȱȱ exploitation of particular species in particular geographic environments, human popuȱ ȱ¢ȱȱȱȱȱ¡ȱȱȱǰȱ¢ȱȱȱ geographic proximity to the human communities, as the distributions of those species ȱȱǯȱǰȱȱ ȱ¢ȱȱȱȱ ȱȱ ȱȱȱȱȱȱ ȱȱǰȱǰȱȱȱȱȱȱ ȱ¡ȱȱȱǰȱ ȱ¢ȱȱȱȱȱǰȱ¢ȱ ȱȱ to adapt either through increased vessel transit time, the migration of shore-side human communities, or both to stay in proximity to their “traditional” species of exploitation. ¢ǰȱȱȱęȱȱȱȱǰȱȱȱǰȱęȱȱ crustaceans, being no longer viable in their present locations, or perhaps not being viȱȱȱȱȱȱ¢ȱȱȱȱȱǰȱ¢ȱȱ¡ȱȱȱȱ ȱȱěǯȱȱ ȱ¢ȱȱȱȱęȱȱ ȱȱȱȱȱǻ ȱȱǯǰȱŘŖŖřǼǯ ȱ¢ȱȱȱȱȱȱȱȱȬȱěȱȱęȱǰȱȱȱȱȱǰȱ ȱ¢ȱȱȱȱ 70 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱȱȱȱǯȱȱȱęȱ¢ȱȱȱȱ ȱȱȱȱȱȬȱěǰȱǰȱȱȱǰȱȱ ȱȱȱȱěǯȱȱȱȱȱȱȱȱ¡ȱȱȱȱ ȱȱȱȱȱȱȱǯȱȱęȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱȱȱȱęȱȱȱȱȱȱȬȱ ǯȱ ȱȱȱȱȱ¢ȱ¡ǰȱȱȱȱȱȱ ȱ from available data and information. The second approach is the construction of gen¢ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ronments. Finally, the implications of these changes for marine resource governance ¢ȱ ȱ ȱ ¡ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱȱ ȱ¢ȱ¢ȱȱȱȱ¡ȱǰȱǰȱȱǰȱ ȱȱ ȱǵȱ¢ǰȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱ¢ȱȱȱȱǯǯDzȱ ǰȱȱĴȱ ȱȱ ȱȱȱȱȱȱȱȱȱȱȱǯǯȱǰȱȱȱrial and case studies for most regions has been included. 4.2 Climate Effects on Capture Fisheries Fishing is a production activity that takes place under uncommonly uncontrolled ǯȱȱ ȱȱȱȱȱęǰȱȱ ȱȱȱȱȱȱęǰȱ ȱ¢ȱȱ¢ȱěȱ¢ȱȱȱȱǯȱȱȱȱ¢ȱ Ĵȱȱȱȱȱȱȱȱȱȱȱȱ ȱǯȱȱȱȱȱȱ ȱȱ ȱȱȱȱȱȱȱ¢ȱȱ ȱęȱȱǯȱȱ ȱ ȱȱȱȱȱȱěȱȱȱȱęǯȱ¢ǰȱȱęies, unlike most other types of economic production, we … have to make do with what nature decides to make available.. ǻ ǰȱŘŖŖŝǰȱȱŗśŝǼ ȱȱȱęȱȱȱǯǯȱȱȱȱȬȱ ȱ¢ȱǻȱŚȬŗȱȱŚȬŘǼǯȱȱęȱȱȱę¢ȱȱ ȱȱȱ ȬȱȱęȬȱȱȱȱȱȱ ȱǯǯȱȱȱǯǯǰȱęȱȱ¢ȱȱȱȱȱ¢ȱęȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ řȱ ȱ ŘŖŖȱ ȱ ȱ ȱ ȱ ǯȱ ǰȱȱȱȱȱȱǻǼȱȱ ȱȱȱȱŘřŖȱȱęȱȱȱȱ¡ȱȱȱşŖȱ percent of the nation’s commercial harvest. In addition, individual states retain manageȱ¢ȱȱęȱȱ ȱřǰȱȱȱȱȱȱȱşǰȱȱȱ ȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱ¢ǯȱȱȱ Ĵȱȱȱȱę¢ȱǰȱȱȱ¡ȱǯ ȱ ȱ ȱ ěȱ ǯǯȱ ęȱ ȱ ȱ ¢ǰȱ ȱ ȱ ¢ȱ¢ȱȱ ȱęȱǰȱȱȱȱȱȱ ȱ ȱ ǰȱ ¢ȱ ȱ ȱ ęȱ ǰȱ ȱ ęȂȱ ȱ ¢ǯȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ Dzȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ęȬȱ ǯȱ¡ȱ ȱȱ¢ȱȱȱęȱȱȱȬȱ 71 Impacts of Climate Change on Human Uses of the Ocean and Ocean Services Table 4-1: 2009 economic impacts of the United States seafood industry Jobs ȱǻǞŗǰŖŖŖǼ ȱǻǞŗǰŖŖŖǼ ȱȱ ǻǞŗǰŖŖŖǼ ŗǰŖŘşǰśŚŘ ŗŗŜǰŘŘŚǰśŚŞ řŗǰśśŜǰŜŚř ŚŞǰŘŞŘǰřŗş Commercial harvesters ŗřśǰŚŜŜ ŗŖǰřŚşǰŚŚŜ řǰŚřśǰŖŘŝ śǰřŚŖǰŗŗŜ Seafood processors & dealers ŗŞřǰŞşś ŘśǰŘŚŖǰŚŚŗ ŝǰşŜśǰŝŗş ŗŗǰŖŝřǰŘŚŖ Importers ŗŝŞǰřŞŝ ŚşǰŖŝŖǰŚŝŜ ŝǰŞŜŚǰŚŞŖ ŗŚǰşśŞǰŞřŖ ȱ ȱǭȱ ŚŝǰŚŖś ŜǰśŖśǰřŞř ŘǰŗřŝǰŝŗŚ řǰŖśŞǰŝŝŝ Retail ŚŞŚǰřŞş ŘśǰŖśŞǰŞŖŘ ŗŖǰŗśřǰŝŖŚ ŗřǰŞśŗǰřśŜ ȱ DZȱȱȱȱǯȱŘŖŗŖǯȱȱȱȱȱȱǰȱŘŖŖşǯȱǯǯȱǯȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱǰȱȱǯȱǯȱȬȦȬŗŗŞǰȱŗŝŘǯȱ Table 4-2: 2009 economic impacts of recreational fishing expenditures Jobs ȱǻǞŗǰŖŖŖǼ ȱǻǞŗǰŖŖŖǼ ȱȱ ǻǞŗǰŖŖŖǼ řŘŝǰŗŘř ŚşǰŞŗŗǰşŜŗ ŗŚǰśŝŚǰŚŜŚ ŘřǰŗşŜǰŚŘŘ For hire 17,217 ŗǰşŗśǰŚśŘ ŜŖŜǰşŞř 1,039,705 Private boat řŗǰŗŝŜ ŚǰŘŚřǰśŚŗ ŗǰŘśřǰŞŖŚ ŘǰŗśŞǰŚŗŚ Shore 35,293 ŚǰřŗŘǰŞśŖ ŗǰřŗşǰŞŜś ŘǰŘŚřǰŖřŜ ȱ ŘŚřǰŚřŞ řşǰřŚŖǰŗŗŞ ŗŗǰřşřǰŞŗŘ ŗŝǰŝśśǰŘŜŞ Retail ŚŞŚǰřŞş ŘśǰŖśŞǰŞŖŘ ŗŖǰŗśřǰŝŖŚ ŗřǰŞśŗǰřśŜ ȱ DZȱȱȱȱǯȱŘŖŗŖǯȱȱȱȱȱȱǰȱŘŖŖşǯȱǯǯȱǯȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱǰȱȱǯȱǯȱȬȦȬŗŗŞǰȱŗŝŘǯȱ Dzȱ ǰȱȱȱȱȱęȱȱȱǯǯȱȱ¢ȱȱ on metrics, such as maximum sustainable yield (MSY), that depend on productivity, the ěȱȱȱȱȱęȱ ȱ¢ȱȱȱ ȱęȂȱers respond to those changes. ȱȱȱ¢ȱȱȱęȱȱȱȱȱȱ ǰȱ ȱ ȱ ȱ ¡ǰȱ Ȧȱ ȱ ȱ ęȱ ȱ ȱ Ȃȱ ǯȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ Ȭȱ ȱ ęȱ ǻ ȱ ȱ ǯǰȱ ŘŖŗŖDzȱ Ĵȱ ȱ ǯǰȱ ŘŖŖŝDzȱ ȱ ŗşşŖǰȱ ŗşşŗDzȱ ǯȱ ȱ ȱ Ȭǰȱ ŘŖŖŞǼDzȱ ǰȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ǰȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ 72 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǯȱȱȱȱ¢ȱȱȱęȱȱȱ¢ȱȱǻǰȱŘŖŖŖǼǯȱȱȱȱǰȱȱ¢ȱǰȱěȱ ȱ ȱȱȱȱȱȱ¢ȱȱȱȱ¢ȱȱȱ ǯȱȱȱǰȱȱ ȱȱȱȱȱȱȱ¢Ȃȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ¢ȱǻŘŖŖŞǼȱȱȱȱȱȱȱȱȱȱȱȱ on communities of out-migration, especially in rural areas (Lal et al., 2011). On the other ǰȱęȱȱȱȱȱȱęȬȱȱǻȱȱǰȱŘŖŗŘDzȱ¢ȱȱǰȱŘŖŖŞDzȱȱǰȱŘŖŖşǼǰȱȱȱ ¢ȱ ȱ ěǯȱ¢ȱ ȬȬȱ ȱ ȱ ęȱ ȱ ȱ exacerbate this trend, but the exact degree or even direction of any of these economic ȱ ȱ ȱ ęȱ ȱ DZȱ ȱ ęȱ ȱ ȱ Dzȱ ȱěȱȱȱȱȱ¢ȱȱȱȱȱȱǻ ȱȱ al., 1999); and choices based on social and cultural factors. ȱęȱ ȱ¢ȱȱȱȱ ȱȱȱȱȱ¢ȱȱȱȱȱęȱ¡ȱȱȱȱęȱ ȱ ǻȱ ȱ Ĵǰȱ ŗşşŚǼǯȱ ȱ ȱ ¢ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ǯǯǰȱ ȱ ȱ ȱ ǻŗşşŞǼȱ ȱ ȱ ȱ ȱ ȱ ȱȱ¡ȱȱȱȱ¢ ȱ ȱȱǞŚǯŜȱȱȱȱȱǞŘŖǯśȱ ȱ ȱ ęȱ ȱ ȱ ǯȱ ȱ ęȱ ¢ȱ ęȱ ȱ ȱ ȱ ȱȱȱȱęȱȱȱǰȱȱ¢ȱ ȱ¢ȱȱȱȱȱ ȱȱȱȱȱǻȱȱǯǰȱŘŖŖŝǼDzȱ ǰȱȱȱ¡ȱȱȱȱȱǰȱȱęȱ¢ȱ¡ȱȱ ȱ ǰȱ ¢ȱ ȱ ¢ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ Ȭ ęęȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖşǼǰȱ ȱ ȱ ęǰȱ ȱ ȱ ¡ȱ ȱȱ¢ȱȱ¢ȱȱȱęȱǻȱ¢ȱȱ¢ǰȱŘŖŖşǼǰȱ ǰȱ ǰȱȱȱǻȱȱȱǯǰȱŘŖŖşǰȱȱȱȱȱęǰȱǰȱ and climate change). Effects on the productivity and location of fish stocks ȱȱȱȱěȱȱȱȱȱęȱ ȱȱȱȱȱȱ¢ȱȱȱȱȱęȱȱȱȱȱȱȱȱȱȱȱęȱǻȱȱřȱȱȱȱȱȱěǼǯȱȱȱȱ ¢ȱěȱȱ ȱǰȱȱ¢ǰȱȱ¢ȱȱęȱȱ ǻǰȱŘŖŗŖDzȱȱřǼǯȱȱȱȱȱěȱȱȱ¢ȱȱport those populations, by altering primary productivity (Boyce et al., 2010; Sarmiento ȱǯǰȱŘŖŖŚDzȱȱȱǯǰȱŘŖŗŗDzȱȱřǼȱȱ ȱȱȱȱ¢ǰȱǰȱ ȱȱȱȱȱ¢ȱȱ ȱęȱȱǻǰȱŘŖŗŖDzȱȱřǼǯȱȱǰȱȱęǰȱȱȱǰȱȱȱȱ ȱȱȱ¢ȱěȱȱȱȱȱȱęȱcies (Allison et al., 2011; Cooley and Doney 2009; Doney et al., 2009; Gaines et al., 2003; ¢ǰȱŘŖŗŖDzȱãȱȱǰȱŘŖŖŝDzȱȱȱǯǰȱŘŖŗŗǼǯȱ ȱȱ¢ȱěȱ ȱ¢ȱȱȱȱęȱȱȱȱȱȱȱȱ¡¢ȱȱ ȱȱȱȱĜȱǻǰȱŘŖŗŖǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ę¢ǰȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ěȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ęȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ęȱ ȱ ęǯȱȱȱȱȱ¢ȱěȱ¢ȱȱȱ¢ȱȱȱȱ ȱȱȱȱęȱȱȱDzȱǰȱȱȱȱȱ¢ȱȱȱ¢ȱȱȱęȱȱȱǻǰȱŘŖŗŖǼǯȱ¢ǰȱ ęȱȱȱęȱȱ ȱȱȱȱ ȱ¡ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ǰȱ ȱ ȱ ǰȱ ȱ ¡ȱ ȱ ȱǻȱȱǯǰȱŘŖŗŖDzȱǰȱŘŖŖŘǼǰȱȱ ȱȱȱ ȱȱȱ ȱ ęȱ ȱ ȱ ¡¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱȱȱ ȱȱȱȱȱȱȱȱęǰȱ ȱǰȱȱǰȱȱęȬȱǯȱ Economic effects on commercial fisheries and fishing-dependent communities ȱ ȱ ǯȱ ǻŘŖŗŗǼȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ǻȱ ȱ¡ȱȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯǼǯȱȱǰȱȱȱȱěȱȱ¢ȱȱ¢ȱȱ¢ȱȱ ¢ȱȱȱȱȱȱȱȱ ȱȱȱȱȱ ȱȱ¢ȱȱȱȱǯȱȱȱ ȱȱĚȱȱ ęȱȱȱȱȱȱȱȱȱ¢ȱȱȱȱȱ ȱȱȱȱȱęǰȱȱȱȱǯȱȱǰȱȱȱȱȱ ęȱǻǯǯǰȱȱȱȱǼȱ ȱȱȱȱȱęȱȱȱ ȱȱȱęȱȱȱęȬȱǯȱȱȱȱȱ ȱěȱȱȱȱȱęǰȱȱȱǯȱǻŘŖŗŗǼȱȱȱěȱȱ ȱÛȬȱȱǻǼȬȱȱ¢ȱȱęȱȱȱȱ ¡¢ȱȱ ȱȱȱȱȱęȱȱȱȱȱȱǻȱ Section 2 for details on ENSO). ȱǰȱȱȱȱȱ ȱȱ ȱȱȱȱȱ ǻǼȱȱȱȱȱęǯȱȱȱȱȱȱȱǰȱȱȱŜŖȱȱ ȱȱȱęȱǻȱęǼȱȱȱ¢ȱ¢ȱ ȱȱ¢ȱȱŘśȱȱȱȱ¡ȬȱȱǻǰȱŘŖŖŗǼǯȱȱȱȱęǰȱ ȱęȱǰȱȂȱǻŘŖŖŗǼȱ¢ȱȱěȱȱęȱȱ¢ȱ Bay for Albacore tuna (Thunnus alalungaǼǰȱȱȱǻOncorhynchus tshawytscha), ȱȱȱǻLoligo opalescensǼǯȱǰȱȱȱęȱȱȱ¡¢ȱśŖȱȱȱȱ¡Ȭȱȱȱ ȱȱȱ¢ȱ¢ȱ ȱȱȱȱȱ¢ȱǻŗşŞŗȱȱŗşşşǼǯȱ ȱȱȱȱę¢ȱ ȱ¢ȱȱȱȱȱȱ¡Ȭ ȱȱȱ¡¢ȱŘŖȱȱȱȱȱȱȱȱǯȱȱȱ ȱȱę¢ȱ ȱȱȱȱȱȱȱȱȱ¡ȱȱȱȱȱ¡Ȭȱǯȱȱȱȱȱȱȱȱȱȱȱ ę¢ȱ ȱ ȱ ȱ ȱ ¡Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱǯȱȱǰȱȱȱȱȱȱ ȱȱȱ¢ȱ ¢ȱȱȱȱȱŗşşŞȱȱǰȱ ȱȱȱȱ¢ȱȱŗǯşǚȱǯȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ (Sardinops sagax) and Northern anchovy (Engraulis mordaxǼȱęȱȱȱȱȱ¢ȱ¢ȱȱȱȱěȱȱȱȱ¢ȱȱŗǯŘǚȱȱȱ numbers of active vessels and ex-vessel prices (Dalton, 2001). 73 74 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ¡ȱȱěȱȱ¡Ȭȱȱȱȱ¢ȱȱȱȱǰȱ ȱȱȱŗǯŘǚȱȱȱȱȱȱȱěȱȱȱȱȱȱ ȱȱȱ¡Ȭȱȱȱȱȱǯȱȱȱȱȱȱȱȱȱ¡ȱȱȱȱěȱȱȱęǯȱ ȱȱ ȱȱȱ¢ȱŚȬȱȱȱǰȱȱęȱȱȱȱȱ ȱ ȱȱǯȱȱěȱȱȱȱȱȱȱ¢ȱ ȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ¢ȱȱȱȱȱǯȱȱǰȱ¢ȱ¢ȱęȱ ȱȱ¢ȱȱęȱȱȱȱȱ¢ȱȱȱȱȱȱ Southern California. ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ǻȱ ȱȱǯǰȱŘŖŗŗȱȱȱ ȱȱęȱǼǰȱ¢ȱ ȱȱȱȱ ȱ ȱȱȱȱęȱȱęǯȱȱǻŘŖŗŗǼȱȱȱȱ ȱȱȱȱȱȱȱǯǯȱȱǯȱȱȱ ȱ ęȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡¢ȱ ǞŗŖȱ ȱȱ¢ȱǻǞŖǯŖŝȱȱǯǯȱǼȱȱŘŖŘŖȱȱȱȱȱȱǞřŖŖȱȱ ȱ¢ȱǻǞŗǯŝŞȱȱǯǯȱǼȱȱŘŗŖŖǰȱ ȱȱȱȱȱǞŝřŚȱȱȱȱ ȱȱȱ ȱȱȱȱȱśȱǯȱȱȱȱȱȱǯǯȱ ȱȱ ȱȱȱȱȱȱȱ¢ȱ¢ȱȱȱǯȱǻŘŖŖşǼȱȱ ȱȱȱȱȱęǯȱȱ¢ȱȱȱȱęȱ ȱȱ ¢ȱȱȱȱȱȱȱȱǯȱȱȱǯȱǻŘŖŖşǼȱ found that blue crab, Callinectes sapidusǰȱ ȱ ȱ ¡ȱ ęȱ ȱ ęȱ ěǯȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ęȱ ȱ ȱ other crab species (Walther et al., 2009, 2010), and that commercially important crab ȱ ȱ ȱ ǰȱ ȱ ȱ ęȱ ȱ ¡ǰȱ ȱ ǯȱ ǰȱ ȱ ȱȱȱȱȱȱȱęȱȱȱȱěȱȱ ęȱěȱȱěȱȬ¢ȱǰȱȱ¢ȱȱȱȱ¢ȱ ȱ¢ȱȱǻ£ǰȱŘŖŗŖǼǰȱȱȱȱ¢ȱȱȱ ȱȱ ȱȱȱȱȱȱȱ¢ǰȱ ȱȱ¢ȱȱȱ ȱ¢ǰȱ and perhaps most, commercially important species. ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ęȱ ǰȱ ȱ ę¢ȱ ȱ ȱęȬȱȱȱ¢ȱȱȱ¢ȱěǯȱ¡ȱ ȱ ȱȱȱęȱȱȱȱȱ¢Ȭȱǰȱ ȱȱȱǰȱǰȱȱǰȱȱȱȱęȱǻȱȱǯǰȱŘŖŗŖDzȱ ȱȱǯǰȱŗşşşDzȱȱȱǯǰȱŘŖŖŝǼǯȱȱȱȱ¢ȱȱȱȱȱ ȱȱȱĚȱȱę¢ȱȱȱȱȱěȱȱȱȱȱȱȱȱȱȱȱǻȱȱǯǰȱ ŘŖŗŖDzȱǰȱŘŖŖŞDzȱ ȱȱǯǰȱŘŖŖşDzȱȱȱǰȱŘŖŖŖǼǯ Ȭȱȱȱȱǯǯȱȱ ȱȱ¢ȱȱ¢ȱǯȱȱěȱȱȱȱȱęȱ¢ȱȱȱȱ¢ȱ¢ȱȱ ȱȱȱȱȱȱęǰȱȱȱ ȱ ȱȱ ȱ ȱ Ȧȱ ȱ ȱ ȱ ęǰȱ ¢ȱ ȱ ǰȱ ȱ ȱȱȱȱęȱȱȱȱęȱȱȱȱȱȱ ȱȱȱ ȱęȱȱǻȱȱ ǰȱŘŖŖŝǼǯ ȱęȱȱȱȱęȱȱȱȱȱȱȬ economic security (NRC, 2010b) and particularly to the potential negative impacts of Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱęȱȱȱȱęȱǻ¢ȱȱ¢ǰȱŘŖŖşDzȱ¢ȱȱ ǯǰȱŘŖŖşǼǯȱȱȱȱŘŖŗŖȱȱȱȱǰȱȃȱęȱ ¢ȱȱȱȱȱȱȱȱȱęȱȱȱ ȱȱęǰȄȱȱȱȃȱęȱȱȱ¢ȱȱtribution to the total economic activity at a national and international level, the impacts ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȄȱ ǻǰȱŘŖŗŖǰȱȱŞşǼǯȱǰȱȱęȂȱȱȱȱęȱȱȱȱȱȱȱ¢ȱȱ ȱ¢ȱȱȱ ȱȱęȱȱȱȱǰȱȱǰȱǰȱȱ ǰȱęȱǰȱ ȱȱǰȱȱǰȱȱȱȱȱęȱǰȱȱȱȱǰȱ¢ȱȱȱȱȱ ȱȱǯȱȱȱȱęȱȱȱȱǰȱȱęĴǰȱ ǰȱȱȱȱȱȱȱȱȱěǯ Regional effects of climate change on fisheries ¢ǰȱ¢ȱ ȱȬȱȱȱȱȱȱȱ ȱ¡ȱȱȱǻ ȱȱǯǰȱŗşşşǼȱȱȱȱȱȱȬȱěȱȱȬȱęȱȱȱ¢ȱǰȱȱǰȱȱ ȱ¢ȱǯȱȱȱǰȱȱęȱȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱȱȱǯǯDzȱȱ ȱȱȱȱȱ ǯȱ ȱ ǻŘŖŗŖǼǰȱ ǰȱ ȱ ȱ ȱ ȱ ęȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ęȱ ȱ ȱ Ĝȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ǰȱ Ĝȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ǰȱ ȱ ȱȱ ȱȱǯȱȱęȱȱȱ¡ȱȱDzȱ ȱǰȱȱȱȱȱȱȱȱĚȱȱȱ Ȭȱ ȱ ȱ ȱ ¢ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱěȱȱȱ ȱȱ¡ǯȱȱȱ¡ȱȱ ȱȱȱȱ ȱȱȱ¡ȱȱęȱȱȱȱȱȱȱȱ ȱȱȱȱęȱęǯ ȱ ȱȱ ȱȱ ȱ ȱǯȱ ȱ- munities and local economies depend on and are engaged in subsistence harvesting ȱȱȱȱȱ¢ȱȱȱȱȱǯǯȱȱȱȱvironmental changes are already having a notable, although unpredictable and often Ȭǰȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢¢ǰȱ ¢ǰȱ ȱ ¢ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱǻȱȱǰȱŘŖŖşDzȱȱȱǯǰȱŘŖŗŗDzȱ¢ȱŘŖŖşDzȱĴ¢ȱ ȱǯǰȱŘŖŖşDzȱȱȱǯǰȱŘŖŖŝǼǯȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱȱȱęȱȱȱǰȱȱȱȱ¢ȱȱ¢ȱȱȱȱȱȱȱǰȱȱ ȱȱȱȱȱȱȱǰȱȱȱȱȱǯȱȱȱ ȱȱȱȱȱǰȱǰȱ ǰȱȱȱȱȱ ¢ȱ¢ȱȱȱȱ¡ȱ ȱȱȱȱȱȱȱȱ ȱȱȱ¡¢ȱǯ ȬȬȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ǻȱ ȱ ŘǼȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ 75 76 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǯȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱ ȱȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱȱȱǰȱǰȱȱ ȱȱěȱȂȱǰȱȱ¢ȱȱȱȱȱ¢ȱȱȱ (Moore and Gill, 2011; Mueter et al., 2011) and has altered physical access to the region ǻǰȱŘŖŖŞDzȱǰȱŘŖŖşǼǰȱěȱȱȱȱȱǯȱ ȱ ȱ ¢Ȭǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ¢ȱȱȱȱǻȱȱǯǰȱŘŖŖŜǼǰȱȱȱȱȱȱȱ change are being experienced not directionally, but in terms of greater inter-annual and Ȭȱ ¢ȱ ǻ¢ǰȱ ŘŖŖşDzȱ Ĵ¢ȱ ȱ ǯǰȱ ŘŖŖşDzȱ ȱ ȱ ǰȱ ŘŖŖşǼǯȱ¢ȱȱȱȱ ȱȱȱ ȱ¢ȱȱȱȱȱ ǻ ȱȱǯǰȱŘŖŗŖǼDzȱȱǰȱȱȱȱȱǰȱȱȱ£Ȭȱȱ ȱȬǰȱȱȱȱȱ ¢ȱȱ¢ȱȱ¢ȱǻȱȱǯǰȱŘŖŖŞDzȱ ¢ȱȱǰȱŘŖŗŗǼǯȱǰȱ ȱȱȱȱȱȱȱȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǻȱȱǯǰȱŘŖŖŝDzȱ ȱȱǯǰȱŘŖŖŞDzȱȱȱǰȱŘŖŖşǼǯȱ ȱȱ¡ǰȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ǰȱ ǰȱ ȱ ȱ ȱ ǻȱ pendix A for a description of the extent of marine mammal subsistence hunting done in ǼǯȱȱȱǯȱǻŘŖŗŖǼȱ¢ȱȱěȱȱȱȱȱȱ and threaten local adaptive strategies, including times and modes of travel for hunting, ęǰȱȱǯȱȱȱȱǰȱȱȱȱȱȱȱȱȱȬ ȱȱȱ ǰȱȱȱȱȱȱȱ ȱȱȱȱȱȱ ȱęȱȱȱȱǻȱȱǰȱŘŖŗŗDzȱȱȱřȱȱȱǼȱ ȱȱȱ¢ȱȱȱȱǻȱȱ ǰȱŘŖŗŖǼǯȱȱȱȱȱ ȱȱȱǰȱ ǰȱ ȱ¢ȱȱȬȱȱȱȱȱ ȱȱȱȱȱȱ ǰȱȱȱǰȱ ȱȱȱȱȱȱ ǰȱ ȱȱȱȱȱȱȱȱȱȱȱ¡ȱȱ ¢ȱ ȱȱȬȱȬȱȱȱȱȱȱȱǻ ¢ȱ ȱǯǰȱŗşşşDzȱȱȱǯǰȱŘŖŖŞDzȱȱȱǯǰȱŗşşşǼǯȱȱȱȱȱȱȱȱ ȱȱȱȱǰȱȱ ȱȱȱȱȱȱȱȱ ȱȬȱȱ ȱȱȱȱȱȱ ȱȱȱǰȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ ȱ ǻȱȱǯǰȱŘŖŖŜǼǯȱȱȱȱȱȱȱ ȱȱȱ ȱȱȱȱȱȱȱȱȱȱǻ ¢ȱȱǯǰȱŗşşşǼǯȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱ¢ȱȱȱǻȱȱȱřǼǯȱǰȱ ȱ ȱȱȱȱȱȱ¢ȱȱȱǰȱȱ ȱȱȱȱ ȱȱȱȱȱȱǰȱ ȱȱȱȱȱȱ ¢ȱǻȱȱǰȱŘŖŗŖǼǯȱȱȱȱȱȱȱę¢ȱȱȱȱ ȱȱŘŖŖşǰȱȱ¡ǰȱȱȱ¢ȱȱǰȱ¢ȱǰȱȱ ȱęȱȱȱȱȱȱȱȱȱȱǯȱȱŘŖŖşȱsure produced a “perfect storm” for a food security crisis, especially in combination ȱ ȱȱȱȱȱȱȱȱȱȱȱǰȱȱȱ ȱȱǰȱȱȬȱȱȱ¢¢ȱȱ ȱȱǻȱȱ Gerlach, 2010). Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ǰȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱęȱǻ££ȱȱǰȱŘŖŖşDzȱȱȱǯǰȱ ŘŖŗŗDzȱ ¢ȱ ȱ ǰȱ ŘŖŖŝDzȱ ȱ ȱ ǯǰȱ ŘŖŖŞDzȱ ȱ ȱ ǯǰȱ ŘŖŖşǼǯȱ ȱȱȱ ȱ¢ȱĜȱȱ¢ȱ¢ǰȱȱȱȱȱȱȱ ȱȱDzȱȱȱȱȱȱȱ Dzȱęȱȱȱȱ ȱȱȱȱ£ȱȱȱ¢DzȱȱȱȱȱȱĚȱȱȱȱȱDzȱȱȱȱǰȱȱ as increases in diabetes and heart disease, depression, and alcoholism. Each of these ȱ¢ȱȱȱȱȱȱȱȱȱ ¢ǰȱ ȱȱȱȱ¢ȱ ǯȱǰȱȱȬȱȱ ȱ¢ȱȱ precedent for action over long-term climate change impacts. ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ PACIFIC. ȱ ȱ ȱ ¡ȱ ȱ ȱ ěȱ ¢ȱ Ȭȱ ȱ ȱ ȱȱ¡¢ȱȱȱǯȱȱȱȱȱęȱę¢ǰȱȱ ȱŗŚȱȱȱȱȱȱȱȱęȱȱȱǯǯȱȱǰȱȱȱ ȱȱȱȱȱȱȱȱǻ ĴȱȱǯǰȱŘŖŗŖǼǯȱȱȬ related shifts in atmospheric conditions, ocean properties, and ecosystem interactions ȱ ȱ ȱ ȱ ¢ȱ ěȱ ȱ Ȭȱ ȱ ¢Dzȱ ǰȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ěǯȱ ȱ ŚȬřȱ ȱȱ¡ȱȱȱȱęȱęȱȱȱȱȱ¢ȱȱ number of researchers. ęȱȱȱȱȱȱ ȱęȱǰȱ¢ȱǰȱȱęȱ ȱȱȱ¡ȱȱȱǻȱȱŚȬȱȱŚȬǼDzȱ ǰȱǰȱȱȱȱȱęȱȱȱ ȱȱȱȱȱęǯȱȱǰȱȱ ȱȱȱȱȱȱ ȱȱęǯȱȱȱȱȱ ęȱęȱȱȱȱ ȱ¢ȱ¢ȱȱěȱ¢ȱȱȱȱsented in Appendix A. ȱ ȱȱȱȱ ȱȱ ȱȱǯȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻǰȱ ŘŖŖşǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęing grounds is guaranteed to these tribes through government-to-government treaties ǻȱ ǰȱ ŘŖŖşǼDzȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ¢ȱȱȱȱȱȱȱȱȃȱȱȄȱ ęȱǯȱȱȱȱȱȱȱȱȱȬȱ range shifts (Mantua et al., 2010), the implications for geographically-bounded tribal ęȱȱȱȱȱȱȱȱȱȱ ȱȃ¢ȱȄȱȱ ȱ temperatures and prey ranges shift (refer to Section 3 for more detail). Further informaȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ěȱ ¢ȱ ȱ change is presented in Appendix A. ¢ǰȱȬȱęȱ¢ȱȱȱȱȱȱȱȱtentially impacted by changes in the abundance and range habitats of targeted nearshore 77 78 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱ ȱ ȱ ȱ ¢ȱ Ȭȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ǯȱȱ¡ǰȱŗřȱȱȱȱęȱ¢ȱȱȱȱ¢ȱ ȱęȱȱ¢ȱȱ¢ȱȱȱǻȱȱǰȱȱ Ǽǯȱ ȱ ȱ ȱ ¢ȱ ȱ ǰȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ Ȭȱ ȱȱ ȱȱȱȱ¢ȱȱȱ ȱȱȱȱ¢ȱȱȱ ȱȱȱȱȱȱȱǻ ȱȱǯǰȱŘŖŖŝǼǯȱȱȱ¡ȱȱȱ extraction of locally-caught seafood represents a coping strategy for such food insecurity, potential nearshore climate change impacts present livelihood and nutritional issues ȱȱȱȱȬȱęǯȱȱȱȱȱȱęȱȱ ȱȱ ȱ¢ȱ¢ȱȱěȱ¢ȱȱȱȱȱȱ¡ȱǯ Table 4-3: Known or expected direction of social and economic impacts on some major northeast commercial and recreational species ȱȱ ¢ȱȱȱęȱ Ambiguous ęȱ Ambiguous ęȱ Ambiguous ęȱȱę Ambiguous but perhaps positive ęȱ Ambiguous King and tanner Crabs Ambiguous ȱȱ ȱȱǯǰȱŘŖŗŖDzȱ¢ȱȱǯǰȱŘŖŖŞDzȱěȱȱǯǰȱŘŖŖŝǯ ȱ ȱȱȱȱ ȱȱ ȱȱǯȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ęȱ ȱ ȱ ȱȱȱȱǯǯǰȱȱȱȱěȱȱęȱ ȱ¢ȱȱȱȱȱ ȱȱȱȱȱȱǰȱȱȱȱȱȱǯȱ ȱ ȱȱȱȱ¢ȱȱ ȱěȱȱȱ¢ȱȱȱȱȱ ę¢ȱȱ ȱȱ ȱęȱȱȱȱȱȱȱȱȱȱǻȱ¢ȱŚȬǼǯȱȱȱȱ¡ȱȱȱȱȱȱęȱȱȱȱȱȱȱȱȱ¡ȱǯ ȱ ȱ ȱ ȱ ȱȱ ȱ ȱ ȱ ȱ ȱ ǯȱ Climate change could have both direct and indirect ef- ȱ ȱ ȱ ¢ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ęȱ ǯȱ ȱ ęȱ ěȱȱȱȱȱȱȱȱȱȱ ȱȱȱǻȱȱ ǯǰȱ ŘŖŗŗǼDzȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱ¢ȱǻĴDZȦȦǯǯȦȦDzȱȱȱřǼǯȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱȱǰȱȱȱȱęȱȱȱȱȱǰȱȱȱ ¢ȱȱȱ ȱǰȱęȱȱȱǰȱȱȬȱǰȱȱ ȱȱ ¢ȱȱȱ¢ȱȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱǰȱ ǰȱȱȱȱȱȱȱȱȱęȱǰȱǰȱȱǰȱȱ ȱȱȱȱȱȱ¡ȱȱȱȱȱ¢ȱȱ ȱ¢ȱȱ end of the 21st century. The loss of live corals results in local extinctions and a reduced ȱȱȱęȱȱǻȱȱǯǰȱŘŖŖşǼǯȱȱȱȱ ȱȱȱ ǰȱǰȱęǰȱȱȱȱ¢Dzȱȱȱ¢Ȭȱęȱȱ¢ȱǰȱȱȱȱȱęęȱ¢ȱȱǻǰȱŘŖŗŖǼǯȱȱȱȱȬȱęȱ ȱ ȱȱ¡ȱȱ Case Study 4-A The effects of climate change on Pacific salmon ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱęȱȱ¡ȱȱȱȱȱ ęȱ ǯȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěmid-1970s to the late 1990s and has since been ǰȱȱǰȱĚ¢ȱ£ȱȱ ȱ ȱ ȱ ȱ ǻ ȱ ŘŖŖŞǼǰȱ ȱ ȱȱȱȱȱȱȱǯȱȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ detrimental changes in the migratory timings of ȱ ȱȱȱ ȱȱȱ ȱĚ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȦ ȱĚȱȱȱěȱȱ ȱȱȱȱȱȱȱȱȱȱȱǻ ȱŘŖŖŞǼǯȱȱȱȱments (Kovach et al. 2013). mer, higher average temperatures could diminish ȱ¡¢ȱȱȱȱ ȱȱ ȱ ȱ ȱ ęȱ ǰȱ thus increasing mortality. Warmȱ ȱ ȱ ȱ ěȱ ȱ ǻȱ Ǽȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ £Ȭ¢ȱ ȱ ǻ¢ȱŘŖŖŞǼǯȱȱȱȱȱ¢ȱ determined early in marine life ȱȱȱ ȱȱ mortality typically sets year class ȱǻȱȱǯȱŘŖŖŚǼǯȱȱdence of the actual impacts at these various life cycle stages is accumuȱ ¢ǰȱȱȱ ȱ ȱ ȱ ȱ ȱ information on abundance binned by latitude across the exceptionally Chinook Salmon (Source: NOAA). 79 80 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 4-B The effects of climate change on pollock and Pacific cod This complicates the separation of the direct ice ȱ ¢ȱ ȱ ȱ ęȱ ȱ ęȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ěȱ ȱ ȱ ȱ ¢ȱ ěȱ ¢ȱ ȱ ȱ ȱǰȱ ȱȱ¢ȱȱǯȱ acteristics of the target species. These include the ȱ ȱ ȱ ȱ ȱ ȱ ȱęȱǰȱȱȱȱȱ ering the economic, institutional, and ecologiȱ ȱ ęȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ę¢ȱ ȱ ȱ ȱ ȱȱěȱ£ȱȱȱȱęǯȱ ȱȱȱěȱȱȱȱȱ Studies have found that although a northęǯ ȱȱȱȱȱȱȱȱȱ ęȱȱȱȱȱȱ¢ȱǻŘŖŖŜȬŘŖŖşǼǰȱ ȱ ȱ ȱ ȱ ȱ ȱ colder than average years in the Bering ȱǻ ¢ȱȱěȱŘŖŗŘDzȱěȱȱ ¢ǰȱŘŖŗŘDzȱǯȱǯǼǯȱȱȱȱȱ ȱ ȱ ¡ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ǰȱ ȱ ęȱ ȱ ȱ ȱ ȱ advantage over those in the south. The reȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ę¢ȱȱȱȱȱȱę¢ǯȱ ǰȱȱ ȱȱę¢ǰȱ ȱ is driven by the pursuit of valuable roeȱęȱȱ ȱȱȱȱȱ ȱȱȱȱǰȱȱȱĴȱȱ ȱ ěǯȱ ȱ ȱ ěȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ę¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ north for marginal increases in catchability. ¢ȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ both retrospective analyses and predicǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǻȱȱǯǰȱŘŖŗŗǼǰȱȱȱěȱ ȱęȱȱȱȱ¢ȱȱ ¢ǯȱȱȱȱȱȱȱ ¢ȱ ȱěȱŘŖŗŘȱȱěȱȱ ¢Ȃȱȱ ŘŖŗŘȱ ǰȱ ȱ ȱ ȱ ȱ Local Cod Depletion Study (Source: NOAA).. ȱ ȱ ¢ȱ ȱ ȱ ęȱ ǯȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services Case Study 4-C The effects of climate change on Pacific sardine ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ¢ȱ ¡ȱ ǻȱ ȱ ȱ ŘŖŖřǰȱ ŘŖŖŚǰȱ ŘŖŖśDzȱ ȱȱǯǰȱŘŖŖŝǼǯȱȱȱ ȱǰȱ ȱ ȱ ęȱ ȱ Dzȱ ¢ǰȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡¢ȱ ěȱ ȱ ǰȱ ǯǯȱ ȱ ȱ ǯȱ ȱ ȱ ȱĚȱȱ¢ȱȱȱȱ¢ǰȱȱǯǯȱęȱȱę¢ȱȱȱ using an environmentally-based harvest control rule to determine the annual harvest level. The harvest control rule is intended to prevent overęǰȱȱȱ¢ȱȱǻ ȱȱ ǯǰȱŘŖŖŜǼǰȱȱȱȱ¡ȱȱȱȱ biomass decreases or if ocean conditions become ȱȱȱȱȱȱǯ ȱȱȱȱȱ¡ȱȱȱ modeling capabilities on socio-economic impacts ȱȱȱȱęǰȱȱȱȱęȱ ȱ ęȱ ȱ ǯȱ ȱ ȱ ǰȱ ȱȱȱȱȱȱȱȱ¢ȱ potential scenarios that could occur in the Eastern ęȱǯȱȱęȱȱȱȱȱ in ocean temperature due to climate change is ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱȱȱȱȱȱ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ǯȱ ȱ ȱȱȱȱȱȱȱȱȱ Pacific sardine harvest-control rule implements a decreasing exploitation fraction in cool years based on a 3-year moving average of SST at Scripps Pier, San Diego, California. ‘Harvest’ is the guideline harvest level in metric tons (mt), ‘Biomass’ is current biomass estimate, ‘Cutoff’ is the lowest level of estimated biomass at which harvest is allowed (150,000 mt), and ‘Fraction (SST)’ is the environmentally-based percentage of biomass above the cutoff that can be harvested (Source: M. Dalton, pers. comm.). 81 82 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 4-C (Continued) ȱȱȱǯǯȱȱěȱȱȱǰȱ¢ȱěȱȱęȱ ǰȱȱȱ in Canada’s EEZ, and, depending on the extent of ȱ ǰȱ ¢ȱ ȱ ȱ ȱȱǯǯȱȱěȱǯȱȱȱ¢ȱȱ ȱȱǰȱ ȱȱȱȱȱ ȱǯǯȱęȱȱęȱȱȱȱ corresponding increase in economic activity and ȱȱȱȱ ȱǯ The second scenario assumes that an increase in ocean temperature results in a northerly expansion of the entire subtropical marine biota. This ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱȱȱęȱȱǰȱ ȱȱęȱȱ¢ȱęȱȱ focus on their predators to expand along the entire ȱęȱǯȱȱȱȱȱ ȱ ȱȱȱȱȱȱȱȱ ȱȱęȱȱ ȱȱǰȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ¢¢ȱȱȱȱěȱȱȱ ȱǯȱȱȱǰȱȱęȱ ȱ ȱ ęȱ ȱ ȱ ǯǯȱ ȱȱȱęȱȱȱȱȱ ȱ ȱ ęȬȱ ȱ ¢ȱ ȱ economic value are expected. ȱȱ¢ȱȱęȱȱȱȱȱȱȱ¢ǯ ȱȱȱȱ¢ȱȱȱȱȱęȱ¢ȱǻǼȱȱ ȱ¢ȱȱȱęȱęȱȱȱȱȱȱǻȱȱ al., 2011a).1ȱȱȱǰȱęȱȱśŗȬşŚȱȱȱȱȱȱȱȱ ȱȱȱȱȱŘŝȬŞřȱȱȱȱǯȱȱȱ¢ȱȱęȱȱȱ ¢ȱȱȱȱȱȱȱȱȱęDzȱȱŗŚȱȱȱȱ ȱǰȱśŘȬşŗȱȱȱȱęȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱ¢ȱȱȱȱȱȱȱȱęȱȱ ȱȱȱȱȱ¢ȱȱȱȱȱȱǻĴȱȱǯǰȱŘŖŗŗǼǯȱȱęȱȱȱȱ ȱȱȱȱȱȱȱęȱȱ ȱęȱȱȱ ȱȱŘŖŖŝȱǻȱȱǯǰȱŘŖŗŗǼǯȱ ¢ȱŝŖȱȱȱȱ Ȃȱȱȱǰȱ¡¢ȱřǯŘȱȱǰȱ ȱ ȱ ȱ ęȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ěȱ ȱ ȱ ȱ ȱ ȱ ǻȱȱǯǰȱŘŖŖşǼǯȱǰȱȱȱ¢ȱȱȱ ȱȱDzȱȱȱȱ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱǻȱȱǯǰȱŘŖŗŗǼǯȱ ǰȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ęȱ ȱ ǰȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ as food (Bell et al., 2011b). Further description of expected climate change impacts to ŗȲȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ŘŘȱ ęȱ ȱ ȱ ȱ ȱ ǻǼDZȱ ȱǰȱȱǰȱȱȱȱǰȱǰȱȱ¢ǰȱǰȱǰȱȱǰȱǰȱ ȱǰȱǰȱ ȱȱȱȱȱǰȱǰȱȱ ȱǰȱȱǰȱǰȱȱǰȱǰȱǰȱǰȱǰȱȱȱȱ Futuna. Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱęȱȱȱęȱȱȱȱȱ¡ȱǯ ȱǰȱȱęȱȱȱȱǰȱȱȱǯǯǰȱȱȱ ȱȱȱĴȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱęȱȱǯȱ¡ȱěȱȱȱȱȱȱ ȱȱ ȱȱĴȱȱȱ ǯȱȱǰȱȱęȱȱ ȱȱȱǻǼȱ ȱȱȱȱȱǰȱȱȱǰȱǰȱǰȱȱǰȱȱ¢ȱȱȱȱęȱȱȱęȱȱ ǰȱ ȱȱȱȱȱȱȱȱȱȱ ȱȱęȱȱȱȱ¢ȱȱȱȱȱȱǯȱ ǰȱ ȱ ȱ ǰȱ ȱ ¢ǰȱ ȱ ȱ ¢ǰȱ ȱȱ¢ȱȱȱ ȱȱȱȱȱȱȱȬ ȱȱȱĚȱȱȱȱęȱȱȱǻȱȱǯǰȱŘŖŗŗǼȱȱ ȱȱȱȱȱȱ¢ȱȱǯȱȱȱȱȱ ȱȱȱȱȬȱȱȱȱȱȱȱęȂȱ ¢ȱȱěȱȱę¢ȱȱȱęȱǯȱ ȱȱȱȱǯȱȱĴȱȱȱȱȱ ȱȱȱȱȱȱȦȱȱȱȱȱȱ Ĝȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŗŗǼǯȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ from rising sea levels and more severe storms. ȱȱęȱȱ¢ȱ¢ȱȱȱȱȱ¢ǰȱȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ęǰȱ ěȱ ȱ ęȱ ȱȱȱȱȱȱȱȱȱęȱǻȱȱǯǰȱŘŖŖşǼǯȱȱ¡ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱȱěȱȱȱȱ¡ȱǰȱ¢ȱȱȱȬǯȱ ȱȱȱȱȱȱȱȱȱęȱȱȱȱ ȱȱȱȱęǯȱȱȱǰȱȱęȱȱ ȱ ěȱ ȱ ¢ȱ ȱ ěȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱęǯ ȱ¢ȱȱȱȱȱȱěȱȱȱȱȱȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻǼȱ ȱ ǻ¢ȱȱǯǰȱŘŖŗŗǼǰȱ ȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱęȱȱǻȱȱŜǼǯȱ ȱȱ ȱ¢ȱȱȱȱȱ¡ȱȱȱȱȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǻȱȱǯǰȱŘŖŖŜǼȱȱȱȱǻȱ ȱȱ ¢ǰȱŘŖŗŗǼǰȱȱȱȱȱ¢ȱȱȱȱȱęǯȱ ȱ ȱȱȱ ȱȱ ȱ ǯȱ Given limita- ȱȱȱȱ ȱȱȱ¢ȱěȱȱȱȱȱȱǰȱ Ĵȱȱ ȱȱ ȱȱȱȱȱ¢ȱȱȱȱȱȱ ȱ¡ȱȱȱ ȱȱǯȱ ǰȱȱȱȱȱȱěȱȱȱȱȱȱȱȱ¡ȱȱ¢ȱȱȱȱȱ¢ȱȱǰȱ ȱȱȱȱȱȱȱ ȱȱȱȱȱȱ¢ȱȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ 83 84 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱȱȱȱȱ¢ȱȱęȱǻȱǰȱŘŖŖşǼǯȱ ȱȱȱȱȱȱ ȱȱǻȱȱȬ ǰȱŘŖŖŝǼȱ ȱȱȱ¡ȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱ ȱǯȱȱǰȱ ȱȱȱȱȱȱ¢ǰȱ ȱǰȱȱȱ ǰȱȱȱ¢ȱȱȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱ¢ȱȱȱȱ activities. ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱȱȱǻ Ǽȱȱȱęȱȱȱȱȱȱ¡ǯȱȱ¡ǰȱȱȱ ȱęȱ¡ȱȱȱȱDZȱȃȱȱ¢ȱȱȱȱȱ ȱ ȱ ¢ȱ ŘŖŖśȬŘŖŖŜǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱȱŘŖŖśȱȱȱȱȱȱ¢ȱȱ¢ȱěȱȱȱ ȱȄȱǻȱȱǰȱŘŖŖşǰȱȱŘŚȬŘśǼǯ ȱȱȱȱęǰȱȱȱȱǻŘŖŖşǼȱȱȱȱ¢ȱȱȱȱȱȱĚȱȱȱȱę¢ȱȱȱȱȱȱ ȱȱ¡ǰȱ ȱǰȱ Ĵȱ ȱȱȱÛȱ¢ȱȱȱ¢ȱ increased headboat activity. ȱȱȱ¡ȱȱȱȱȱęȱȱȱȱ is provided in Appendix A. ȱ ȱ ȱ ȱ ȱȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ę- ȱĚ ȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱ¢ȱǻ¢ȱȱ¢ǰȱŘŖŖşDzȱȱȱǯǰȱŘŖŖşDzȱ ǰȱŘŖŖŝǼǯȱ ȱ ȱ ȱ ęȱ ȱ ȱ ǰȱ ǰȱ ęȱ ȱ ȱ that depend on them, the most relevant changes are those occurring to the ocean of the ȱ ǯǯȱ ǻǼȱ ȱ ¢ȱ ȱ ȱ £ǯȱ ȱ ȱ ȱ ǰȱȱ ȱ ȱȱǰȱȱȱǰȱȱȱǰȱȱęȱȱȱǻǰȱŘŖŗŘǼǯȱȱȱȱȱȱȱȱ ǻȱŚȬŚǼǯȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ŚȬȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ Atlantic cod (Gadus morhuaǼȱ ȱ¢ȱȱȱǰȱȱ ȱǰȱȱ ȱ¢ȱȱȱȱ ȱȱȱȱȱȱȱȱęȱ ȱȱ ȱ ȱȱǻ¢ȱȱǯǰȱŘŖŖŞǼǯȱǰȱȱȱȱer (Micropogonias undulatusǼǰȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȬȱȱȱ ȱǰȱȱȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ Ȭȱ ęȱ ȱȱȱǻ ȱȱǰȱŘŖŖŝDzȱ ȱȱǯǰȱŘŖŗŖǼǯȱȱȱǰȱȱȱǰȱ ȱ¢ȱȱȱȱȱȱ ǰȱȱȱ ȱȱ ȱȱ ȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ¢ȱȱ ȱȱȱȱȃȱȱȄȱǻěȱȱǯǰȱŘŖŖŝǼǰȱȱȱȱȱ ęȱȱĜȱȱǯȱȱ¢ȱȱěȱęǰȱȱǰȱǰȱȱȱǰȱ ȱȱȱȱȱȂȱȬȱǰȱȱ economic and social impacts are potentially high (Cooley and Doney, 2009; McCay et al., ŘŖŗŗǼǯȱǻȱȱŚȬŘȱȱ¢ǯǼ ǰȱȱȱȱȱȱȱ¢ȱȱȱȱěȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services Table 4-4: Known or expected direction of social and economic impacts on some major northeast commercial and recreational species ȱȱ Atlantic cod (Gadus morhua) Negative ȱȱǻMicropogonias undulatus) Positive Atlantic lobster (Homarus americanus) Ambiguous, but perhaps more negative Atlantic sea scallop (Placopecten magellanicus) Negative Blue crab (Callinectes sapidus) Negative ȱȱ¢ȱȱǯǰȱŘŖŖŞDzȱěȱȱǯǰȱŘŖŖŝDzȱ ȱȱǯǰȱŘŖŗŖǯ ęȱ ȱ ęȬȱ ǯȱ ¢ȱ ęǰȱ ȱ ǰȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ĚȱǻěȱȱǯǰȱŘŖŖŝǰȱȱŘŞǼǯȱȱȱȱ ȱȱĚȱȱǰȱ ¢ȱ ȱ ȱ ȱ ęȬȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ current coastline. In the Northeast, many smaller ports have already lost infrastructure ȱęȱǻȱȱǰȱŘŖŗŘDzȱǰȱŗşşŗǼǰȱȱȱǯȱȱȱ ȱȱȱȱȱȱȱ ȱǰȱȱȱ¢ȱȱ ȱȱȱȱȱȱȱȱȱȱȱȂȱęȱĚȱǻǰȱŗşşŝǰȱDzȱȱȱȱȱ¢ȱǰȱŘŖŖřǰȱŘŖŖśǼǯȱ Many challenges remain for assessing the social and economic impacts of climate ȱȱęǯȱȱ¢ȱȱǰȱȱȱȱ¢ȱȱȱ ȱȱȱȱȱȱǯȱȱǰȱȱȱ ȱȱȱ ȱ ęȱ ȱ ¡ȱ ȱ ¢ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱ¢ȱĜȱȱ¢ȱȱěȱȱȱȱȱ ȱȱȱȱ¢ȱȱęȱȱǻ ȱȱǯǰȱŗşşşǼǯȱȱ ¢ȱęȱȱȱȱęȱȱȱȱȱȱȱȱȱȱȱ ¢ǰȱ ¢ȱ ȱ ¢ȱ ȱȱȱȱ ȱ ȱ Ĝȱ ȱ a clearer picture of biological impacts. Further description of expected climate change ȱȱęȱȱȱȱȱȱȱ¡ȱǯ Fisheries and communities adapting to climate change ȱȱȱǯǯȱȱȱȱȱȱȱȱȱȱȱȱ ¢ȱ ȱ ęȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱ¡ȱȱȱȱȱȱȱȱȱȱ ȱȱǻ ȱȱǯǰȱŘŖŗŖǼǯȱȱȱȱȱȱȱȱ ȱȱȱ ¡ȱȱ¢ȱȱȱȱȱ¢ȱȱȱ ȱȱȱ ȱȱȱȬȱȱǻ ȱȱǯǰȱŘŖŗŖǼǰȱ ȱȱȱ¡ȱ ȱ ȱȱȱȱ¢ȱȱěȱȱȱȱ¢ȱȱȱȱȱ ǻ¢ȱ ȱ ǯǰȱ ŘŖŖŞǼǯȱȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ 85 86 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 4-D The effects of climate change on Atlantic cod and croaker ȱ ǰȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱȱǰȱȱ¢ȱȱ¡ȱ ȱ ȱ ȱ ȱ ǰȱ ȱȱǰȱ¢ȱȱȱȱȬȱ ȱ ȱȱȱǰȱȱ¢ȱȱ¡ȱ positive impacts. Cod are sensitive to increases in ocean temȱǻ¢ȱȱǯǰȱŘŖŖŞǼȱȱȱȱȱ impacts varies. Some concern has also been voiced that certain prey species may not move in synch ȱǰȱȱȱĜȱȱȱȱȱǻ ȱŗşşřǼǯȱȱȱȱǰȱ ¢ȱ ěȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ completely out of the Gulf of Maine (Fogarty et al., ŘŖŖŞDzȱ¢ȱȱǯǰȱŘŖŖşǼǰȱǯǯȱȱęȱ ȱȱȱȱȱȱȱ¢ȱ ȱ ȱȱȱȱȱȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ fect on a species, social and economic impacts can ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ of Maine to Argentina (ASMFC 2011), but in the ǰȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱěȱȱȱȱ ȱȱȱ ȱ¢ȱȱȱȱ Ĵǰȱȱȱǻ ȱ ȱ ǯǰȱ ŘŖŗŖǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ mercial species, representing only 0.7 percent of total Mid-Atlantic landings revenue and 2 percent of Mid-Atlantic landed pounds. but it is one of ȱ ¢ȱ ȱ ǰȱ ȱ ŗśȱ ȱ ęȱ caught. ȱ ȱ ǯȱ ǻŘŖŗŖǰȱ ȱ ŚśŘǼȱ ȱ ǰȱ ȱ ȱ ȱ ǰȱ ȃǽǾȱ ȱ ȱ ȱ ęǰȱ ȱ ȱ ǻŘŖŗŖȮŘŗŖŖǼȱ ȱ mass of the population is forecast to increase by ŜŖȮŗŖŖȱǯȄȱ¢ǰȱȱȱȱȱȱȱȱȱȱśŖȮŗŖŖȱȱ ǯȱ ȱęȱȱȱȬȱ ȱ ¢ȱȱȱȱȱȱȱȱǰȱ ȱęȱȱȱ ȱȱȱ ȱȱǻǯǯǰȱǼȱ ȱȱȱǰȱ¢ȱ ȱȱȱȱȱȱȱȱ ǯȱ ǰȱ ȱ ȱ ȱ (1999) and Loomis and Crespi (1999) note that ȱ ęȱ ȱ ȱ ȱ ¢ȱ ę¢ȱȱ ȱ ǯȱȱ ęȱ ȱ ȱ ȱ ǻȱ ȱ ǰȱŘŖŖşǰȱȱ¡ȱȱ ȱȱǼȱ ȱ¢ȱȱȱȱȱȱȱȱ ǯȱ ȱ ęȱ ȱ ȱ ȱȱ¢ȱȱȱȱȱǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ǻȱ ȱ ǯǰȱ ŘŖŖşǼȱ ȱ ęȱ ȱ ¡pected to be negatively impacted by increasing ȱęǯ ȱǰȱǰȱȱȱȱěȱȱȱ¢ȱȱǰȱ ȱ ȱ ȱȱĜȱȱȱȱȃȄȱȱȱǻǰȱŘŖŖşǼǯȱ ȱȱȱ ȱȱěȱȱȱȱDzȱȱȱ ȱęȱ ȱȱ ȱȱ¢ȱěǰȱȱȱȱȱȱȱȱȱ ȱȱǯȱȱȱȱȱ ȱȱȱĴȱȱȱ ȱȱȱȱȱȱȱȱ ȱ£ǰȱȱ¡ǰȱȱęȱȱ ȱȱȱǯȱȱȱǰȱ¢ȱȱȱȱ and protected areas that tie management choices to particular geographic areas may be ěȱȱȱȱȱ ȱȱȱ ȱȱȱȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services time (OECD, 2010). ȱ ȱ ¡ǰȱ ȱȱ ǰȱ ȱ ȱ ȱ ȱ Ȭȱ ȱȱȱȂȱȱȱȱǰȱȱ¡ȱ ȱȱȱ ȱǰȱ¢ȱȱ¢ǰȱȱȱȱǯȱȱęȱǰȱ ȱȱŘŖŖşȱ¢ȱȱȱȱȱȱȱęȱȱȱȱȱȱǰȱȱȱ ȱȱȱȱȱ¢ȱ ȱ ȱ ȱ ȱ DZȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȬȱȱǯȱȱ¢ȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱȱȱ¢ȱ ¢ǯȱȱȱ ȱȱȱȱȱ¡ȱ ȱ ¢ȱ¢ȱȱȱ¡ȱȱȱȱ¢ȱ ȱȱǰȱȱȱȬ ȱȱȱĚǰȱȱǰȱ ȱǰȱȱǰȱǰȱȱ coral bleaching. ȱ ǰȱ ŞŜȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ŜŘȱ ȱ ȱǰȱȱȱȱȱ¢ȱ ȱȱȱȱǯȱȱǰȱ ȱęȱȱȱ ȱȱȱȱȱȱȱȱǰȱ ȱȱ ȱȱȱȱȱǯȱŜŘȱȱȱȬȬ ȱȱȱȱȱřŗȱȱȱȱȱęȱȱȱǰȱ ȱȱęǰȱȱǰȱǰȱǰȱęǰȱȱǰȱȱȱǯȱ ȱ ȱȱȱ¢ȱȱ¢ȱȱȱȱȱȱȱȱȱ ǰȱ ȱȱęȱȬȱȱǰȱȱȱȱȱȱȱęȱȱ farm products. Socio-economic factors, including age, gender, education, occupation, livelihoods, ǰȱ¢ȱȱȱǰȱȱȱȱȱ ȱȱȱceptions of their household’s vulnerability to certain types of extreme climate events. ȱ¡ǰȱȱȱȱȱȱ ȱȱȱȱȱȱ household had a medium level of vulnerability across nearly all event types except for ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱǯȱ ȱ ȱȱ¢ȱ¢ȱ ȱȱ ȱȱȱȱȱ ȱȱȱȱ ȱ ȱȱȱȱȱ ȱȱ¢ȱ ȱǯȱȬic variables did not uniformly explain these perceptions across all types of events. More ȱȱȱȱȱȱȱ¢ȱȱ¡ȱȱ ȱ ȱȱȱȱǯȱ¡ȱȱȱǰȱȱ ȱȱȱȱ ȱȱȱȱȱ¢ȱȱȱ¢ȱȱǰȱȱ ȱ ȱȱŜŖȱ ¢ȱȱ ȱȱ¢ȱȱȱȱ¢ȱ ȱȱȱȱȱȱȱȱ ¡ȱȱȱȱ¢ȱȱȱ¢ȱ ȱȱǯȱȱȱ ȱ ȱ ęȱ ȱ ȱ Ȃȱ ȱ ȱ ¢ȱ ȱ ¡ȱȱ¢ȱȱ ȱ¡ȱǯȱȱȱȱ ȱȱȱ ȱȱȱȱȱ¡ȱȱȱ ȱǰȱǰȱȱȱ ȱȱȱǯȱȱ ȱȱȱȱȱȱęȱȱȱȱęȱȱȱȱȱȱȱȱȱ¡ȱǯȱ ȱŘȱȱȱǰȱȱȱȱŘŖŗŘǰȱȱȱȱ ȱȱ¢ȱȱ Ȃȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȬȬȱ ȱ ȱ ¡Ȭ ȱ ȱ ȱ ȱ ȱ ȱ 87 88 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱǯȱȱȱȱȱ ȱȱȱȱȱȱȱȱ ¢ȱ ȱ ȱ ǻǼȱ ǯȱ ȱ ȱ ȱ ȱ ȱȱȱ¢ȱȱ ǰȱ¢ǰȱȱȱǰȱȱȱȱ to develop locally relevant, socially feasible, and sustainable solutions that can result in more climate-resilient communities. 4.3 Implications of Climate Change for Aquaculture ȱ ȱ ȱ ȱ Ĝȱ ȱ ȱ ǻĴDZȦȦ ǯǯǯȦǯǼǰȱȱǯǯȱȱȱȱȱȱȱȱȱ¢ȱȱȱǯȱȱǯǯȱȱŞŜȱȱȱȱǰȱ¡¢ȱȱȱ ȱȱ ȱȱǯȱ Ȭȱȱȱȱȱȱęǰȱ ȱȱ¢ǰȱǰȱȱǯȱȱȱȱȱȱǰȱ ȱȱ amounts of barramundi, seabass, seabream, and other species. ȱȱȱȱȱȱȱȱȱȱ¢ȱ¢ȱ ǯȱȱ potential impacts of climate change on North America may include rising sea surface DzȱȬȱȱȱ ȱĚȱȱǰȱȱȱ ȱǰȱȱȱȱȱȱDzȱȱȱęDzȱȱȱȱ¡ȱ ȱȱȱ ȱȱȱ¢ȱȱȱȱ ǰȱȱȱȱȱȱȱDzȱȱȱȱ¢ȱȱȱ DzȱȱȱȱĴȱȱȱĚ ȱǻǰȱŘŖŗŖǼǯȱȱȱęǰȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱ ¢ȱ ȱȱȱȱȱȱǯȱȱǰȱȱȱ¢ȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱ¢Dzȱȱ ¡ǰȱȱȱȱ ȱǰȱȱȱȱ¡ǰȱęȬȱęȱȱ a net removal of CO2ȱȱȱǯȱȱǰȱȱȱȱ¢ȱȱ ȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱȱ ȱȱǰȱ ǰȱȱ¢ǯ ȱȱǰȱǰȱȱȱȱęǰȱȱȱȱ ¢ȱȱȱȱȱȱǰȱȱȱȱ¢ȱȱ¢ȱ ȱȱȱȱȱȱȱȱȱȱǻȱȱ ȱ ǰȱ ŘŖŖşǼǯȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱ ǯ Direct impacts of climate change ȱȱȱȬȱȱ¢ȱȱȱ ȱȱ ȱȱȱ¡ȱȱ ȱȱȱȱȱȱȱȱȱ¡ȱȱȱ ȱȱȱȱ ęȱȱęǰȱ¢ȱȱęȱȱȬȱȱ¢ȱȱęȱ ǯȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ¢ȱȱȱ¢ȱȱ ȱ ȱȱȱȱǻȱ ȱ řǼȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ǰȱ ¢ȱȱȱȱǰȱȱȱ¢ȱ ȱȱȱȱȱ ȱ ǯȱ ȱ ȱ ŗŝȱ ķǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ £ȱĜ¢ȱȱǰȱ ȱȱȱȱȱȬȱȱǻȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services Silva and Soto, 2009). ȱȱȱȱ¢ȱęȱȱȬȱǯȱ ȱ ȱȱ¢ȱȱȱȱ¢ȱȱ ȱȱǰȱ¢ȱȱȱ ¢ȱȱȱȱȱǯȱȱȱȱ ȱȱ¢ȱȱ ȱȱȱěȱȱȱȱȱ ȱȱȱǰȱȱȱ ȱȱȱȱ¢ȱȱ¢ȱ ȱȱȱȱȱȱǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ ǯȱ ȱȱȱȱȱȱȱȱ¢ǰȱȱȱ ȱ¢ȱ ȱ¢ȱȱȱȱȱȱȱȱ ǯȱȱȱŗŖȱ ȱȱȱȱȱȱȱȱȱȱǻèȱȱ ǰȱŗşşŝǼǯȱȱȱȱȱȱȱȱȱȱȱ¢ǰȱ ȱȱ¢ȱȱȱȱȱȱȱȱȱȱǯȱ ǰȱ ȱȱȱȱȱȱȱȱȱǻǰȱŘŖŖŝDzȱĜĴȱȱ ǯǰȱ ŗşşŞǼǯȱ ǰȱ ȱ ǰȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱęȱȱ ȱǰȱȱȱȱȱ¢ȱȱȱǻȱȱ al., 2011). Indirect impacts of climate change ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱǻȱȱȱǰȱŘŖŖşǼǯȱȱȱęȱ ȱȱȱȱȱȱȱȱȱǰȱȱȱęȱȱ¢ȱ ȱȱȱ ȱȱȱ¢ǯȱȱȱǯȱǻŘŖŗŗǼȱȱȱ ȱŘŖŖŞǰȱȱȱȱȱȱȱȱȱřǯŝŘȱȱȱȱȱ ęȱǰȱȱŜŖǯŞȱȱȱȱȱȱęȱȱǰȱȱŖǯŝŞȱȱȱ ȱȱęȱǰȱȱŝřǯŞȱȱȱȱȱȱȱęȱȱȱȱŘŖŖŞǯȱ ȱ ęȱ ȱ ęȱ ȱ ȱ ȱ ¢¢ȱ ȱ ȱ ȱ ǰȱ Ȭ ǰȱ Ȭǰȱȱȱȱȱȱęȱȱȱȱȱȱǯȱȱȱȱȱȱȱȱȱ¢ȱȱȱȱ¢ǰȱ ǰȱȱǰȱȱǯȱȱǯǯȱȱȱȱęȱȱȱȱ¡ǰȱ ȱȱest source being menhaden and the second-largest source coming from trimmings asȱ ȱęȱȱȱȱǯȱȱȱǰȱȱ ȱȱȱȱȱȱȱȱȱęȱȱȱǯ Due to climate change, biological productivity in the North Atlantic is predicted to ȱ ¢ȱ śŖȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ŘŖȱ ȱ ǻĴǰȱ ŘŖŖśǼǯȱȱ ȱ¢ȱȱȱ¢ȱȱȱȱȱȱęȱȱ ǯȱȱȱȱȱȱĴȱȱȱȱȱȱȱ ȱȱĚȱȱȱȱǻȱŘǼǰȱ ȱȱȱȱ¢ȱ ȱȱȱȱȱȱ£ȱȱęȱǯȱȱȱȱ¢ȱȱęȱȱȱȱȱęȱȱȱ¢ǰȱȱ¢ȱȱȱ ęȱȱ ȱęȱȱęȱȱȱȱǰȱȱȱȱ ȱȱ available. ȱȱȱȱęȱȱ¢ȱȱȱȱȱȱȱȱ ȱęȱ ȱȱȱȱȱȱȱȱęȱȱȱǯȱȱȱ ȱȱȱȱȱȱęȱȱȱǻǰȱŘŖŖŘǼǰȱȱ 89 90 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ¢ȱȱȱȱȱǻ ȱȱǯǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŖŝǼǯȱȱęǰȱ ȱȱȱǰȱȱ¡¢ȱŚŖȱȱȱȱȱ ȱęȱȱȱȱȱǰȱȱȱȱȱȱȱȱȱȱ protein and lipid sources (Rust, 2002). Already, commercial salmon diets contain a fracȱ ȱ ȱ ęȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŗŖDzȱ ȱ ȱ ǯǰȱ ŘŖŗŗǼȱ ȱȱȱȱȱȱȱȱȱęȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ¡¢ȱȱȱȱȱęǰȱ ȱȱȱȱȱȱ ȱȱȱȱ ȱęȱǻȱȱǯǰȱŘŖŗŖǼǯȱǰȱęȱȱȱĜȱ ȱȱȱȱȱȱǻ ȱȱǯǰȱŘŖŗŗǼȱȱȱȱȱȱ ¢ȱȱȱȱȱ ȱęȱǯ Ocean acidification and aquaculture ȱȱǰȱȱęȱȱ¢ȱȱȱȱȬȱȱ ȱȱȱȱȱȱȱ ȱȱȱ¢ȱȱȱǻȱȱȱ ǰȱŘŖŖşǼǯȱȱǰȱȱęȱ¢ȱĚȱȱȱ ȱěȱęȬȱęȱǻȱȱřǼǯȱȱȱȱȱ ȱȱȱȱȱȱěȱȱȱęȱ¢ȱȱȱȱ¢ǰȱȱȱȱȱǯȱȱȱȱȱȱ ȱȱȱȱȱȱȱęȱ ȱȱ ȱȱ ȱȱȱǯȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱęȱ ǻ¢ȱ ȱ ¢ǰȱ ŘŖŖşǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱęȱȱȱ¢ȱęȱȱȱȱȱ coordination. ȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱ to mitigate some global climate change impacts and provide a net reduction in ocean ęǯȱ ȱȱȱȱȱȱȱȱȱǰȱȱǰȱȱȱǯȱ ȱǰȱȱȱȱȱ¡ǰȱęȱǰȱȱȱȱęȱȱȱ2 and nutrients from the ocean ȱȱȱȱȱǯȱȱȱȱȱȱȱȱ ȱȱȱ time, it merits further investigation. Social impacts of climate change on aquaculture ¢ȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱculture industry is on human health. Seafood consumption may have a number of health ęǰȱ ȱ ȱ Ȭȱ ǰȱ ȱ Ě¢ȱ ǰȱ reduced macular degeneration, reduced mental depression, and higher IQ, among othȱǻȱȱǰȱŘŖŖŜDzȱȦ ǰȱŘŖŗŗǼǯȱ¢ȱȱȱȱȱȱ ¢ȱȱȱȱȱȱȱȱȱǯǯȱȱȱȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱȱȱ ȱȱȱȱȱȱǯȱ ¢ǰȱȱȱȱȱȱȱȱȱęǰȱȱȱȱ ȱ¢ȱȱȱȱȱȱȱȱ¢ȱȱǰȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services 91 ȱ¢ȱȱȱȱěȱȱȱǻȱȱǯǰȱŘŖŖşǼǯȱ 4.4 Offshore Energy Development Oil and gas ěȱȱȱȱȱȱȱȱȱȱ¢ǯȱȱȱȱȱ industry and its consumers are facing compulsory adaptation to climate changes that ¢ȱ ȱ ȱ ǯȱ ȱ ŚȬŘȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱǰȱ ȱȱȱȱ ȱ ȱȱ ǻǰȱŘŖŖŚǼǯȱȱȱȬȱěȱȱȱȱȱȱȱȱ ȱȱȱ ȱǰȱȱȱȱȱ ȱȱȱȱ ȱ ȱȱǰȱȱȱȱęȱȱȱȱ¡ȱȱ¢ȱȱȱȱȱȱȱȱȱ¢ȱȱ ȱ ȱȱ¢ǯȱ ȱȱ¢ȱȱȱȱȱȱȱ ȱ¢ȱ ȱȱǰȱȱǰȱȱȬ Dzȱȱȱcation; local policies and regulations; the company’s ethics; and their combined perforȱȱȱȱȱȱǯȱȱȱȱȱȱ¢£ȱȱ understood in a broad context given that the oil and gas industry delivers oil and gas as ȱȱȱǰȱȱǰȱȱȱȱǯȱ¢ȱ Figure 4-2 The number of days in which oil exploration activities on the tundra are allowed under the Alaska Department of Natural Resources standards has halved over the past 30 years due to permafrost thaw, which is disrupting transportation; damaging buildings and assets particularly pipelines; and increasing the risk of pollution. Operational costs are increasing for oil and gas companies (ACIA, 2004) ȱȱȱȱȱȱȱȱǻ Ǽȱȱ ¢ȱ ȱ ȱ ȱ ¢ȱ ȱ Ȧȱ ȱ Ĝȱ ǰȱ ¢ǰȱ ȱȱȱěȱǯ ȱ ȱ ȱ ȱ ǯȱ ěȱ ¢ȱ ȱ ȱȱȱȱ¢ȱȱȱ¢ǯȱȱȱ¢ȱŘŖŗŗǰȱȱȱ Administration announced a proposed Central Gulf of Mexico oil and gas and lease ǯȱȱȱȱȱŘŖŗŗǰȱȱȱȱ ȱȱ¢ȱȱȱȱȱergy Management (BOEM) in the Central and Western Gulf of Mexico. In addition, in 92 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Table 4-5: Bureau of Ocean Energy Management lease sales schedule, 2012-2017 ȱ 229 Western Gulf of Mexico 2012 227 Central Gulf of Mexico 2013 233 Western Gulf of Mexico 2013 ŘŚŚ ȱ 2013 225 Eastern Gulf of Mexico ŘŖŗŚ 231 Central Gulf of Mexico ŘŖŗŚ ŘřŞ Western Gulf of Mexico ŘŖŗŚ 235 Central Gulf of Mexico 2015 ŘŚŘ Beaufort Sea 2015 ŘŚŜ Western Gulf of Mexico 2015 ŘŘŜ Eastern Gulf of Mexico ŘŖŗŜ ŘŚŗ Central Gulf of Mexico ŘŖŗŜ 237 ȱ ŘŖŗŜ ŘŚŞ Western Gulf of Mexico ŘŖŗŜ ŘŚŝ Central Gulf of Mexico 2017 ȱǰȱȱȱ¢ȱȱ¢ȱȱȱ ȱěȱ¢ȱȱ ȱȱȱȱěȱȱȱȱȱǯȱȱȱȱȱȱ ȱ ȱȱȂȱ¢ȱȱȱȱȱȱŘŖŗŘȬŘŖŗŝȱȱȱŚȬśǯ IMPACT FACTORS. ¢ǰȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱěȱȱȱȱ¡ȱǻǰȱŘŖŖşǼDZ ŗǯȲȱ ȱ ȱ ȱ DZ Changing rainfall amounts, availability ȱȱ ǰȱȱȱ ȱȱȱȱȱȱ ǰȱ ȱȱ¢ȱȱ sustaining the production of oil and gas. ŘǯȲ¢ȱȱDZȱȱ¢ȱȱ¡ȱȱȱȱǻǯǯǰȱ ȱ ȱȱȱȱȱȱȱ¡Ǽȱȱȱȱȱȱȱȱ ȱȱȱ¢ȱȱŘŖȱȱŚŖȱ¢ȱǯȱȱȱȱ¢ȱȱ ¢ȱȱȱȱȱȱĴǰȱěȬȱǰȱȱ Ȭȱȱ ter-treatment technologies. As an example of the impact of climate change on these ¢ȱȱǰȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ reached. Impacts of Climate Change on Human Uses of the Ocean and Ocean Services řǯȲ¢ȱ ȱȱ¢ȱDZ Not only are environmental conditions changing at most locations on the globe, but the oil and gas industry is also exploring potenȱȱȱȱȱȱȱȱȱȬȱ ȱȱȱȱȱ ȱ ȱȱȱę¢ȱȱ¡ȱȱȱȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ¢ǰȱ ȱ ǰȱ ǰȱ ȱ ȱ ȱȱ ȱǯ 4ǯȲȱȱȱȱȱDZȱȱȱȱ ȱȱȱ¢ǰȱȱ ȱȱȱȱȱȱȱȱȱȱ ȱ¡ǰȱǰȱȱǯȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱ and revenue drivers. Beyond the safety-driven increases noted above, insurance costs ȱ¢ȱȱȱȱȱȱȱ¢ȱȱȱȱȱ ȱ ǰȱȱȱ£ȱ¢ȱ¢ȱŗŖȱȱȱȱȱȱȱ¢ǯȱȱȱȱȱȱȱȱȱ¢ȱȱȱěȱ¢ȱ ȱȱȱȱȱȱȱȱȱȱȱǰȱ ȱȱ ȱȱęȱǯ śǯȲȱȱȱDZȱȱ ȱȱ ȱȱȱȱ ǰȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱ¢ȱ¢ȱȱȱȱȱȱȂȱǯȱ ȱȱȱȱȱ¢ȱȱȱȱȱȱ¢ȱ ȱȱ¢ȱȱȱ¢Ȃȱȱ ȱǰȱȱȱ ȱȱȱȱȱǯ ȱȱǯȱ ȱ ȱ¢ȱȱȱȱȱȱ- dustry based on their particular climate change policies and regulations. Fish and marine ȱȱȱȱȱȱȱȱęȱ¢ȱȱȱȱȱȱȱ ęȱȱěȱȱȱȱȱȱǻǰȱŘŖŖşǼǯȱȱ ȱȱȱ ȱȱȱȱȱ ȱ¢ȱȱ ȱȱȱ¢ȱȱȱ ȱ ¢ȱ ǯȱȱ ȱ ȱ ¢ȱ ȱ ȱ ǰȱȱȱȱǰȱȱȱ ȱȱȱȱ¢ȱǯȱ ȱȱȱǰȱȱǰȱ ȱȱȱȱȱȱ ȱȱȱȱ ȱȱȱȱȱȱ ȱȱȱȱȱęȱǯȱ ȱȱ ȱ¢ȱȱ¢ȱȱȱȱȱȱǯ ȱ ȱǰȱȱȱȱȱ¡ȱǰȱȱȱ¢ȱȱȱȱ ȱ ǰȱȱȱ¢ȱȱǰȱ ȱȱȱȱǻȱȱǯǰȱŘŖŖŞǼǯȱ ǰȱȱȱȱ¢ȱȱ ȱȱȱȱȱȱȱ¢ȱȱȱȱĜǯȱȱǰȱȱȱȱĴȱȱȱȱȱȱȱȱ¢ȱDzȱȱ ¡ǰȱȱŘŖŖŜǰȱ ȱȱ¡ȱŘŖŖśȱȱǰȱȱȱȱ ȱȱȱȱȱ ȱȱȱ¢ȱȱȱěȱȱ platforms. IMPACTS ON INDEPENDENT AND NATIONAL OIL AND GAS COMPANIES. In- ȱȱȱ¢ȱȱȱȱȱ¢Ȭ ȱȱȱ ȱ¢ȱ ȱȱȱŗŖȱȱȱȱ Ȃȱȱȱȱǰȱȱ¢ȱȱ 93 94 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ěȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ŘŖȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱ ȱȱ¢Ȭ ȱȱȱǻǰȱŘŖŖşǼǯȱ¢ȱȱ¢ȱ ȱȱȱ ȱȱȱȱ limiting access to reserves, resulting in investments by independent oil companies in ȱ ȱȱȱȱȱȱȱȱ ȱȱȱ Ȭȱǯ ȱȱȱȱȱ ȱȱ ȱȱȱȱ ǯȱ ěȱȱȱȱě¢ȱ¢ȱȱǯȱ- nies may feel direct impacts, such as on-site changes of environmental conditions, or ȱǰȱȱȱȱ¡ȱ¢ȱȱȱȱǯȱȱęȱ impact of climate policies and environmental protections that restrict access to reserves, Figure 4-3 Combined financial impact of climate policies and restricted access to oil and gas reserves (range of possible outcomes and most likely impacts) (Source: Austin and Sauer, 2002). in addition to the development of resources in less accessible locations every year, is ȱȱȱȱȱ¢ȱ ȱŗȱȱŝȱǰȱȱȱȱ ¢ǯȱȱȱȱ£ȱȱȱŚȬřȱ ȱǻȱȱǰȱŘŖŖŘǼǯ ȱȱ ȱȱǯȱȱȱȱȱȱ ȱ ȱȱȱȱȱ¢DZȱǼȱȱȱǰȱǼȱȱ¢ȱǰȱȱǼȱ ȱȱ¢ȱȱȱȱǯȱȱĴȱȱȱȱ ȱȱ ȱ ȱȱȱȱ ȱȱȱȱȱ ȱǼȱǯȱȱȱ¡ǰȱȱ ȱȱȱ ȱȱȱȱ invest in alternatives to fossil fuels and develop cleaner and more sustainable energy ȱ ȱȱȱȱĚȱȱȱęȱȱȱȬȱȱȬǯȱȱ ȱ ȱȱȱȱȱ¢ȱęȱȱȱȬȱȱȱ ȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ęȱ ȱ ¢£ȱȱȱ ȱȱȱȱȱȱȱȱȱȱ performance (e.g., Asset Lifecycle Management; Acclimatise, 2009b). Also, companies ȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱȱȱȱȱȱǰȱȱ ȱȱȱȱ ȱ¢ȱǰȱ ȱȱȱȱȱȱȱ¢ȱȱȱ ȱ ȱ ǻǰȱ ŘŖŗŖǼȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱȱ ȱȱȬ ȱȱ ȱ¢ȱȱȱȱ¢ȱ ȱȱȱȱǯ ¢ǰȱȱȱȱȱȱȱ ȱȱȱȱȱ ȱ Ěȱȱȱȱȱȱ ȱȱ¢ȱ ȱȱȱȱȱȱ¢ȱ ȱȱȱȱǼȱȱ¢ȱȱȱȱȱȱȱȱȱ ǯǯȱȱȱǰȱȱǼȱȱȱȱȱȱȱ¢ǯȱȱ turn, the global economy is expected to recover and lead to increasing levels of prosper¢ǰȱ ȱ ȱ¢ȱȱȱȱ¢ǯȱȱȱ¡ǰȱȱȱ ȱ¡ȱȱȱę¢ȱȱȱȱ ȱ ȱǰȱȱ ȱȱȱȱȱȱȱ ȱȱǰȱȱȱ insurance premiums, among other factors. ȱ ȱ ȱ ȱ ǯȱ The great dilemma that society and oil and gas ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱ¢ȱȱȱ¢ȱęȱǻȱȱ ȱȱǯǰȱŘŖŖŘǼǯȱěȱȱȱȱěȱȱȱȱȱ ǻȱȱ ȱȱǯǰȱŘŖŖŘǼǯȱȱǰȱ¡¡ȱ ȱȱęȱȱȱȱȱȱȱȱȱȱęȱȱȱȱ¢ȱȱȱȱȱ¢ȱ ȱȱȱȱĴȱȱ¢ȱȱȱȱȱȱȱ ęȱȱȱ¢ǰȱȱȱȱęȱ ȱ¢ȱȱȱȱ ¢ȱǻĴǰȱŗşşŘDzȱȱȱ ȱȱǯǰȱŘŖŖŘǼǯȱěȱȱȱȱȱ ȱȱęȱȱȱȱȱȱDZȱęȱȱȱ Ȭȱ of the economy versus climate change impacts on society and ultimately the economy ȱ ǯȱȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱ ȱ ǰȱ¢ȱȱ¢ȱȱȱȱȱȱ ȱȱȱȱȱ¡£ȱȱęǯ ȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ǻǰȱ ŘŖŖşǼǯȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱȱȱǰȱĜȱȱ¡ȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱěȱǻǰȱŘŖŖşǼǯȱ Oil and gas companies are beginning to act on clear signals that climate change is un ¢ǯȱȱȱ¢ȱęȱǰȱȱȱȱȱȱȱȱ ȱȱȱ¡¢ȱŚȱȱȱȱȱǻǰȱŘŖŖşǼǯȱȱǰȱ ȱȱȬȱȱ ȱ¢ȱȱȱȱȱȱę¢ȱȱ ȱ¢ǯȱ¢ǰȱȱȱĚȱȱȱȱȱȱ¢ȱȱȱ¢ǰȱȱ ȱ¢Ȃȱȱȱȱ¢ǰȱȱȱȱĴǯȱȱ¢ȱ ȱ¢ȱ ȱȱ¢ȱěȱ¢ȱDZȱǼȱ¢ȱȱȱȱȱȱȱ 95 96 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE gas industry or b) any adverse impact of the oil and gas industry on climate change. ȱȱȱȱȱ¡ȱȱȱȱȱȱȱȱ ȱ¢ȱ ȱȱȱȱȱȱǻǯǯǰȱȱȱǼǯȱȱȱȱȱȱȱȱȃ Ȅȱȱȱȱǯ Renewable energy (wind, ocean waves, and currents) Although coastal and marine environments do not currently host commercial facilities ȱȱ¢ǰȱȱȱȱȱȱȱȱȱȱȱǯȱȱȱ¢ȱȱ ȱ¢ȱȱ¢ȱȱȱȱȱȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ǰȱ ǰȱ ¢ȱ ǰȱ and solar. The Bureau of Ocean Energy Management (then the Minerals Management Service) prepared a Programmatic Environmental Impact Statement (PEIS; BOEM, 2007) ȱ¡ȱȱȱȱȱȱȱ¢ȱǯȱȱȱ¢ȱȱȱ ǰȱ ǰȱȱȱȱȱ ȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱǯȱ¢ǰȱ¢ȱȱȱȱ ¢ȱȱȱ ȱȱȱȱȱȱ ȱ ȱ¢ǯȱȱȱȱȱ¢ȱȱȱȱ ȱȱ¢ȱȱȱȱǰȱ ȱȱȱȱȱ ȱȱ ȱ ¡ȱ ǻȱ ǰȱ ŘŖŗŘǼǯȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱǰȱȱǻǰȱŘŖŗŗǼǯȱȱȱȱǰȱȱ ȱ¢ȱȱȱ approved for development and several others have been proposed. Wave energy is most ȱȱȱęȱǰȱ ȱ¢ȱȱȱ ¢ǯȱȱȱable area for ocean current development is the Gulf Stream along the southeast coast of ǰȱ ȱȱȱȱȱ¢ȱȱǯ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ evaluated as mitigation measures because they do not directly result in emissions of ȱǯȱȱěȱȱȱȱȱȱ ȱ¢ȱ¢ȱȱ ȱȱȱȱȱǯǯȱȱȱ Dzȱ ǰȱȱ ȱȱȱȱȱ ǰȱȱȱȱ¡ȱȱěȱȱ¢ǯȱ¢ȱȱDZ ŗǯȲȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ǰȱ stronger currents, or sediment erosion; and ŘǯȲȱȱȱȱȱ¡ǰȱȱȱȱ ȱǰȱ ȱ height, or ocean current intensity or direction. These changes could have either a ȱȱȱěǯ ȱȱȱȱȱ ȱȱȱȱ ȱȱȱȱȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ǻȱ ȱ ǯǰȱ ŘŖŗŗǼǯȱ ȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱǻȱȱǯǰȱ 2011). ȱěȱ ȱ¢ȱȱȱȱǰȱȱȱę¢ȱȬȱȱȱȱ¢ǰȱȱȱȱȱȱǰȱȱȱȱȱ ǯǯǰȱȱȱȱěȱȱȱȱ¢Dzȱę¢ǰȱěȱ ȱ ȱȱ¡ȱȱǯȱ¢ȱȱȱȱȱȱȱ ȱȱȱȱȱȱ¢ȱȱȱȱȱȱing industry. Impacts of Climate Change on Human Uses of the Ocean and Ocean Services 4.5 Tourism and Recreation ȱȱȱȱȱȱȱǯǯȱ¢ǰȱȱǞŗǯŞȱȱȱȱ ȱȱȱŗŚǯŗȱȱȱȱŘŖŗŗȱǻǯǯȱȱǰȱŘŖŗŘǼǯȱȱ ȱȱȱȱȱ ȱȱȱȱȱ ȱȱȱȱȱȱ¢ǰȱ ȱŗŖŗȱȱȱȱȱȱȱȱȱ¢ǰȱȱ ŘǯşȱȱȱŘŖŗŖȱǻǰȱŘŖŗŘǼǯȱ¢ǰȱŘǯŞȱȱȱȱȱǰȱŝǯśŘȱȱȱȱǞŗǯŗŗȱȱȱȱȱȱȱȱȱȱ¢ȱ tourism (OTTI, 2011a, b). Coastal tourism and recreation is used to describe all tourism, leisure, and recreation¢Ȭȱȱȱȱȱȱȱȱȱȱȱ ǯȱȱȱ ȱȱȱȱȱȱȱȱǰȱȱȱǰȱȱǰȱȱȱǰȱȱȱȱȱȱ ǯȱditionally, infrastructure, including hotels, restaurants, vacation homes, marinas, dive shops, harbors, and beaches, is needed in coastal areas to support these tourism and recȱǯȱȱȱȱĜȱȱȱ¢ȱȱȱǰȱȱȱȱȱȱȱȱĜȱȱȱȱȱȱ ȱǰȱ ȱŘŖŖşȬŘŖŗŖǰȱȱȱȱȱȱȱȱǯǯȱȱȱ¢ȱȱȱ ȱǰȱȱȱȱǰȱȱȱȱȱȱȱȱȱȱȱȱ ȱǻǰȱŘŖŗŗǰȱǼǯȱȱǯǯȱȱȱȱȱȱȱȱ trips in paid accommodations or travel to destinations 50 or more miles from home, ȱȱȱŗǯśȱȱȬȱȱȱȱŘŖŗŖȱǻǯǯȱȱǰȱ 2012). ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ¢ȱ ǯǯȱ ȱ ȱ ȱ ȱȱȱȱȱ¢ȱȱȱȱȱȱȱǻȱȱ ǰȱŘŖŖŜDzȱǰȱŘŖŖŚDzȱǰȱŘŖŖşǼǯȱȱȱ¢ȱ¢ȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ȱ ȱ ǯǯȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱǻȱȱȱǰȱŗşşŞǼǯȱ ȱȱȱȱȱǰȱȱȱȱȱǰȱȱ er conditions, and extreme events such as typhoons and hurricanes are expected to pose ȱȱęȱȱȱȱ¢DZȱ¢ȱȱȱȱȱȱ¢ǰȱ ¢ȱȱǰȱȱ ȱ¡ȱěȱȱǯȱȱȱȱȱȱ ȱȱ¡ȱȱěȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱ ¢ȱǻȱȱǰȱŘŖŖşDzȱĴȱȱǯǰȱŘŖŖŚǼǰȱȱȱ ȱȱȱ Dzȱ ǰȱȱȱȱȱȱȱȱ these industries is still in its early stages. Many coastal and marine tourism and recreational activities depend upon favorable ȱȱDzȱǰȱȱȱȱȱȱ ȱ¢ȱ ȱȱȱęȱȱȱȱȱǯȱȱȱ ȱȱȱǰȱȱȱȱȱȱȱȱȱȱǰȱ¢ȱ ȱȱ ȱȱȱȱȱȱ ǯȱȬȱȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱȱȱȱęǯȱȱ ȱĴȱȱȱȱȱȱȱtures rise, preferred locations for these and other types of recreation and tourism may ȱȱ ǯȱȱǰȱȱȱȱ¡ȱȱ¢ȱȱ ǰȱ 97 98 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱǰȱȱȱĴǰȱǰȱȱȱȱȱȱȱ climate for more time throughout the year and others, such as Miami, Florida, to experience a decrease in desirability for tourism because of increased temperatures, except ȱȱ ȱȱǻȱȱǯǰȱŘŖŖŝǼǯȱ ǰȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱ¢ǰȱȱ¢ȱȱ ǰȱȱȱ ȱȱȱȱȱȱȱ¢ȱȱǯȱȱȱȱ ȱȱȱȱȱȱȱ ȱȱȱȱȱȱ ȱȱǻȱȱǰȱŘŖŖşDzȱĴȱȱǯǰȱŘŖŖŚǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ŘǼDzȱ ǰȱȱȱȱȱěȱ¢ȱȱȱȱȱǯȱȱ ȱȱȱȱ¢ȱǰȱȱȱȱȱ ǰȱȱ seabird migrations, or Arctic cruise tourism. With changing sea surface temperatures, ȱȱȱȱȱȱ¡ȱȱǰȱěȱȱȱ ȱȱȱ ȱȱȱǻȱȱǯǰȱŘŖŗŖǼǯȱȱȱ ȱȱ¡ȱȱȱ ȱȱȱȱȱȱȱ Ȭȱ ȱ ȱ ȱ ȱ ǻ ȱ ȱ ǯǰȱ ŘŖŖŝǼǰȱ ȱ ȱ ȱȱȱ ȱȱȱȱ¢ȱȱȱȱȱȱǰȱȱȱȱȱȱȱȱȱȱ ȱȱȱ ȱȱȱǻ ȱȱǯǰȱŘŖŖŝǼǯȱȱȱȱȱěȱȱȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ Dzȱ ȱ ¡ȱ ȱ ȱ ȱ ȱȱȱȱǰȱ ȱȱȱȱȱȱȱȱ ǻ ȱȱǯǰȱŘŖŖŘǼǯȱ ȱȱȱȱȱȱȱ¢ȱ¢ȱȱȱěȱ¢ȱȱ ȱȱ ȱ ǯȱȬȱȱȱȬ ȱȱ¢ȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱǯȱȬ ȱ ȱȱȱȱȱȱȱȱȱǯǯȱȱȱȱǯȱȱȱ surface temperatures increase, impacts upon cetaceans are predicted to include changes in species’ distribution ranges, individual occurrence and abundance, migration timing and length, reproductive success, mortality levels, and community composition ȱǯȱȱȱȱȱ ȱěȱ ǰȱ ǰȱ ȱ¢ǰȱȱ ȱȱ ȱȱ¢ȱȱȱǰȱȱȱȱȱȱȱ¢ȱȱǻbert et al., 2010). In some cases, operators may choose to move their business to a more ȱȱȱȱ ȱȱȱȱȱǰȱȱȱȱ ęȱȱȱęȱȱȱȱȱȱȱȱȱ¢ȱȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ Ĝȱ ȱ ǰȱ ȱȱȱȱȱ¢ȱȱ¡ȱȱȱȱȱ changes there are predicted to be greater than in other regions. Cetacean species that cannot easily move as temperatures increase are expected to experience more severe impacts. Additionally, tours that focus on resident marine mammal populations that ȱȱȱȱȱȱȱȱ¢ȱȱȱ¢ȱȱȱę¢ȱ ěȱ ȱ¢ȱȱȱȱ ¢ȱ ȱ ȱ ȱ ȱ sea surface temperatures. ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ǯȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ £ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱȱȱǻȱȱ¢ȱŚȬDzȱȱȱǯǰȱŘŖŖşǼǯȱ¢ǰȱȱ ȱȱȱȱȱ ȱȱȱĚȱȱȱȱȱȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱȱȱȱȱȱĴȱȱ ȱ ǰȱȱȱȱǻǰȱ ŗşşŚǼǯȱǰȱȱȱȱ¢ȱȱ¢ȱȱȱȱ ȱȱǰȱ ǰȱǰȱȱȱ ȱȱȱȱȱ ȱ ȱȱȱȱǻĴȱȱǯǰȱŘŖŖŚǼǯ ¢ǰȱ ȱȱȱȱ ȱȱę¢ȱȱȱȱȱȱȱȱȱȱȱȱěȱȱȱ ȱplications for local and state tax revenues. As a result, Morgan et al. (2010) estimated ȱȱ ¢ȱȱȱȬȱȱȱȱȬǰȱęǰȱȱ ȱȱȱ ȱěȱȱȱȱȱǰȱ ȱȱȱȱȱȱȱ¡ǯȱȱȱȱȱȱȱȱŜřȱȱŝŖȱȱ ȱ ȱȱȱ ȱȱ ȱęȱȱȱȱǰȱ¢ǰȱ ȱ¢ȱěȱ¢ȱȱǰȱ¢ǰȱȱȱȱȱȱ¢ȱ red tide events during the previous year. Given that the geographic and temporal scale ȱȱȱȱȱ ȱȱȱěȱ¢ȱ ȱȱȱ¢ȱ ȱ ¢ǰȱȱȱȱ¢ȱȱȱȱ¢ǯȱ ȱ ȬȬȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ¡ȱ ȱȱȱȱ¢ȱȱ¢ȱȱȱǰȱȱȱ¢ȱȱȱ ȱǰȱȱ¢ȱĴȱȱȱȱȱȱȱȱ ȱȱ ȱȱȱȱȱȱǰȱ ȱȱ¢ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱȱȱęȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱ¢ȱěȱȱȱȱȱȱ physical environment occur, indicating that investments in educational and media messages could be prudent expenditures. 4.6 Human Health In addition to current and future climate change impacts on the biophysical and socioȱȱȱȱǰȱȱ ȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ human health in a number of primary areas (Baer and Singer, 2009). In fact, according to ȱȱ ȱ£ȱǻ ǼDZ Our increasing understanding of climate change is transforming how we view the boundaries and determinants of human health. While our personal health may seem to relate mostly to prudent behavior, heredity, occupation, local environmental exposures, and health-care access, sustained population health requires the life-supporting “services” of the biosphere. Populations of all animal species depend on supplies of food and water, freedom from excess infectious disease, and the physical safety and comfort conferred by climatic stability. The world’s climate system is fundamental to this life-support. (McMichael et al., 2003, page 2) ȱ ȱȱȱȱȱ£ȱȱ ȱȱȱȱȱȱȱȱȱǯȱȱȱȱ ȱȱǯǯȱȱȱ ȱȱ ȱȱȱȱȱȱȱȱȱǻǼȱȱ ęȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ¢ȱ¡ȱȱ¢ȱȱ¢ȱȱȱȱǻǰȱ 99 100 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 4-E Economic impacts of the potential erosion of Waikiki Beach ȂȂȱȱȱȱ£ȱȱȱȱ tourism destination and a popular recreational ȱȱȱȱȱǯȱȱȱ ¡ȱ¡¢ȱ ȱȱȱȱȱ shore of O’ahu, and is home to a number of maȱǯȱȱ ŘŖŖŝǰȱ ¡¢ȱ Śȱ ȱȱȱȱȱȱ ȱȱȱřǯşȱ million room nights that generated approximately ǞŗǯŘȱ ȱ ȱ ȱ ǻǰȱ ŘŖŖŞǼǯȱ ȱ ȱ¡¢ȱŞŞȱȱȱȱȂȱ ȱȱȱȱȱǯ Given the popularity and economic imporȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ been an ongoing concern. Recent recognition that ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ǰȱ ȱ ȱ provement Association commissioned a study to ȱȱȱȱȱȱȱ ȱȱȱȱȱȱǯ ȱȱȱȱǻǰȱŘŖŖŞǼǰȱ ȱ Ȃȱ ǻŘŖŗŘǼȱ ȱ ȱ ȱ ęȱ ¢ȱ ȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ǰȱ visitor expenditure related to food and beverage, entertainment and recreation, retail and transportation but excluding lodging, and the associated General Excise Tax (GET) and Transient Accomȱ ¡ȱ ǻǼȱ ȱ ȱ ǻȱ ȱ ŗȱ and 2). To supplement the secondary data, the researchers subcontracted a visitor intercept survey ȱ ¢£ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ¡ȱȱȱȱȱȱ Beach. ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱȱȱȱǯǯȱǻŝŜȱƖȱȱȱǼȱȱ ȱǻŘŚƖȱȱȱǼȱȱ¢ȱȱȱ ŞŚȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ŚŘŞȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ şŖȱ ȱ ȱ ȱ ¢ȱ ȱȱȱ¢ȱ ȱ¢ȱȱ ȱǯȱśŞȱȱȱǯǯȱȱȱ ŗŚȱȱȱȱȱȱȱȱ ȱ ¢ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ¢ȱǰȱ¢ȱ ȱȱȱ ¢ȱȱǯ Based on these survey results, an estimated řŞǰŖŖŖȱ¢ȱȱ ȱȱȱȱȱ ȱȱȱ ȱ¢ȱǯȱȱȱcrease in daily visitors, lost hotel room revenue is ȱȱȱǞśŖřǯŞȱǯȱȱȱȱȱ potential loss in room revenue, other hotel revenues, such as those generated by food and bevȱǰȱȱǰȱȱǰȱȱȱȱ 2007 Waikiki visitor expenditures and estimated losses with completely eroded beach ȱ¡ȱ¢ ȱǻŘŖŖŝǼ ȱ ǻȱȱȱǼ ȱȱ $1.2 billion ǻǞśŖŚȱǼ Total expenditure (excluding lodging) ǞŚȱ ($1.5 billion) ȱȱȱ¡ $5.2 billion ($2 billion) Impacts of Climate Change on Human Uses of the Ocean and Ocean Services 101 Case Study 4-E (Continued) ěȱ ¢ȱ ȱ ȱ ǯȱ ȱ ȱ ȱȱȱȱȱȱ ȱǯȱȱ¡ȱȱĠǰȱ ǰȱ ǰȱ ǰȱ ȱ ȱ ȱ ǯȱ ȱȱȱȱǞŗǯŚŝȱȱ ȱȱ for expenditures other than lodging expenses. Applying the average daily expenditure per person per day for retail, food and beverages, transportation, entertainment, and recreation to the ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ erosion is estimated to cost nearly $2 billion per year in overall visitor expenditures. Additionally, ȱȱǞŜŜȱȱȱ¡ȱȱȱȱ ȱȱ¡ȱ ȱȱǯȱȱěȱȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱȱȱ¢ǯ These estimated impacts highlight the importance of beaches to the tourism industry in coastal states. Reducing these estimated losses in all regions should be a priority that could be addressed through a variety of approaches such as ȱȱȱȱǰȱȱ Ȃȱ ȱ ǰȱ ȱ ȱ beach accommodations. 2007 Waikiki TAT and GET tax revenues and estimated losses with completely eroded beach ¢ȱȱ¡ ¡ȱȱǻŘŖŖŝǼ ȱ ȱȱ¡ȱǻǼȱȓȱŝǯŘśƖȱ ǞŞŜǯŜȱ ǻǞřŜǯśȱǼ ȱ¡ȱ¡ȱǻǼȱȓȱŚǯśŖƖȱ ǞŜşǯŞȱ ǻǞŘşǯŞȱǼ Total ǞŗśŜǯśȱ ǻǞŜŜǯřȱǼ ŘŖŖŝǼǯȱȱȱȱȱȱȱȱ¡ȱ Ȭȱǰȱ¢ǰȱ ȱ¢Dzȱȱȱȱȱȱ Dzȱȱȱ¢ȱȱnutrition; rising pollutant-related respiratory problems; and increased spread of infecȱǯȱȱȱȱȱȱȱ¡ȱȱȱ ¢ȱȱ ȱ ȱȱȱȱȱȱȱȱǯǯȱ¡ȱ¢ȱȱȱȱ ȱȱȱȱȱȱǰȱȱȱȱȱǰȱ Ȭǰȱ ȱ¢ȱǻ ȱŗşşşǼǯ Health and vulnerability Complex social and ecosystem conditions inform the reach and range of climate change ěȱȱǰȱ ȱȱȃȱȱȱȱȱȱȱȱȱȱȱ must be evaluated in a larger socio-cultural context” (Baer et al., 2003:5). Although the 102 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱ ěȱȱȱȱ ȱȬȱȱȱ ȱ ȱȱ ¢ȱ ǰȱȱȱȱ¢ȱȱ¢ȱȱȱ ȱȱ ȱȱȱȱ ǯȱ¢ȱȱȱȱȱȱȱ the role of climate change in determining health, especially because it merges theory and ȱęȱȱȱȱȱȱȱȱȱǰȱǰȱȱ ȱ¢ȱȱȱȱȱȱǻȱȱǰȱŘŖŖşǼǯȱȱ¢ȱȱȱȱȱ¢ȱȱ¢ȱȱȱȱȱ research exploring connections among climate change, marine resource contamination ȱǰȱȱ¢ǰȱ¢ȱȱȱȱȱȱȱȱ to be marine resource users. Waterborne and foodborne diseases ȱȱȱ ȱȱȱ ȱȱȱȱȱȬȱ ȱȬȱ ȱȱȱȱ ȱȱȱȱȱȱȱ ǯȱȱĴȱȱȱȱȱȱȱȱVibrio family, especially V. choleraȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖŘǼǯȱȱ¢ǰȱ ȱ ȱȱǯǯȱǰȱȱȱȱȱȱȱȱVibrio species, including V. parahaemolyticus and ǯȱ ęǰȱ ȱ ȱ ȱ ȱ Ȭȱ ȱ ǯȱȱŘŖŗŗǰȱȱǰȱ ȱȱȱ¢ȱȱ¢ȱȱ Ȭęȱȱȱȱȱȱȱ¡ȱǰȱȱŚśǰŖŖŖȱnual cases of V. parahaemolyticus and 207 cases of ǯȱęȱȱȱǯǯȱǻ ȱȱǯǰȱ ŘŖŗŗǼǯȱȱŚȬŚȱ ȱȱȂȱȱȱȱ¢ȱȱȱȱȱŘŖŖşǯȱȱ highest concentrations of Vibrio infections are in the Mid-Atlantic states that surround ȱ¢ǰȱ ȱřŖśȱȱ ȱȱȱŘŖŖşǯȱȱȱȱȱ ȱȱ¢ǰȱȱȱȱȱȱȱȱȱȱȱę¢ȱȱ ȱȱȱȱ¢ȱȱȱȱǯȱ Reported expansion of V. parahaemolyticus ȱȱęȱ ȱȱȱȱ Figure 4-4 Number of cases of Vibrio infections by state and region, 2009 (Source: CDC, 2011). Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ¢ȱȱ ȱȱȱȱȱȱÛȱǻǰȱŗşşŞDzȱ£ȱȱ ǯǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŖśǼǯȱȱǰȱȱȱ¢ȱȱ ȱǰȱŘŘȱ ȱ ȱȱ ȱǰȱȱ ȱȱ ȱȱ¢ȱV. parahaemolyticusǰȱ ȱȱ ȱȱȱȱȱȱȱȱȱǻǰȱŘŖŖśǼǯ ǯȱęȱis perhaps the most important pathogenic Vibrioȱȱȱǯǯȱȱȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ǻȱ ¢ȱ ŚȬDzȱ ȱ ȱ ǰȱ ŘŖŗŗǼǯȱ ȱ ȱ ¢ǰȱ ǯȱ ęȱ ȱ ȱ ȱ ȱ £ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ŜŖȱ ȱ ǻǰȱ ŘŖŖśǼȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱȬȱȱȱȱǯǯȱǻȱȱǰȱŘŖŖŝǼǯȱǯȱę can be Ĵȱȱȱ¢ȱ ¢ȱȱȱȱȱ¡ǯȱȱȱȱ ¢ȱȱȱ¢ȱȱȱęȱȱ ȱȱ ȱȱȱ ȱǯȱȱȱȱ¢ȱȱȱ ȱȱ ǰȱȱ ȱȱ ȱȱȱ¡ȱȱǯȱęȱȱȱȱ ȱ ǯȱȱ ȱ ȱȱȱȱȱȱřŚǯŞȱȱȱȱȱ¢ȱȱ ȱȱȱ ȱǯȱęȱ ȱę¢ȱȱȱȱŖȱȱŗŝǯřȱ ȱȱȱ ȱ¢ȱȱȱȱřŗȱȱȱȱǻȱ et al., 2011). Additionally, ǯȱęȱȱȱȱęȱȱ ȱȱȱ ¢ȱȱ ȱȱȱ ȱȱ ǰȱęȬed cuts, and seafood handling (Weis et al., 2011). One study reported that almost 70 perȱȱȱȱȱ¢ȱȱȱȱȱ ȱȱȱǻǰȱŗşŞşǼǯȱǯȱęȱȱȱ¢ȱȱȱ ȱ ȱȱ temperature above 20oǰȱ ȱȱ¢ȱȱȱȱęȱȱȱ ȱȱȱȱȱȱ ȱȱȱȱȱǻȱȱ Řȱȱȱ¢ȱŚȬǼǯȱ ǰȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱ¢ȱȱ ȱȱȱcies, including toxigenic V. cholerae, ǯȱ ę, and V. alginolyticus (Lipp, 2011). Alȱȱęȱȱ¡ȱ ȱȱȱȱȱȱȱȱ ǰȱ Ĝȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞǼǯ In addition to members of the Vibrio family, a number of other marine pathogens also ȱȱȱȱ ȱǯȱAeromonas hydrophila ȱȱ ¢ȱȱȱȱȱȱȱȱ ȱȱ ȱȱȱȱęȱǯȱȱǰȱȱȱȱȱ ȱȱȱ¢ȱȱ¡ȱǰȱȱ ǰȱǰȱǰȱȱ¢ȱȱǰȱȱȱȱȱ ȱ£ȱ ȱȱȱȱ ȱȱȱ¢ȱǻǰȱ 2002). Myobacterium marinumȱǰȱȱ ȱ¡¢ȱŘŖŖȱȱȱȱ ¢ȱȱȱǯǯǰȱȱȱȱȱȱȱ£ȱ¢Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ Ȭȱ ¢ȱ (Dobos et al., 1999). Erysipelothrix rhusiopathiae is found in diverse animal species inȱęȱȱęǯȱ¢ȱȱȱȱȱǰȱȱȱȱȱȱȱȱȱȱęǯȱȱȱ¢ȱȱȱȱ ȃȱȂȱȄȱȱȃȱȄȱȱȱȱǻȱȱ¢ǰȱ 1999). Increased rates of infection have been documented for these emerging diseases. 103 104 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 4-F Spread of Vibrio cases throughout the U.S. ȱǯǯȱȱ¡ȱȱȱȱV. vulęȱȱǻȱȱǰȱŘŖŖşǼǰȱȱing cause of death from seafood consumption in ȱ ǯǯȱȱȱȱ ȱȱ ȱ ȱ ȱȱȱȱǰȱ marine environments, seafood safety, and human health. Based on the Foodborne Disease Active ȱ ȱǻǼǰȱ ȱȱ population-based surveillance in ten states, the CDC reported an increase in ǯȱ ę foodȱ ȱ ȱ ŝŞȱ ȱ ȱ ŗşşŜȱ ȱ ŘŖŖŜǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ Gulf of Mexico as a result of high consumption ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ǻǰȱ ŘŖŖŝDzȱ ȱ ȱ ǯǰȱ ŗşşŞǼǯȱ ȱ ȱ surveillance-based reports in 2009 and 2010, the CDC reported that the incidence of Vibrio infecȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱǻŞśȱǼȱǻǰȱŘŖŖşǼǯȱȱȱ¡ȱ V. vulnificus (Source NOAA). ȱȱȱȱȱ ȱŘŖŖŗȱȱŘŖŗŖȱ ȱ ȱ ȱ ǰȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ peratures because ǯȱęȱȱȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ŘŖoC ǻ£ȱ ȱ ǯǰȱ ŘŖŖŝǼǯȱ ȱ ¢ȱ ȱ ȱ ȱ ȱǯȱęȱbecause the bacterium is naturally present in marine environments and ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ǯǯȱ ȱ ȱ ȱ¡ȱ ȱȱęȱȱ ȱȱĜȱȱȱȱ ȱ to discover possible sources of ǯȱęȱand to ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱęȱǻȱȱǯǰȱŘŖŖśǼǯ Analyzing oysters for presence of experimentally introduced V. vulnificus (Source: NOAA). Impacts of Climate Change on Human Uses of the Ocean and Ocean Services 105 ȱǯȱę, each of these pathogens has the potential for increased rates of infecȱȱȱȱȱ ȱȱ ǯ The cases noted here indicate that a range of other Vibrio and non-Vibrio pathogens ȱȱȱȱȱ ȱ ȱȱ ȱȱȱ¡ȱ ȱȱȱȱȱ¡ȱ ǰȱĚǰȱȱȱęȱǻǰȱ 2005). In addition, focused development of hydrological and ecological modeling using ¡ȱȱ ǰȱȱȱȱěȱȱȱǰȱ ȱ¢ȱȱȱȱȱȱǻ ǰȱŘŖŗŗǼǯ Harmful algal blooms and climate change ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ǰȱ ȱ ¢ȱ ȱ ȱ ȱȱȱǰȱȱȱȱ ȱȱȱȱǻǰȱ ŘŖŗŘDzȱ ěǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŖŞDzȱȱȱȱřǼǯȱ¢ȱ ȱȱȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ęǰȱ ǰȱ ǰȱ ȱ ǰȱ ȱ ȱȱȱȱǻȱřǼǯȱ ȱȱȱȱȱ¡ȱ ȱ ¡Ȭȱ ęȱ ȱ ęǰȱ ȱ ǰȱ ȱ ǯȱ ȱ ȱ ǰȱȱȱęȱȱǰȱȱǰȱȱȱ ȱ ȱ£ȱȱȱȱǯȱ ȱ¡ȱȱȱȱȱǰȱȱȱǰȱęǰȱȱ¢ȱǯȱȬ¡ȱ ȱ ȱ ȱ ǰȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱȱǰȱ¢ȱȱȱȱǻȱŚȬśǼǯȱȱǰȱthough critical to protect public health, can reduce the availability of important sources of nutrition and/or income to communities that depend on the impacted resources. The ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱȱǞŞŘȱȱǻ ȱȱǰȱŘŖŖŜǼȱȱ¢ǰȱȱ¢ȱȱȱȱȱ listed above are included in this estimate. ȱȱ¢ȱȱȱ¢ȱȱȱȱȱȱȱ ȱǰȱęǰȱȱ2; alteration of currents or hydrology; and changes Figure 4-5 Harmful algal bloom (Source: NOAA, n.d.). 106 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱ¢ǰȱȱȱ ȱȱěȱǻȱȱŘȱȱǼǯȱ ǰȱ ȱȱȱȱȱȱȱȱ¢ȱ¡ȱȱ ȱ¢ȱȱȱǰȱȱ¢ǰȱ¢¢ǰȱȱ¡ǰȱȱȱ ȱȱ¡¢ȱ ȱȱě¢ȱȱȱȱȱǻȱȱřȱȱǼǯȱ ȱȱ¢ȱȱǻ¢ Ǽǰȱ¢ȱȱ ȱȱ¢¡ȱ ȱ ȱ ǰȱ ǰȱ ǰȱ ȱ ǰȱ ȱ ȱ ǰȱ ȱ ¢ȱ ȱ ȬȱȱĴȱȱȱȱȱȱȱȱȱȱǻȱȱǰȱŘŖŗŘǼǯȱȱ¡ȱȱȱȱ ȱȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ¢ȱ ȱ ȱ ¡ȱ ǯȱ ¢ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ȱ ȱ ȱ Ěȱ ȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ¢ǰȱ ȱ ȱ Ĵȱ ȱ ¡¢ǯȱȱȱȱȱȱ ǰȱ¢ȱȱȱ ȱȱȱǻȱ ȱǰȱŘŖŗŘǼȱȱȱ¢ȱȱȱĴȱȱȱ¢ȱ¢ǰȱȱ (Miller et al., 2010b). ȱȱ ǰȱȱȱȱ¢ȱȱȱȱȱȱ ȱmental conditions are suitable for blooms to occur. For example, in Puget Sound, as in ¢ȱȱȱȱ ȱȱȱǯǯǰȱęȱȱȱȱȱȱ ȱȱȱȱȱȱȱǯȱȱȱȱȱȱȱ ȱ ȱ¢ȱ ȱȱȱȱȱȱȱȱAlexandrium ǻȱȱǯǰȱŘŖŖŞǰȱŘŖŖşǰȱȱȱŜǼǯȱȱ¡ȱĚȱȱȱ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęǯȱ ȱȱȱǰȱȱ ȱǰȱȱȱȱ ȱȱ¢ȱ ȱȱ¢ȱǻȱȱǯǰȱŘŖŗŗǼǯȱ ȱȱ¢ȱȱȱȱȱȱ¢ȱȱȱȱ ȱ ǯȱȱęȱȱǻǼȱȱȱ¢ȱ¡ȱȱ¢ȱȱȱ Ěǰȱ Gambierdiscus, living on macroalgae on tropical hard substrates, espe¢ȱȱǯȱȱ¡ȱȱȱȱȱȱęǰȱǰȱ ȱȱ ȱȱęǰȱȱȱęȱȱǻǼǰȱȱȱǯȱȱȱ ȱȱȱ Ȭȱȱȱȱ ǰȱ ȱȱęȱȱȱ ¢ȱȱ ȱȱȱȱȱ¢ǯȱȱȱ¢ȱ ȱȱȱȱ ȱȱȱȱȱ ȱ ȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱȱȱȱȱȱȱȱęȱȱȱȱ ȱȱȱȱȱȱȱ¡ȱǻȱȱǯǰȱŘŖŗŖǼǯȱ ǰȱȱȱ ȱȱęȱȱȱ ȱ¢ȱȱȱȱȱȱȱȱȱ ȱǻ ¢ǰȱŘŖŗŖǼDzȱǰȱȱȱȱȱȱ¢ȱǰȱȱ not the incidence. ¢ǰȱȱȱȱ ȱȱ ȱȱěȱ¡ȱȱȱ ȱ ¡¢ȱ ȱ ȱ ȱ ¢ȱ ȱ ě¢ȱ ěȱ ¢ȱ ȱ ǯȱ ȱȱǰȱ¡¢ȱȱȱȱȱǻȱȱǯǰȱŘŖŖŖǼǯȱȱ ȱȱ cases, it increased as CO2 increased (Fu et al., 2010; Sun et al., 2011). ȱǰȱȱȱ ȱ¢ȱȱȱ ȱȱȱȱ¢ȱ ȱȱȱȱěȱȱȱȱǰȱǰȱȱ¢ȱȱȱ ȱǯȱȱȱěȱȱȱȱȱ¢ǰȱ¢ȱǰȱ ȱȱ¡¢ȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱǰȱȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱȱȱȱȱȱȱȱȱęȱȱ¢ȱ¡ǯ Health risks related to climate impacts on marine zoonotic diseases A global analysis of trends in infectious diseases found that emerging infectious disease ȱ ȱȱȱȱȱ ȱȱ¢ȱ£ȱȱĴȱ ȱȱȱǰȱ ȱȱ¢ȱȱȱȱǻŝŘȱǼȱȱȱ ȱǻȱȱǯǰȱŘŖŖŞǼǯȱȱȱ¢ȱȱȱ£ȱes by prolonging the diseases’ transmission periods and by changing geographic ranges ȱȱȱȱȱǻȱȱǯǰȱŘŖŖŞDzȱȱȱřȱȱȱȱ and examples of the potential impacts of climate change on disease in marine animals). Zoonotic diseases that occur in marine animals are among those of concern for huȱǯȱȱȱęȱȱ ȱȱȱȱ£ȱȱ ȱȱȱȱȱĜȱȱȱȱȱȱǻȱ ȱ ǯǰȱ ŘŖŖŞDzȱ ¡ȱ ȱ ǯȱ ŘŖŖśǼȱ ȱ ȱ ȱ ȱ Ĝȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖŞǼǰȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ infectious organisms have been seen. For example, Lacazia loboi is a cutaneous fungus that has been reported to infect humans and dolphins in tropical and transitional tropiȱǯȱȱȱȱ¢ȱȱȱȱȱȱěȱȱȱȱ ȱǰȱ ȱȱȱȱȱȱȱȱȱȱȱ (Rotstein et al., 2009). To detect such changes, continued monitoring and assessments of disease in marine animals to establish baselines and identify trends is critical. Furtherǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ human health. Some coastal and tribal communities depend on marine animals as traditional sourcȱȱǯȱȱȱȱǰȱȱȱȱȱȱȱĜȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ Ě ȱ ȱ ȱ ȱ ȱȱęȱȱǻǰȱŘŖŖşDzȱȱȱǯǰȱŘŖŖŜǼǯȱȱȱȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ Ȭȱ food supply. Health risks of extreme weather events ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ¡ȱ ȱȱȱȱȱȱȱǻȱȱ ǯǰȱŘŖŖŗǼǯȱȱȱȱȱ ȱ ȱ¢ȱ¢ȱǰȱȱ ȱȱȱ ȱ ¢ȱ ȱ ȱ ǰȱ ȱ ¢ȱ ȱ ǰȱ ȱ ȱ ¢ȱ ȱ¢ȱȱȱ¡ȱ ȱȱǻǰȱŘŖŖŝDzȱȱȱŘȱȱȱ ȱ¡ȱȱȱ Ǽǯȱȱȱȱȱ¡ȱ ȱȱ¢ǰȱing but not limited to heat exhaustion and other heat-related illnesses (Bernard and McǰȱŘŖŖŚDzȱȱȱǯǰȱŘŖŖŞDzȱȱȱǰȱŘŖŖŞDzȱȱȱǰȱ ŘŖŖŗDzȱ£ȱȱǯǰȱŗşşşǼǰȱȱȱȱǻěȱȱǯǰȱŘŖŖŜDzȱȱȱǯǰȱ ŘŖŖŜDzȱȱȱǯǰȱŘŖŖŜDzȱȱȱȱǯǰȱŘŖŖŜǼǰȱȱȬȱȱ£ȱ ȱǻȱȱǯǰȱŘŖŖśDzȱȱȱǯǰȱŘŖŖŝDzȱȱȱǯǰȱŘŖŖŘDzȱȱȱǯǰȱŘŖŖŞDzȱ Glass et al., 2000; Parmenter et al.,1999). 107 108 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Globalized seafood and emerging health risks ȱȱȱȱȱȱȱ£ȱȱȱȱȱȱȱǯǯȱǰȱȱ ȱȱȱȱǻǼȱȱȱȱǯǯȱ ȱȱȱȱŞŖȱ ȱȱȱȱ¢ǰȱȱ ȱȱęȱȱȱęȱǻǰȱ ŘŖŖŞǼǯȱȱȱȱȱȱŗřǰŖŖŖȱȱȱȱŗŜŖȱǰȱ ȱȱȱȱȱ¡ȱȱȱȱȱǯǯȱ¢ȱȱǻǰȱŘŖŖŚǼǯȱȱȱ ȱȱȱȱȱ¢ǰȱȱǰȱ ȱȱȱ ȱȱȱ health through regulation and supervision of food safety, excluding oversight of most meats, poultry, and processed egg products, directly inspects only a small percentage of the nation’s imported seafood. In 2007, for example, the FDA reported almost 900,000 ȱȱȱǰȱȱ ȱ¢ȱŗŚǰŖŖŖǰȱȱȱŘȱǰȱ ȱȱȱ ȱȱȱ¢ȱȱǻǰȱŘŖŖŞǼǯȱȱȱ¢ȱ ĜȱǻǼȱȱ ȱȱȱ ȱȱȱȱȱ¢ȱȱȱȱȱ ȱȱȃȱȱȱȱ ȱȱȱȱȱȱȱ ȱȄȱǻȱŗşşŜǰȱȱŘǼȱȱȱǯǰȱȱȱȱȃȱȱȱ ȱ ȱȱȱȱȱȱȱȱȄȱǻǰȱŗşşŞǰȱȱŘȬřǼǯȱȱ ŘŖŖŚǰȱȱȱȱȱȱȱȱ¢ȱȱȱȂȱȱȱȱȱȱǯǯȱǯȱ ȱȱȱȱȱȱȱȱǰȱȱȱǰȱ¢ȱ bacteria such as Salmonella, Campylobacter, verotoxin producing E. coli, and listeria, parasites such as Toxoplasma gondii, Cyclospora cayetanensis, and trichinella, and viruses such ȱ ȱ ȱ ȱȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢¡ȱ ǻȱȱǯǰȱŘŖŖŞǼǯȱ ȱŗşŞřȱȱŗşşŘǰȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱǻȱȱǰȱŗşşŝǼǰȱȱȱȱȱ ȱ ȱ ȱ ǻ ȱ ȱ ǯǰȱ ŘŖŖŗǼǯȱ ȱ ȱ ŘŖŖŜǰȱ ȱ Ȭȱ ȱ ȱ ęȱȱ ȱȱȱȱǯǯǰȱȱȱȱȱȱȱȱǰȱ ȱȱȱȱȱȱȱǰȱ¢ȱǻǰȱŘŖŖŝǼǯȱ ȱ¢ȱȱȱȱȱ ȱȱȱȱ ȱȱȱ ǯȱȱȱȱȱ¢ȱȱȱęȱȱȱȱtion of imported seafood. For example, tested salmon, shrimp, and tilapia samples from ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ŗŘȱ ȱ found that 17.5 percent of the samples tested positive for Salmonella, 32.2 percent for ShigellaǰȱŚǯŗȱȱȱListeriaȱ¢ǰȱȱşǯŚȱȱȱEscherichia coli (Wang et al., 2011). Similarly, tests of over 12,000 imported and domestic seafood samples over a nine-year period found that the incidence of Salmonellaȱ ȱŝǯŘȱȱȱȱ ȱȱȱŗǯřȱȱȱȱȱǻ ĵȱȱǯǰȱŘŖŖŖǼǯȱȱ¢ȱ results suggest that a high potential for infection in imported seafood (Love et al., 2011). ȱȱȱȱęǰȱȱȱȱȱ ȱȱȱȱȱȱ £ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ ǯȱ ȱ ȱ ȱ ȱȱȱ¢ȱȱȱȱȱ ȱ ¢ǯȱǰȱȱȱȱ ȱȱȱȱ¡ȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱ ǰȱȱȱȱ ¡ȱȱȱȱǯǯȱǰȱȱȱȱȱ ȱĴȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱȱ ȱȱȱǯȱȱǰȱȱ ȱȱ ȱȱ ȱȱȱȱȱǰȱȱȱȱȱȱĴȱȱȱȱȱȱǯǯȱȱȱȱȱȱȱȱǯ ȱ¢ȱȱǰȱȱ¡ǰȱȱȱȱȱȱȱ source of environmental health concern (Loring and Gerlach, 2009). Many of these comȱȱ¢ȱ¡ȱȱȱȱȱȱȱȱ ǰȱȱ ȱ ¢ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ holm Convention addressed, from military dump sites and a variety of other sources ǻ ȱ ȱ ǯǰȱ ŘŖŖŖǼǯȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱȱȱȱȱȱȱȱȱ Ȭȱǻȱȱ ě¢ǰȱŘŖŖřDzȱȱȱǯǰȱŘŖŖŝDzȱȱǰȱŘŖŖśǼǯȱ Acidification and other unknown human health risks ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱęǰȱ ȱȱȱȱ challenge to marine life and marine resource users (NRC, 2010a). Although scientists ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęǰȱȱȱȱęȱȱȱȱȱȱȱȱǯȱ ǰȱęȱȱȱȱȱȱǯȱ ȱȱȱȱȱȱęȱȱęȱǰȱȱȱ¢ȱȱ Ȭȱȱȱȱȱęȱȱ¢ȱȱ¢ȱȱȱ¢ȱȱȱȱȱȱȱȱȱ ȱȱ ȱǯ ȱȱȱȱȱȱȱǰȱȃȱȱȱ ȱ ǽȱęǾȱěȱȱȱ¢ȱȱ¢ȱȱȱȱȱ for income and sustenance. There is thus a need to assess vulnerability and adaptation ȱȱȱȱȱěȱȱȄȱǻǰȱŘŖŗŖǰȱȱŗŗşǼǯȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȬȱȱȬȱȱȱȱęȱ ȱ¢ȱ result in negative impacts on important food sources for communities in coastal regions that rely on marine resources for sustenance. 4.7 Maritime Security and Transportation ¢ǰȱǰȱȱȱȱȱȱȱ¢ȱȱ ȱȱȱ ¢ȱȱȱȱȱȱǯǯȱȱȱȱȱǰȱ¢ȱȱȱǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱȱ¢Ȭȱǯȱȱȱȱ ¢ȱȱȱȱ arena is the increase in shipping accessibility in the Arctic. National security concerns ȱȱȱȱ¢ȱȱȱȱȱȱȱȱĴȱǻǰȱ ŘŖŖŞDzȱ ȱ ȱ ǯǰȱ ŘŖŖŝDzȱ ǰȱ ŘŖŗŗǼǯȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱ ȱȱȱ¢ȱȱȱǯȱȱȱ ȱȱȱ expanded geopolitical discussion involving the relationship among politics, territory, ȱȱ¢ȱȱǰȱȱȱȱȱǻĴȱȱǰȱ ŘŖŖŖǼǯȱȱȱȱśǯŚǯŗȱȱȱȱȱȱȱȱȱ climate change on these sectors. 109 110 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE 4.8 Governance Challenges ȱȱȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱǯȱȱȱǰȱ ȱȱ ȱȱȱȱȱ ȱȱǯȱ¢ȱȱȱȱȱȱȱȱder assumptions of stable environmental conditions that are similar to observed historical experience (Peloso, 2010). In many instances of greater climate variability or climate ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱȱȱ¢ȱȱȱȱȱȱ¢ȱ ȱȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱȱȱȱǯȱȱȱǰȱȱȱ ȱȱȱȱȱ need to revise our current management approaches and, in some cases, to restructure governance systems for most ocean uses. While governments can employ technologies ȱȱĴȱȱȱȱȱǰȱȱȱȱȱȱȱ ȱȱȱȱȱ¢ȱȱěȱȱȱȱȱȱ that implement them to deal assessing, planning and responding to negative impacts, ȱȱȱǻ ¢ȱȱǰȱŘŖŗŗǼǯȱȱȱǰȱȱȱ¢ȱȱ Sciences has repeatedly called for early, active, continuous, and transparent community ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢Ȭ ȱ ȱ ǻǰȱ ŗşşŜǰȱ ŘŖŖŖǰȱ Ǽȱ ȱ ¢ȱ ȱ ȱ ȱ ¡perts (Fischer, 2000). This broader, more inclusive governance approach is ever more important as marine resource users and coastal communities: 1) increasingly adapt and ȱȱȱ¢ȱǰȱȱȱȱȱ ǰȱ ȱȱ ȱǰȱȱŘǼȱȱȱȱȱȱȱsions, especially those resulting in changes in marine resource management decisions and policies. The governance needs of ecosystem-based management may dovetail ȱ ȱ ǯȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ addressed as as a result of climate change. These challenges are most apparent in the ǰȱ ȱȱȱȱȱȱ ȱȱȱ ȱȱȱȱȱȱ other maritime uses. Fisheries management in the U.S. ȱěȱȱȱȱȱęȱȱȱȱȱȱȱȱ ę¢ȱȱȱȱȱǯǯȱȱęȱȱȱ¢ȱ ȱȱ ȱȱȱȬȱ¢ȱȱȱȱȱǻǼǯȱȱȱ ǰȱȱę¢ȱȱȱǻǼȱ ȱ ęȱ ȱ ȱ ęȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ federal government, represented by the National Marine Fisheries Service (NMFS). Management plans from the Councils are designed to meet ten National Standards ǻǼȱȱ¢ȱȱǯȱȱȱȱȱȱȱȱȱȱ ęȱ ȱ ȱ ȱ ¢ǯȱ ȱ ȱ ¢ȱ ȱ ęȱ ¢ȱ ȱȱȂȱǰȱ ȱȱȱȱȱȱ ȱȱȱȱȬ ȱ ȱ ¢ȱ ǻȱ ǰȱ ȱ śǰȱ ȱ ŜŖŖǯřŗŖǻǼǼǰȱ ȱ ȱ ¢ȱ ǰȱ economic, or ecological factors (MSA, page 10, section 3(33)). This optimum yield is the basis for caps on total harvest or Annual Catch Limits (ACLs). ACLs are established by Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱ ęȱ ȱ ȱ Ĵȱ ǻǼȱ ȱ ȱ ¢ȱ ȱ ǯȱȱ ȱȱȱȱ¢ȱěȱȱȱęǯȱȱȱȱȱȱȱ ȱȱȱȱȱĚȱȱȱ£ȱȱȱęǯȱǰȱȱȱȃǽǾȱȱȱȱȱȱȱ ȱǰȱȱȱ¡ȱDzȱȱȱȱȱȱȱȱȱȱȱ ȱǯȄȱȱ ȱȱȱȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱȱ¢ȱȱ ȱ ȱǰȱȱ ȱȱȱȱȱ ȱǯȱ An additional factor that Councils must consider is changes in bycatch. When shifts ȱȱȱȱȱȱȱȱ¢ȱĴǰȱȱȱ ȱ ȱ ȱȱ ȱ ȱ ȱ ȱ ȱ Ĵǯȱ ȱ ¡ǰȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ę¢ȱ ǻȱ ȱ ǰȱ ŘŖŖşǼǯȱ ȱ ȱ ǰȱ ȱ ȱ ęȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ £ȱȱ¢ȱȱ¢ȱȱȱęȱȱȱȱȱȱȱ ȱǻȱȱȱȱȱŜǼǯȱ ȱ¢ȱȱȱȱȱ ȱȱȱȱ¢ȱęȱ ȱǯȱȱȱȱ¢ȱȱęȱȱȱ ȱ ¢ǯȱǰȱȱȱȱȱȱ¢ȱěȱȱǰȱȱ Ĵȱȱȱ ¢ǯȱǰȱȱ¢ȬȬ¢ȱ¢ȱȱȱȱȱȱȱ¢ȱȱȱȱĴȱȱȱȱǻȱȱŚǯŘȱ Ǽǯȱ¢ȱȱȱȱȱȱȱȬȱȱȬȱȱ assessment methods. Climate change is expected to alter the basic population dynamȱȱǰȱȱ¢ȱ¢ǰȱęȱȱȱȱȱ¢ȱȱȱȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻǼȱ ȱ ȱȱ ȱ ȱ ¢ȱǯȱȱ¡ǰȱȱ¢ȱȱȱ ȱȱȱȱȱȱ¢ȱ no longer appropriately cover the range of the species, perhaps leading to an assessment ȱȱȱȱȱȱȱȱȱȱȱǯȱ ȱȱ ȱȱȱǰȱȱȱȱȱȱȱȱȱ ǰȱȱȱȱȱȱȱȱȱȱȱěȱęǯȱ ǰȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ¢ǯȱ ǰȱȱ¢ȱȱȱȱȱȱȱȱȱǯȱȱǰȱȱ¢ȱȱ ȱȱȱȱȱȱȱȱ ¢ȱȱȱȱȱȱĴȱȱȱȱȱȱǯȱȱȱǰȱȱ uncertainty generated by climate change exacts a cost through the TAC- and ACL-setȱȱȱȱȱęȱȱ¢ȱȱȱǯȱȱ¢ȱŚȬȱȱ ȱȱȱ¢ȱȱ¡ȱ ȱęȱęȱȱȱǯǯ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱęȱ¢ȱȱȱȱǰȱ¢ȱ¡ȱȱȱȱęȱȱȱȱȱȱȱ¢ȱȱ ¢ȱȬ ȱęȱȱǻȱȱȱȱȱŜǼǯȱȱ¢ȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱěȱȱȱ¡ȱȱ ȱȱȱȱȱȱȱ ȱȱȱȱ ǻǰȱŘŖŗŗDzȱȱȱǰȱŘŖŖşǼǯȱȱȱ ¢ǰȱȱęȱȱȱ ȱȱȱ¢ȱȱȱȱǰȱ ȱȱȱ 111 112 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 4-G Fisheries management responses to climate change ǯǯȱ ęȬȱ ȱ ȱ ȱ large urban centers to small rural outposts. They ¢ȱ ȱ ¡ȱ ȱ ȱ ǰȱ £ȱ ȱ ǰȱ types of gear used, and level of involvement in ǰȱǰȱȦȱȱęing. Fishing-dependent communities may have ęȱ¢ǰȱǰȱȱǰȱȱȱ ǰȱȱ ǰȱȱȱǻȱ ȱŘŖŖşǼǯȱȱęȱȱȱsons, including income, adventure, family tradiǰȱǰȱȱȱȱǻȱȱǯǰȱŗşŞşDzȱ ȱ ȱ Ĵȱ ŗşşŘDzȱ ȱ ȱ ¢ȱ ŘŖŗŖDzȱ ȱ ȱ ȱ ŘŖŗŗǼǯȱ ȱ ŘŖŖşǰȱ ȱ ǯǯȱ ȱ industry supported approximately 1 million fullȱ Ȭȱ ȱ ȱ ȱ ǞŗŗŜȱ ȱ ȱ ǰȱǞřŘȱȱȱǰȱȱǞŚŞȱȱȱue added. Recreational angler expenditures conȱ ǞśŖȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ¢ȱ ȱȱȱřŘŝǰŖŖŖȱȱǻȱȱ 2010). Many socio-economic impacts of climate ȱȱęȱĚ ȱȱȱȱȱ ȱ ǻ ȱ ŘŖŖŝDzȱ ȱ ȱ řǼǯȱ ȱ ěȱ ȱ ȱ ȱ ȱ ęȱ result from changes in the productivity and locaȱ ȱ ȱ ęȱ ȱ ǻȱ ŘŖŗŖǼȱ ȱ ȱ ȱ the broader ecosystem (Sumaila et al., 2011). Due to strong temperature sensitivity (Fogarty et al., ŘŖŖŞǼǰȱȱȱǻGadus morhua) are expected to decrease in biomass and largely move north out ȱǯǯȱ ǯȱȱȱǻMicropogonias undulatus) are expected to increase in biomass and ȱ ȱ ȱ ǯǯȱ ȱ ǻ ȱ ȱ ǯǰȱ 2010). Rising temperatures may cause decreases ȱ ȱ ȱ ǻTheragra chalcogramma) bioȱ ǻȱ ȱ ǯǰȱ ŘŖŗŗǼǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ǻ ¢ȱ ȱ ěǰȱ ŘŖŗŘDzȱ ěǰȱ ŘŖŗŘǼǯȱęȱȱǻSardinops sagax) productiv¢ȱ ȱ ¢ȱ Ěȱ ¢ȱ ȱ ¢Dzȱ ȱȱȱȱ ȱ¡ȱȱ ¡ǰȱȱ ȱȱȱ ȱȱ ȱȱȱęȱȱȱǻĴȱȱǯǰȱ 2005). ȱ ȱ ǰȱ ęȱ ¢ȱ ȱ ȱ ȱȱȱȱȱȱ ȱȱȱ ¢ȱ ǯȱȱȱȱ¢ȱȱȱǰȱ ȱȱȱȱ ȱ¢ȱ ȱȱȱȱȱDzȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěDzȱ ȱ ȱ ȱ ȱ ȱ ȱ critical to a spiritual ritual; and nutritional costs. ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ǰȱęȱ¢ȱȱȱǰȱ economic stability, food security, and opportuniȱ ȱ Ȭ ȱ ęǰȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ęȱ ǯȱ ȱ ȱ ate throughout the economy and society though ¢ȱȱȱȱǯȱǻ ȱȱǯǰȱŗşşşDzȱ ȱȱȱŗşşşǼǯȱěȱȱȱȱ ęȱȱȱȱȱ¢ȱȱȱ ěȱȱȱȱȱ¢ǯ Changes in marine target populations also afȱ ęȱ ȱ ȱ ȱ ęȱ ǻȱ ȱ ǯǰȱ ŘŖŖŜǼǯȱ ȱ ȱ ȱ problems (Lubchenco and Petes 2010) and build Ě¡¢ȱ ȱ ȱ Dzȱ ¢ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ęȱ ȱ ǻȱ ŘŖŗŖǼǯȱ ǰȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ǯȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱȱǻ ȱȱǯǰȱŘŖŖŝǼǯ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services greater investment in monitoring and assessment to reduce the level of uncertainty and ȱȱȱȱȱ£ȱȱȱȱȱȱ¢ǯȱ ¢ǰȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱȱȱȱĴȱǻȱȱśǼǯȱȱȱȱǻŘŖŖřǼȱȱ ȱȱȱȱȱȱȱ ȱ¢ȱęȱȱ ȱȱȱǯǯȱȱǯȱȱȱȱȱȱȱȱ¡ȱȱ ȱ ǰȱȱĚ¡ȱȱǯ Offshore energy development ȱȱ ȱȱ ȱȱȱ ȱȱȱěȱ¢ȱ ǯȱ ȱǰȱȱ¢ȱȱǰȱ ȱȱȱȱȱ ȱ ȱ ȱ ¢ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ǰȱ ȱ ¢ȱ Ěǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ¢ȱ ȱǰȱ¢ȱȱ ȱȱȱ ȱȱǰȱȱvere operating conditions, and more sensitive species and ecosystems. In addition, rouȱǰȱȱȱȱǰȱȱ¢ȱȱ¢ȱȱȱȱȱ ȱ ȱȱȱǰȱ¡ȱ ȱǰȱȱȱȱȱȱȱ ȱȱǯȱȱȱ ȱ¢ȱȱȱǰȱ ǰȱȱȱǰȱȱȱ ȱȱȱȱ¢ȱȱȱ ȱȱȱȱȱ ȱȱȱȱȱȱ ȱȱȱȱ ȱȱȱȱȱ ȱȱȱȱȱęȱǯȱȱȱęȱȱěȱ¢ȱ¢ȱȱȱȱ¢ȱȱȱȱǰȱ ȱěȱȱ ȱȱȱ ȱȱȱȱȱȱȱȱ ǯȱ ȱ ǰȱ ¢ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱ ȱȱǯȱȱ¡ȱȱȱ ȱ ȱȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱȱěȱȱȱȱŘŖŖŜȱ ȱȱ¡ȱŘŖŖśȱȱ season in the Gulf of Mexico. Tourism and recreation ȱ ȱ ȱ £ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǯȱ ȱ ȱ ¢ȱ ěȱ ȱ ȱ ǰȱ ęȱ ǰȱ ȱ ǰȱ ȱȱȱȱěȱȱȱȱȱ¢ǯȱȱǰȱȱȱ by the governance structures in each of these sectors in response to climate change are ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱȱ ȱ ȱ ȱ ȱ safety of life at sea as tourists and cruise vessels venture into higher latitudes and unȱ ȱȱȱȱȱȱȱȱ ȱȱȱȬǯȱȱȱȱ£ȱȱȱȱȱȱ¢ȱ cooperating to increase governance measures in this area. Human health ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ 113 114 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱ¡ȱȱȱ ¢ȱȱ ȱȱȱȱȱȱȱȱ ȱǯǯȱ¡ȱ¢ȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱǰȱ Ȭǰȱȱ¢ȱǻ ǰȱŗşşşǼǯȱ Many agencies at the international, national, state, and local level in each country deȱ¢ȱȱȱȱȱȱȱ¢ǰȱ ȱ¢ǰȱȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ adaptive means to respond to these changes. Strategic planning ȱȱȬȱȱȱȱȱȱȱȱipate changes and develop strategies for responses to the present and future challenges ȱȱǯȱȱȱęȱǰȱȱ¡ǰȱ ȱ ȱȱȱries are expected to disappear under a rising sea level, individual villages, communiǰȱǰȱǰȱȱ ȱȱȱȱȱȱ ȱ ȱȱȱȱěȱȱȱȱȱȱǯȱ¡ȱ ȱǰȱȱȱȱȱȱȱęȱ¢ȱȱȱȱ ęȱȱ¢ȱȱǰȱȱȱȱȱȱǯȱȱ ǰȱřŗȱǰȱ¢ȱȱ ȱȱ¢ȱȱȱȱǰȱȱȱ ęȱȱȱȱȱȱȱȱȱěȱǻǰȱŘŖŖşǼǯȱȱ ȱȱ¢ȱȱȱȱȱǯȱ 4.9 Research and Monitoring Gaps ȱȱȱȱ ǰȱȱȱȱȱȱȱȱȱěȱȱmate change on ocean services that are important to the economic, social, cultural, and ȱ Ȭȱȱȱǯǯȱȱȱȱȱȱȱȱȱǯȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ȱȱȱȬȱěȱȱȱȱ ȱęcant changes have not yet been observed but are expected to be seen in both the short ȱȱǯȱȱȱȱ ǰȱȱȱȱȱȱȬȱȱ ¢ȱěȱȱȱȱȱȱ ¢ȱȱ ȱǯǯȱ¢ǰȱǰȱ ȱȱ¢ȱ ȱȱȱȱěȱǻǰȱŘŖŖřǼǯȱ¢ȱȬȱěȱȱ climate change have yet to be studied. ȱȱ¢ȱȱȱ¢ȱȱȱȱȬȱěȱȱ ȱȱȱȱȱǰȱȱȱȱęȱ¢ȱȱ ǰȱȱ research must be performed and incorporated into public and private sector responses locally, nationally, and internationally. The use of time series data for both social and economic indicators of human community vulnerability and resilience (Charles et al., ŘŖŖşDzȱȱȱǰȱŘŖŗŘDzȱȱȱǰȱŘŖŖŝDzȱȱȱǰȱŘŖŖşDzȱȱ ȱǯǰȱŘŖŖŞǼǰȱę¢ȱȱǻ¢ȱȱǯǰȱŘŖŗŖDzȱĴȱȱǯǰȱŘŖŗŗDzȱȱȱǯǰȱŘŖŖŜDzȱ ȱȱ¢ǰȱŘŖŗŖǼȱȱȱȱ¢ȱȱ ȱȱȱȱȱ ȱ ȱ ȱ ǯȱ ǰȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ necessary to provide a much fuller understanding of both the biophysical and human dimensions of climate change. Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱȱȱȱ¢ȱȱęȱęȱȱȱȱȱ ȱȱȱȱ¢ȱȱ¡ȱȱ ȱȱȱȱ ȱmate change is resulting in marine environment and human community-level changes and associated alterations to human uses of the ocean and ocean services. Researchers ȱȱȱȱȱ ȱȱęȱȱȱȱȱȱȱ ¢ȱ ȱȱȱȱȱȱĜ¢ȱȱȱȱȱ ¡ȱȱȱȱ¢ǯȱȱĴȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ¢ȱȱǰȱǰȱ ȱȱ¢ǯȱȱȱȱ ȱ ȱěȱȱȱȬȱ ȱȱ¡ȱȱȱ¡ȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱ ȱ ȱȱ¡ȱ ȱ ¢ȱȱ ęȱǰȱǰȱȱȱȱǻĴȱȱǰȱŘŖŖşǼǰȱȱ ȱȱȱȱȱȱȱȱ ȱǻǰȱŘŖŖřDzȱȱȱǯǰȱŘŖŗŗDzȱÇȬǰȱŘŖŖŝDzȱȱȱǰȱŘŖŗŗDzȱ£ǰȱŘŖŖřǼǯ ȱȱęȱȱȱȱ ȱȱȱȱȱ ȱĴȱstanding of social and economic impacts of climate change. Grafton (2010), for instance, ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ Ȭȱ ȱȱǯȱ¡ȱ£ȱȱǻǯǯǰȱĴȱȱǯǰȱŘŖŖŞǼȱȱȱ ȱǯȱ ǰȱȱȱȱȱȱȱȱȱǯ Socio-economic impacts for commercial and recreational fisheries ¢ǰȱ¢ȱȱ ȱ¡ȱ¡ȱȱ ȱȱęȱȱȱȱȬȱȱȱȱȱȱǯǯȱęȱȱęȬȱǯȱ ȱȱȱęȱȱȱȱǰȱȱ ȱȱȱȱȱǯ • ȱȱ ȱȱȱȱȬȱȬȱ ǯȱȱ¢ȱȱȱ ȱęȱȱȱ ȱȱ social science research on both the social and economic indicators of community ȱȱ¢ȱȱȱę¢ȱǯ • ȱȱȱ¡ȱȱȱ¡ȱȱęȱȱęȬ ȱȱȱȱȱȱȱę¢ȱǯȱȱ ȱȱȱȱ¢ȱȱȱȱȱȱȱěȱěȱ ȱȱȱȱęȱ¢ȱȱȱȱȱǻȱȱĴǰȱ 2009). • ȱ¢ȱȱěȱȱ¢Ȭȱȱȱȱȱ ěȱȱȱęǯȱȱ ȱ ȱȱȱȱȱ ȱ ȱ¢ȱȱȬȱȱȱ¢ȱȱętion scenarios in marine environments. • ȱȱȱȱĚȱ¢ǰȱȱȱǰȱȱ¢ȱȱȱȱȱȱȱ¢ȱȱȱȬ ȱǯȱȱ¢ȱȱ ȱȱȱȱ ȱȱ ȱȱ Integrated Ecosystem Assessment programs, even though these assessments are ȱęȱȱȱ¡ȱǰȱǰȱȱical relations that call for greater interdisciplinary perspectives and policy based ȱȬȱȱǻĴǰȱŘŖŖŗDzȱĴȱȱǰȱŘŖŖŖǼǯ 115 116 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE • ȱȱ¢ȱȱȱȱȱȱ¢ȱȱȱ ȱȱȱȱȱȱȱȱȱ£ȱ expenditures related to adaptation and mitigation. Subsistence fisheries ȱȱȱęȱȱ ȱ ȱȱȱȱȱęȱ ǯȱȱ¢ȱȱȱȱ ȱȱȱȱȱȱȱȱǻ ¢ȱȱǯǰȱŗşşşDzȱȱǰȱŘŖŖşǼȱȱȱȱȱȱȱȱȱ ǰȱȱȱȱȱǻȱȱǰȱŘŖŗŘDzȱȱȱǯǰȱŘŖŖŚDzȱĴȱȱǯǰȱ ŘŖŖŚǼǯȱ ǰȱęȱȱȱ ȱȱ¡ȱȱȱ ȱȱȱ ȱȱȱěȱȱȱȱȱǯȱȱȱȱȱȱ ǯ • ¢ȱęȱȱȱȱȱȬȱ communities have for adapting to climate change; • Improving understanding of the ability of subsistence-dependent communities to predict local climate, social, biological, and economic trends; • ȱȱȱĚ¡¢ȱȱȱȱȱȱȱ ¢ȱȱȱȱȱȱ¢ȱȱěȱ of climate change; • ȱȱȱȱȱȱȱȱ edge (TEK), including the establishment of community-based monitoring Dz • Development of protocols that ensure appropriate inclusion of TEK into biologȱȱ¢ȱȱȱȱȱȱDz • ȱȱȱěȱȱȱȱȬȱgies that bring subsistence-resource users into discussions of climate change adaptation strategies; and • ȱȱȱ ȱȱȱȱȱȱ Ě¡ȱȱȱȱȱ¢ȱȱȱ ȱĴȱȱȱ on subsistence harvests. Offshore energy development In order to advance our understanding on the impacts of climate change on the oil and ȱ¢ȱȱǰȱȱȱěȱȱȱǰȱȱȱȱ ȱǻǯǯǰȱǰȱŘŖŖşǰȱDzȱĴȱŘŖŗŗǼȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ¢ǰȱDZ • ȱȱȱȱȱȱȱȱȱȱȱȂȱness models to inform industry participants as they adapt to climate change; • Addressing both the impacts of extreme events and the impacts of incremental ȱȱěȱ¢ȱȱ¢ȱȱȱȱȱȱȱ (Acclimatise, 2009a); • ȱȱǰȱǰȱȱȱ¢ȱȱȱ¡ȱ Impacts of Climate Change on Human Uses of the Ocean and Ocean Services ȱȱȱ ȱȱȱȱ¢ȱȱȱDz • Conducting research at the level of individual corporations to evaluate approȱȱȱDzȱ • ȱ ȱȱȱȱȱȱȱȱtions and thus more easily incorporate change into operations. Tourism and recreation ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱǯȱȱęȱȱȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱȱȱȱȱȱȱȱȱȱǻĴȱȱǯǰȱ ŘŖŖŚǼǯȱȱǰȱȱȱȱǻŘŖŖşǼȱȱȱ¢ȱȱȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ęȱ ¢ȱ this research is for the institutions and infrastructure that support coastal tourism and ȱȱȱĚ¡ȱȱȱȱȱǯ In many areas further information is needed to determine the impacts of climate ȱȱȬȱȱȱȱȱȱǯǯǰȱȱȱ DZ • ȱȱȬȬȱȱȱȱȱȱȱȱ ȱȱȱǻĴȱȱǯǰȱŘŖŖŚDzȱȱȱǯǰȱŘŖŗŖDzȱȱȱǯǰȱŘŖŗŖǼDz • ȱȱȱ ȱȱȱȱȱȱȱȱȱ change through policy and management actions (Pallab et al., 2010); • Development of agreements, institutions, and capabilities that ensure the safety ȱȱȱȱȱȱ¡ȱ ȱȱȱ ǰȱȱȱating environments; and • ȱȱȱȱȱȱȱȱȱǯ Public health ȱȱȱȱȱȬȱȱȱǰȱǰȱ ȱȱȱȱȱ¢ǯȱȱǯǯȱ ȱȱĴȱȱȱȱȱȱ ȱȱȱĴȱȱȱȱ ȱȱDZ • ȱȱȱȱęȱȱȱȱDz • Enhanced protocols for testing domestic and imported seafood for toxins and infectious agents that may increase as a result of climate change; • ȱȱȱȱ ȱ¢ȱȱ¢ȱȱ marine sensors for monitoring, updating public health surveillance systems, and ȱ¢ȱ ȱ¢ȱȱȱȱDz • Development of coupled socio-economic and biophysical models that can assist ȱȱȱȱȱȱ ȱȱȱȱȱ blooms; and • Case studies of both individual species targeted for seafood poisoning and of 117 118 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Ȭȱȱȱęȱ ȱȱȱȱȱȬěȱ ¢ȱȱȱȱȱȱěȱȱǯ 4.10 Conclusion ȱ ȱ ȱ ȱ ȱ Ȭȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱȬǰȱǰȱȱȱěǯȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱǯȱȱȱȱȱ ěȱ ȱ ȱ ǵȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ǵȱ ȱ ȱ ȱȱȱęȱǰȱȱȱȱęȱǰȱ¢ȱȱ climate-change planning and policy? To meet the challenges of climate change in general, and climate change impacts on ocean services in particular, broad, interdisciplinary ȱ ȱȱȱȱȱȱ¢ȱȱȱǻ`ǰȱŘŖŗŖǼǯȱ Chapter 5 International Implications of Climate Change Executive Summary ȱȱȱȱ¢ȱȱȱȱȱȱȱǯǯȱǯȱ¢ȱ ȱǰȱȱȱęǰȱȱǰȱȱǰȱȱ¢ȱ¢ȱ ȱȱȱȱȱȱȱ¢ǯȱȱȱȱȱřȱȱŚǰȱ ȱ ȱ¢ȱȱȱȱ ȱȱȱȱǰȱǰȱ ȱ ȱ ȱ ¢ȱ ȱ ǯȱ ¢ȱ ȱ ȱ ȱ ¢ȱ ȱ ǯǯȱ ȱ some stage of their life cycle and are of conservation concern. As climatic changes become more apparent, and the rate of change potentially increases, habitats and species ȱ ȱȱȱȱę¢ȱȱȱ¡ȱȱȱ ȱ¢ȱ ȱȱ¢ȱǯȱȱȱȱ ȱ¢ȱȱȱȱȱ ȱȱȱǯȱȱȱȱȱȱ ȱȱ¢ȱȱȱ¢ȱȱǯȱȱȱȱȱǰȱĴȱȱȱȱȱȱ that other species and populations remain robust and resilient to the changes that are ȱȱȱȱȱȱȱǻȱȱĴǰȱŘŖŖşǼǯȱ ȱȱęȱȱ£ȱǻǼȱȱ ȱȱǯǯȱ ȱȱȱȱ ȱȱȱȱȱȱǯȱȱ¡ȱȱȱ ȱȱȱȱ ȱ ȱȱ£ȱȱȱęȱ¢ǯȱ¢ȱ ȱȱȱŗŘȱȱȱȱǯǯȱęȱȱȱȱȱȱȱȱȱ ȱȱȱǻȱśǯřǼǯȱȱǰȱȱȱȱ¡ȱ¡ȱȱęȱ ȱ ȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱȱǯȱȱęȱǰȱ ȱȱȱȱȬȱ¢ǰȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱęȱȱȱȱ¢ȱȱǯȱȱę¢ȱȱȱ ȱȱ ȱȱȱȱȱǰȱ ȱȱȱȱȱȱ¡ȱmental conditions and a stable decision environment such as a convention or treaty. Security and transportation issues are at play in terms of expected climate change ȱȱȱȱȱȱǯǯȱȱ¢ǰȱȱȱȱȱǰȱ¢ȱ ȱȱǰȱȱȱȱȱȱȱȱȱǰȱȱȱȱȱ¢Ȭȱǯȱȱȱȱ ¢ȱ issue in this arena is the increase in shipping accessibility in the Arctic. National security concerns and threats to national sovereignty have also been a recent focus of atȱǻǰȱŘŖŖŞDzȱȱȱǯǰȱŘŖŖŝDzȱǰȱŘŖŗŗǼǯȱȱȱ ȱ lead to an expanded geopolitical discussion involving the relationships among politics, R. Griffis and J. Howard (eds.), Oceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment, NCA Regional Input Reports, DOI 10.5822/978-1-61091-480-2_5, © 2013 The National Oceanic and Atmospheric Administration 119 120 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ¢ǰȱȱȱ¢ȱȱǰȱǰȱȱȱȱǻĴȱȱ Callaghan, 2000). ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ in providing coordination and direction; therefore, international collaboration is both fundamental and foundational to understanding and managing climate change in the ǯǯȱȱ¡ȱȱȱȱȱ ȱȱ ȱ ȱȱȱ¢ȱȱ ȱȱ¢ȱȱȱȱ address climate change impacts on marine ecosystems and communities around the ǯȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ě¢ȱ ȱ ȱ implement adaptation actions. Key Findings ŗǯȲ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ distribution and abundance. • ȱ¢ȱȱȱȱȱȱ¢ǰȱ ȱȱ no longer the case. • ¢ȱȱ ȱȱȱȱę¢ǰȱ¡ȱȱȱȱȱ ȱ¢ȱ¢ȱȱȱǯȱȱȱǰȱȱȱȱ ȱ¢ȱȱȱȱ¡ȱȱȱȱȱȱȱȱǯȱ • ȱȱǰȱȱ ȱȱȱȱȱ¢ȱȱ ǰȱȱ ȬȱȱȱǰȱȬ¢ȱȱ ȱȱěȱȱȱȱ¢ȱǯȱ ŘǯȲȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ǰȱ ȱǰȱȱȱȱȱȱȱȱȱěȱ long-term implementation on shared marine resources. • ȱȬȱȱȬȱ ȱȱȱȱĴȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱǯ • ȱ¢ȱȱ¡ȱȱȱȱ ȱȱ Ĵȱȱȱȱȱȱȱȱȱȱȱ priorities. řǯȲȱ ȱȱȱǰȱ¢ȱȱȱȱ¡ȱȱȱȱ£ȱǻǼȱȱȱȱǯ • ǰȱȱȱȱǰȱ ȱȱĚ¡¢ȱȱȱȱ changing circumstances, particularly unanticipated, climate-driven changes in ȱȱȱȱȱȱȱȬȱǯȱ • ȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱ ȱȱ¡ȱȱȱȱȱ to be strengthened or enhanced. ŚǯȲȱ ȱ ȱ ěȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ long term. International Implications of Climate Change • Changes in available shipping lanes in the Arctic created by a loss of sea ice have generated an expanded geopolitical discussion involving the relationship among politics, territory, and state sovereignty on local, national, and international scales. śǯȲȱȱȱȱȱȱȱȱȱ¢ȱȱȱtential to be a transformational tool in the implementation of improved coastal policy and management. • A number of countries including Indonesia, Costa Rica, and Ecuador have idenęȱȃȱȄȱȱȱ¢ȱȱȱȱ¢ȱȱȱ and approaches. 5.1 Implications of Climate Change in International Conventions and Treaties A number of international treaties and conventions have been developed to aid in adȱȱȱȱěȱȱȱȱǯȱ¢ȱȱȱcus either primarily on marine resources or involve them in some fashion. Exploring ȱȱ¢ȱ ȱȱȱȱȱ ȱȱ¡¢ȱęȱȱȱȱǰȱĴȱǰȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖśǼǯȱ ȱ ȱ discussion includes only a subset of the larger body of international conventions and treaties. Convention on Migratory Species (CMS) The Convention on Migratory Species (CMS) of Wild Animals is the only global, intergovernmental convention that is established exclusively for the conservation and manȱȱ¢ȱȱǻȱȱǯǰȱŘŖŖśǼǯȱȱȱ£ȱȱȱ ȱȱ¢ȱȱȱ¢ȱȱȱȱ ȱȱȱȱȱȱ ǰȱ ȱ ȱǰȱ ȱ ěȱ ȱ ȱ ȱ ȱȱ ȱǰȱȱȱ ȱȱȱȱȱȱȱȱȱȱ ȱȱ species spends any part of its life-cycle (Robinson et al., 2005). Species are listed under ȱȱDZȱ¡ȱȱȱȱȱȱ ȱ¡ȱȱ¡ȱȱȱȱȱ ȱęȱȱ¢Ȭȱěǯȱȱ ǯǯȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱǰȱȱ ǰȱǰȱǰȱȱȱǻȱȱśȬŗǼǯ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ¢ȱȱȱ¢ȱȱěȱǯȱȱȱȱȱtant opportunity to develop climate change strategies at the international level, a numȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱ¢ǯȱȱ ȱ ȱȱȱȱęȱȱȱȱȱȱȱ ȱȱȱȱęȱ ȱȱȱǰȱȱȱȱȱȱlogical Diversity (CBD), the International Whaling Commission (IWC) and the Ramsar ǰȱȱȱȱȱȱȱȱȱȱęȱȱȱȱ ȱȱȱȱȱȱ ǯȱȱȱȱȱȱ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ 121 122 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE climate change issues and has given rise to a number of policy reports on species vul¢ȱȱ ȱȱȱȱȱȱȱȱȱȱ ȱȱǻȦǰȱŘŖŗŗǼǯ Table 5-1: Marine species with U.S. ranges listed in CMS Appendices ¡ Taxa I Mammals ȱȱǻMegaptera novaeangliaeǼǰȱ ȱȱǻȱ¢), Blue Whale (ȱ), Northern Atlantic Right Whale (Eubalaena glacialisǼǰȱȱęȱȱȱǻEubalaena japonica) I Birds Short-tailed Albatross (Phoebastria albatrus), Bermuda Petrel (Pterodroma cahow), ȱȱǻPterodroma sandwichensisǼǰȱȬȱ ȱǻĜȱ creatopus) I/II Mammals Sperm Whale (Physeter macrocephalus), Sei Whale (ȱ), Fin Whale (ȱ¢), West Indian Manatee (Trichechus nanatus) I/II Birds Steller’s Eider (Polysticta stelleri) I/II Reptiles Green Turtle (Chelonia mydas), Loggerhead Turtle (ĴȱĴǼǰȱ ȱ Turtle (Eretmochelys imbricate), Kemp’s Ridley Turtle (Lepidochelys kempii), Olive Ridley Turtle (Lepidochelys olivaceaǼǰȱȱȱǻDermochelys coriacea) I/II Fish ȱȱǻCetorhinus maximusǼǰȱȱȱȱǻCarcharodon carcharias), Manta Ray (Manta birostris) Beluga Whale (Delphinapterus leucas) Mammals ȱǻMonodon monocerosǼǰȱȱĴȱȱǻȱĴ), Spinner Dolphin (Stenella longirostris), Striped Dolphin (Stenella coeruleoalba), Killer Whale (Orcinus orcaǼǰȱȂȱȱȱǻȱ), Northern ĴȱȱǻHyperoodon ampullatus), Bryde’s Whale (ȱ), Dugong (Dugong dugong) II Birds ȬȱȱǻPhoebastria nigripes), Laysan Albatross (Phoebastria immutabilisǼǰȱȬ ȱȱǻThalassarche melanophris), Shy Albatross (Thalassarche cauta), Salvin’s Albatross (Thalassarche salvini), White-chinned Petrel (Procellaria aequinoctialis), Spectacled Petrel (Procellaria conspicillata), Roseate Tern (Sterna dougallii), Arctic Tern (Sterna paradisaeaǼǰȱĴȱȱǻSterna albifrons) I/II Fish ȱȱǻRhincodon typusǼǰȱęȱȱȱǻIsurus oxyrinchusǼǰȱęȱ ȱȱǻIsurus paucus), Porbeagle (Lamna nasusǼǰȱ¢ȱęȱǻSqualus acanthias), Green Sturgeon (Acipenser medirostris) II International Implications of Climate Change Figure 5-1 First short-tailed albatross chick to hatch outside Japan. (Source: Pete Leary). The Zoological Society of London has also developed and tested a climate change ¢ȱȱȱȱȱȦȱȱȱ¡¢ȱȱ of the Appendix I species. Of these, approximately 50 percent are marine species. Reȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ȱ ǰȱ ȱ¢ȱȱ ȱȱȱȱǯǯȱǻȱśȬŘǼǯȱ¢ȱȱȱȱ ȱȱȱȱȱȱęȱȱȱǯȱȱȱ ȱȱȱȱȱ ¢ȱȱȱȱ¢ȱ¢ȱȱȱǯȱ ȱȱ ȱȱȱȱŘŖŗŗȱȱ¡ȱȱǰȱȬȱ £ȱ ǻǼǰȱ Ȭȱ £ȱ ǻǼǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ǯȱȱ ȱȱȱȱȱ ¢ȱ ȱ¢ȱȱ¢ȱȱȱ ȱȱȱȱǻȦȦŗŝȦǯŗŘǼȱȱȱǰȱDZ • ȱ ȱȱȱȱȱȱDz • Establishing long-term datasets and baselines of species listed under CMS, as ȱȱȱȱ¢ȱDz • ȱȱȱȱ£ǰȱȱȱȱǰȱȱȱ spatio-temperal scales including transport routes, etc.,for use in the planning of ȱ¢ȱDz • Focusing on populations that are resilient and adaptive to climate change; • £ȱȱ ȱȱȱȱȱDz • ȱȱȱȱȱȱȱȱ¢ȱȱȱ to migratory species if sites are not carefully selected; • £ȱȱ¢ȱěǰȱȱȱ ȱȱȱȱȱǰȱȱ 123 124 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱ¡ȱȱȱǰȱȱ ȱ ȱȱȱ ȱ¢Ȭȱȱȱȱ¢ȱȱęDz • Continuing to address research needs related to emerging issues including disease, invasive species, and ecosystem changes; • Building capacity at the local level through climate change literacy training, participatory monitoring, and incentive creation for conservation among communities; • Integrating climate change policies in more Multilateral Agreements and ȱȱ ȱȱȱȱȱ¢ȱǻǼǰȱ ǰȱȱȱǰȱȱǯ Table 5-2: Marine species under CMS with U.S. Ranges vulnerable to climate change ¢ Taxa Reptiles Green Turtle (Chelonia mydasǼǰȱ ȱȱǻEretmochelys imbricate), Kemp's Ridley Turtle (Lepidochelys kempii), Loggerhead Turtle (ĴȱĴ), Olive Ridley Turtle (Lepidochelys olivaceaǼǰȱȱȱǻDermochelys coriacea) Mammals ȱęȱȱȱǻEubalaena japonica), Northern Atlantic Right Whale (Eubalaena glacialisǼǰȱ ȱȱǻȱ¢), Blue Whale (ȱ musculusǼǰȱ ȱǻMonodon monoceros) Birds Short-tailed Albatross (Phoebastria albatrus), Bermuda Petrel (Pterodroma cahow), Steller's Eider (Polysticta stelleri) Medium Mammals Sperm Whale (Physeter macrocephalus), Sei Whale (ȱǼǰȱ ȱ Whale (Megaptera novaeangliae) Medium Fish ȱȱǻCetorhinus maximusǼǰȱȱȱȱǻCarcharodon carcharias) ȱ Ȭȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱǯȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ dangered remain robust and resilient to the changes predicted to occur throughout the ȱȱǻȱȱĴǰȱŘŖŖşǼǯȱ Convention on Wetlands of International Importance (Ramsar) ȱ ǯǯȱ ȱ ȱ ȱ ¢ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱȱ ȱȱ¢ȱȱȱȱȱȱȱ ȱȱȱ ȱȱȱ ȱȱȱǯȱȱȱȱȃ ȱ International Implications of Climate Change ȱȱ ȱȱȱȱȱ ȱȱȱȬȱǰȱpriate policies and legislation, management actions, and public education; designate ȱ ȱȱȱȱȱȱȱȱȱǻȃȱȄǼȱ ȱȱȱěȱDzȱȱȱ¢ȱȱ¢ȱ ǰȱȱ ȱ¢ǰȱȱǰȱȱȱȱ ȱ ¢ȱ ěȱ Ȅȱ ǻĴDZȦȦ ǯǯǼǯȱ ¢ȱ ŘǰŖŖŖȱ ȱ ȱ ȱ¡ȱȱȱ ǰȱȱřŖȱȱ ȱȱȱȱǯǯ Ȧȱ ȱȱȱęȱ ȱ¢ȱ£ȱ¢ȱǯȱ¢ȱ of these are particularly important habitats for ocean and marine species, and include, ȱDZȱȱ ȱȱ ȱȱȱȱ¢ȱȱDzȱȱ ȱȱȱȱȱȱȬȱDzȱȱȱ Dzȱȱ Dzȱȱ¢ȱȱȱȱȱ¢ȱěȱȱȱȱěǼǯȱȱȱ ȱǰȱȱȱȱȱ¡¢ȱ£ȱȱȱȱ¢ȱȱ ȱȱ¢ȱȱȱȱȱȱȱ¢ȱȱȱȱ ȱ ȱȱȱȱȱȱ ȱ ȱȱȱǯȱ Convention on International Trade in Endangered Species (CITES) of Wild Fauna and Flora ȱǯǯȱȱȱ¢ȱȱǰȱ ȱȱȱȱȱȱȱȱȱǯȱ¡Ȭȱȱȱȱȱ ȱ¡ȱȱǰȱȱ¢ȱǰȱ ěȱ¢ȱǯȱȱȱȱ ȱȱȱȱ¡ȱȱȱȱȱ ǯȱ¡Ȭȱȱȱȱ¢ȱȱ ȱ¡ȱȱȱ be if trade is not regulated, and Parties may trade in these species as long as trade is not detrimental to the species’ survival. Appendix III species are listed unilaterally by Parȱȱȱȱȱȱǯ ¢ǰȱȱȱȱȱȱĴȱȱȱȱȱȱǯȱȱȱ ȱȱȱȱȱǻǼȱŗśȱȱŘŖŗŖǰȱȱȱȱȱȱ ȱȱȱ¢ȱȱęȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱ ěȱ¢ȱȱȱȱȱȱȱȱȱǯȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ę£ȱ ȱ ȱ ȱȱ ȱ ȱĴȱȱȱȱŘŖŗŘȱȱȱȱȱŜŘȱȱȱȱȱ¢ȱŘŖŗŘǯȱȱ ȱȱ ȱȱ ȱȱȱȱ ȱ¡ȱȱȱȱDZȱȱǰȱȬȱęǰȱȱ ȱȱȱǰȱȱȱ¢ȱȱ¡ȱǰȱ ȱ ȱęȱǰȱȱȱȱȱȱǯ ȱȱŘŖŗŘȱȱȱȱȱȱȱȱĴȱȱȱȱȱȱȱȬȱ ȱȱ ȱȱȱĚ¡ȱ enough to accommodate the consideration of climate change in each of its six processes or mechanisms. Inter-American Convention (IAC) for the Protection and Conservation of Sea Turtles ȱȱȱȱȱȱǰȱ ȱȱ¢ȱȱȱȱȱ (see Section 3). It promotes the protection, conservation, and recovery of the populations 125 126 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱȱȱȱȱ ȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱǰȱȬǰȱȱȱ characteristics of the Parties (Article II, Text of the Convention). These actions should ȱȱȱȱȱȱȂȱȱ ǯȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱǯǯȱȱȱ ȱȱǯǯȱ ȱȱȱȱȱ¢ȱȱǯǯȱǯȱ ȱȱȱȱȱ¢ȱȱȱȱȱ ȱȱȱ ȱȱȱ ȱȱȱȱȱȱęȱȱȱǯȱȱȱȱȱȱǯǯȱȱȱ¡ȱȱȱȱȱ¢ȱ support to emerging collective adaptation action for marine turtles. In 2009, the Parties agreed to a number of actions to address the impacts of climate ȱȱȱȱę¢ǰȱȱȱȱȱ ȱȱȱ ȱ ȱ ȱ ǻĴDZȦȦ ǯǯǼǯȱ ȱ ȱ ȱ ȱ Ĵȱ¢ȱȱǰȱȱȱȱȱȱȱȱDzȱ ǰȱ ȱȱȱȱȱȱ¢ȱȱȱȱȱȱ bycatch and non-climate impacts on nesting beaches. Convention on Biological Diversity (CBD) ȱȱȱȱȱȱDZȱŗǼȱȱȱȱȱ¢ǰȱŘǼȱȱ ȱȱȱȱǰȱȱřǼȱȱȱȱȱȱȱȱęȱ ȱȱȱȱ£ȱȱȱǯȱȱȱĜȱȱȱȱ ¢ȱȱȱȱȱȱȱȱĜȱȱȱȱȱȱȱȱ ȱȱǯȱȱȱȱȱȱȱ ȱȱȱȱȱ¡¢ȱȱȱȱȱȱȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱȱǯȱȱȱȱȱȱȱȱȱȱȱȱ ǰȱȱŗşşŘȱȱȱȱȱȱȱȱȱȱȱȱȱ Řşǰȱŗşşřǯȱȱǯǯȱȱȱȱȱȱȱȱ¢ȱęȱǯ ȱȱȱ¢ȱȱȱȱȱȂȱȱĴȱǯȱcording to the Millenium Ecosystem Assessment2ǰȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱȱȱȱęȱȱȱ¢ȱȱ¢ȱȱȱȱȱ¢ǯȱȱ change is already forcing biodiversity to adapt either through shifting habitat, changing ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ǯȱ ȱ ȱ ȱ rine ecosystems, including their genetic and species diversity, is essential for the overall ȱȱȱȱȱȱȱȱȱ¢ȱȱ¢ȱȱȱȱȱȱ¢ȱ and in adapting to climate change. ȱȱȱȱȱȱȱȱȱŚŖȱȱȱ¢ȱ ŘȲȱȱ¢ȱȱ ȱȱȱ¢ȱȱ¢ȱȱęȱȱȱŘŖŖŖǯȱȱȱ ȱ ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ Ȭȱ ȱ ȱ ęȱȱȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱ ȱȱȱ Ȭǯȱȱȱȱȱ ȱȱȱȱŗǰřŜŖȱ¡ȱ ǯȱ ȱ ęȱ ȱ ȱ ȬȬȬȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȃȱ systems; the services they provide; and the options to restore, conserve, or enhance the sustainable use of ecosystems. International Implications of Climate Change ȱȱȱȱȱȱȱǯȱȱȦřřȱǻ¢ȱȱmate ChangeǼȱ ǻĴDZȦȦ ǯǯȦȦȦȬŗŖȬȬřřȬǯǼǰȱ ȱ ȱ ȱ ŗŖȱ ȱ ȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ŘŖŗŖǰȱ ȱ ȱ ǰȱ among other things, to “Enhance the conservation, sustainable use and restoration ȱȱȱȱȱȱȱȱȱȱěȱȱȱȱ ȱ ȱȱȱȬȱǰȱȱȱǰȱǰȱ ȱȱǰȱȱȱȱȱǰȱȱȱȱȱȱ ȱȱȱȱȱȱ ȱȱȱȱǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ęǰȱ ȱ ȱ tion on Wetlands and the Convention on Biological Diversity.” 5.2 Climate Change Considerations in Other International Organizations Agreement for the Conservation of Albatross and Petrels (ACAP) The Agreement for the Conservation of Albatross and Petrels (ACAP) is an interȱȱȱȱȱȱȱ ȱȱȱȱ and petrels through coordination of international activity. The development of ACAP began in 1999 under the auspices of the Convention on the Conservation of ¢ȱȱȱȱȱǻǼǯȱ ¢Ȭ ȱȱȱȱȱ seven species of petrels are currently listed under ACAP. ȱ ŘŖŖŞǰȱ ȱȱ¢ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ titled Impacts of Global Climate Changeǯȱ¢ǰȱȱȱȱ ȱ ȱęȱȱȱȱȱȱȱ¢ȱěȱȱ ¢ȱȱȱȱȱȱȱ ǰȱȱȱȱȱȱȱ ȱȱěȱ ȱȱ¢ǯȱȱȱǰȱȱȱ£ȱ ȱȱȱ ȱȱȱȱȱȱȱ¢ȱȱ change on the conservation status of albatrosses and petrels. Despite this, pubȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱDzȱǰȱȱĴȱȱȱȱȱȱȱȱȱ ȱ¢ȱȱȱȱȱȱȱȱȱęȱ on albatross and petrel population trends. International Whaling Commission (IWC) ȱȱȱȱ¢ȱȱ ȱȱȱȱȱȱ Ȃȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ǯȱ ȱ ȱ¢ȱȱȱȱȱȱ ȱȱȱȱ¢ȱȱȱȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱ ȱ£ȱȱȱ ǯȱȱȱǰȱȱDZȱȱȱȱ ȱȱȱȱDzȱȱęȱȱȱ ȱDzȱȱȱȱȱȱȱ£ȱȱ ȱȱ¢ȱȱDzȱȱ ȱȱȱȱȱȱȱ Dzȱȱȱȱȱȱȱȱȱȱ ȱȱ¢ȱǯȱȱȱȱȱ ǰȱȱ ȱȱȱȱȱȱǰȱȱȱǯ 127 128 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Figure 5-2 Sperm whale rolling onto its side (Source: Stephen Tuttle). Climate change and its impacts on cetacean species have been highlighted in disȱȱȱȱęȱĴǰȱ ȱȱȱ¡ȱȱȱȱȱȱǯȱȱȱȱȱȦŜŗȦŗŜȱȱ Consensus Resolution on Climate and Other Environmental Changes and Cetaceans at the 2009 ȱȱȱȱǰȱǯȱȱȱȱȱernments to incorporate climate change considerations into existing conservation and ȱDzȱȱȱęȱĴȱȱȱȱ ȱȱȱȱ climate change and the impacts of other environmental changes on cetaceans as approDzȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱ¡ȱȱȱǯȱȱȱȱȱȱȱȱȱ ȱȱ enhance collaborations among various experts in cetacean biology, marine ecosystems, ǰȱȱȱǰȱȱ ȱȱȱȱȱȱȱceans under climate change scenarios. ȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ǰȱ large-scale, long-term, and multinational response from scientists, conservation manǰȱ ȱ ȱ ǯȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱ ȱǻȱȱĴǰȱŘŖŖşǼǯ Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) ȱȱ ȱȱ¢ȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱěȱȱȱȱȱȱ International Implications of Climate Change ȱ ȱ ǰȱ ¢ȱ ǰȱ ȱ ǰȱ ȱ ęǰȱ ȱ ȱ ȱ ȱ ȱǯȱȱȱȱȱȱ ȱȱȂȱęȱĴǰȱ ȱ ȱȱȱȱȱȱǯȱȱȱȱȱȱȱȱǯǯȱȱing in the development of a proposal for a marine protected area in the Ross Sea. The ǯǯȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱěȱȱȱȱȱęǯȱȱȱ ȱȱęȱĴȂȱȱȱȱȱǰȱȱǰȱ ȱȱȱȱȱȦȬȱ ȱȱȃȱ ȱȱȱȄȱǻȬȬȦȦřǼǯ North Pacific Marine Science Organization (PICES) ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ £ȱ ǻǼȱȱȱȱȱȱȱȱȱ¢ȱȱȱǻǰȱǰȱǰȱǰȱǰȱȱȱǯǯǼȱȱȱȱȱȬȱȱȱ ȱȱęȱȱȱȱȱDzȱȱȱęȱ ȱȱȱ ȱǰȱȱ ȱȱȱǰȱȱȱȱȱsystems, and the impacts of human activities; and to promote the collection and rapid ¡ȱȱęȱȱȱȱǯȱȱȱȱȱrum to promote greater understanding of the biological and oceanographic processes of ȱȱęȱȱȱȱȱȱȱȱǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęǯȱ ȱ ȱ ȱȱęȱȱȱȱȱȱȱȱȱȱȱ ęȱȱȱȱȱęȱȱȱȱȱȱȱȱȱ ¢ȱ¡ȱęȱȱęȱǻǰȱŘŖŖŞDzȱ ȱȱǯǰȱŘŖŖŞǼǯȱȱ ŘŖŖŘǰȱ ȱ ȱ ȱ ȱ ¡¢ȱ ŗŗȱ ȱ ¢ǰȱ ŗśȱ ǰȱ ȱ śȱ ȱ ȱ ȱ ȱ Ȭȱ ȱ ǻȱ ĴDZȦȦ ǯǯȦ publications/default.aspx). Wider Caribbean Sea Turtle Conservation Network (WIDECAST) ȱȱȱȱ ȱȱǰȱǰȱ¢ȱǰȱȱȱ ȱ ȱ ȱ ŚŖȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ Ĵȱ ȱ ȱ tegrated, regional capacity that ensures the recovery and sustainable management of ȱȱȱǯȱȱȱȱ ȱȱ ȱȱȱȱȱȱȱȱǰȱȱ climate-related topics including monitoring, vulnerability assessment, selecting and pri£ȱȱǰȱȱȱȱǯ 5.3: Climate Change Considerations by Regional Fisheries Management Organizations and Living Marine Resource Conservation Organizations ȱȱŜǰȱŘŖŗŗǰȱȱȱȱȱ¢ȱȱȱȱ ȦŜŜȦǯŘŘǰȱ ȱǰȱȃȱęǰȱȱȱȱŗşşśȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ 129 130 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Figure 5-3 Green turtle (Source: David Patte). ȱȱȱȱŗŖȱȱŗşŞŘȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ǰȱ ȱ ȱ Ȅȱ ǻȱ ŜŜȦŜŞǼǯȱ ȱ ȦŜŜȦǯŘŘȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱěȱȱȱȱȱȱ¢ȱȱȱ¢ȱȱęǯȱȱ resolution urged nations, either directly or through appropriate subregional, regional, ȱ ȱ £ȱ ȱ ǰȱ ȱ ¢ȱ ěȱ ȱ ȱ ȱ ǰȱ ȱ ǰȱȱȱȱȱȱȱȱȱ¢ȱȱęȱȱȱ ȱȱȱȱǰȱȱȱȱȱěȱǯ ȱȱȱȱřȱȱŚǰȱȬȱȱȱȱȱȱ ȱěȱȱȱȱȱȱęȱǰȱ ǰȱȱǰȱ¢ȱ ěȱęȱǰȱȱȱȱȱǰȱȱȱěȱȱęȱȱȱǻȱȱǯǰȱŘŖŗŗǼǯȱȱȱęȱȱ£ȱǻǼȱȱ ȱȱǯǯȱȱȱȱȱ£ȱȱȱȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ¡ǰȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱěȱȱȱ¢ȱȱȱȱ ȱ¢ȱȱęȱȱ ȱȱǯȱ¢ȱȱȱȱŗŘȱȱȱȱǯǯȱę¢ȱȱȱ ȱȱȱȱȱȱȱȱȱǻȱśǯřǼǯȱȱǰȱȱȱȱ ¡ȱ¡ȱȱęȱȱ ȱȱǯǯȱȱȱȯ ęȱ ȱȱǻȱǰȱęȱǰȱęȱǰȱęȱǰȱȱȱ ȱęǼȱȱȱ ȱȱǻȱęȱȱȱȱęǼȯȱ¢ȱȱȱȱǯȱȱȱȱȱȱȱęȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱęȱȱȱȱ ¢ȱȱDzȱȱȱ ǰȱȱěȱȱȱȱȱȱȱȱȱ ȱȱȱǯȱȱę¢ȱȱȱȱȱ ȱȱ International Implications of Climate Change 131 ȱȱȱǰȱ ȱȱȱȱȱȱ¡ȱȱȱȱ a stable decision environment such as a convention or treaty. In addition, many RFMOs ¢ȱ ȱ ȱ Ȭǰȱ ȱ ȱ ȱ ȱ ȱ ǰȱ cially if the RFMO has many member countries. Table 5-3: Primary RFMOs and arrangements that include U.S. living marine resources, by organization/membership, mission, relevant species, and climate change actions, 2012 £Ȧ ǯǯȱȱ status ȱ ȱȱ Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR)/ Member Protect and conserve the marine living resources in the ȱȱ Antarctica ǰȱǰȱ crustaceans, and all other species of living organisms, including birds CCAMLR includes climate change on the agenda of ȱęȱĴǰȱ ȱȱȱȱȱȱ the Commission. Climate is also a factor considered in the development of a proposal for a marine protected area in the Ross Sea. North Atlantic Salmon Conservation £ȱ (NASCO)/ Member ȱęȱ research and the conservation, restoration, enhancement, and rational management of ȱȱȱ the North Atlantic Ocean Atlantic salmon (Salmo salar) NASCO is concerned about the potential impacts ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ǻǼǰȱ ȱ ȱ ęȱ ȱ ȱ ȱ £ǰȱ ȱ ȱ ȱ on the potential implications of climate change for salmon management at the 29th NASCO Annual ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ śȬŞǰȱ ŘŖŗŘǯȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ directly addressing climate change and salmon to date. ȱ Atlantic Fisheries £ȱ (NAFO)/ Member Study, conserve ȱȱę¢ȱ resources in the NAFO Regulatory Area in the North Atlantic Ocean beyond 200-mile £ȱȱȱ states ǰȱĚǰȱ ęǰȱǰȱ ǰȱǰȱ shrimp ȱȱęȱȱȱĴȱȱ Fisheries Environment has been discussing change Ĵȱȱȱȱȱ¢ȱśŖȱ¢ǯȱ ȱȱŗşŜŚǰȱȱȱȱ¢ȱ ȱȱ ȱǻŗşśŖȬŗşśşǰȱŗşŜŖȬŗşŜşǰȱŗşŝŖȬŗşŝşǰȱ ŗşŞŖȬŗşşŖǼȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱĚȱȱęȱǯȱ 132 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Table 5-3 Primary RFMOs and arrangements that include U.S. living marine resources, by organization/membership, mission, relevant species, and climate change actions, 2012 (Continued) £Ȧ ǯǯȱȱ status ȱ ȱȱ ȱęȱ Anadromous Fish Commission (NPAFC)/ Member ęȱȱ ǻǰȱǰȱǰȱ ¢ǰȱǰȱ cherry, and steelhead) The Bering-Aleutian Salmon International Survey-II (BASIS-II) is NPAFC's coordinated ȱ ȱ ȱ ȱ ȱ ęȱ salmon in the Bering Sea designed to clarify the mechanisms of biological response by salmon to the conditions caused by climate change. Climate change and its impact on salmon have been discussed in a Symposium ȱ ȱ ȱ DZȱ ŗǼȱ ȱ ȱ ȱ understanding impacts of future climate and ocean changes on the population dynamics ȱ ęȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖşǼȱ ȱ ŘǼȱȱ¢ȱȱȱȱ ȱ ȱȱȱȱȱȱęȱ salmon (Beamish et al., 2010) Promote the conservation of ȱȱ and ecologicallyrelated species in the high seas areas of the ȱęȱ The overarching theme of the NPAFC 2011ŘŖŗśȱȱȱȱȃȱȱęȱ Salmon Production in the Ocean Ecosystems under Changing Climate.” Western and ȱęȱ Fisheries Commission (WCPFC)/ Member Ensure, through ěȱǰȱ the long-term conservation and sustainable use of ¢ȱ¢ȱęȱ ȱȱȱ ȱ ȱȱęȱ Ocean in accordance ȱȱŗşŞŘȱȱ Nations Convention ȱȱ ȱȱȱȱ ȱȱŗşşśȱȱȱ ȱǯȱ ȱęȱȱȱ the species listed in Annex 1 of the ŗşŞŘȱȱ ȱȱ ȱȱȱ Sea occurring in the Convention Area, and other species ȱęȱȱȱ Commission may determine necessary to cover ȱȱȱĴȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ¢ȱȱȱ¢ȱȱȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ assessments (Summary Report of the Seventh ȱ ȱ ȱ ȱ ęȱ Ĵǰȱ 21 September 2011). International Implications of Climate Change 133 Straddling fish stocks ȱȱǰȱȱȱȱȱȱȱęȱȱ¢ȱȱȱȱ ȱ ȱ ęȱ ǯȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱȱȱęȱȱ ȱ ȱȱȱȱȱ ȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ǻȱ śȬŚǼǯȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȮȱęȱȱȱǻǰȱŘŖŗŖǼǯȱęȱȱȱȱęȱȱȱȱȱȱȱȱȱȱǯȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱǯȱ ȱȱ¢ȱȱǯǯȱȱȱȱȱȱȱȱ salmon harvests suggests that environmental variability may complicate the manageȱ ȱ ȱ ȱ ǯȱ ȱ ¡ȱ ¢ȱ ȱ ȱ ŗşşřǰȱ ȱ ǯǯȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱęȱȱȱȱȱȱȱTreaty between the Government of Canada and the Government of the United States of America conȱęȱǯȱȱ ȱȱȱ ȱȱ¢ȱ¢ȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȂȱȱȱȱ ȱȱȱȱȂȱǯȱthough several natural and anthropogenic factors contributed to these trends, evidence ȱȱȱȱǰȱ¢ȱȱ ȱȱȱȱǰȱ¢ȱȱ ǯȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱȱȱȱ ȱ¢ȱȱ¢ȱȱȱȱĚǯȱȱ ȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱ ȱȱȱ ȱȱȱȱȱǯȱȱȱřŖǰȱŗşşşǰȱȱȱȱǯǯȱ ȱȱŗŖȬ¢ȱȱȱȱȱ ȱȱȱȱǰȱtive, abundance-based management regime (Miller et al., 2000). In 2009, that agreement ȱ ȱ ȱ ¡ȱ ȱ ȱ ŗŖȱ ¢ǯȱ ȱ ȱ ȱ ȱ ȱǰȱȱęȱȱȱǰȱȱȱȱȱ investments in cooperative research programs. Figure 5-4 Types of fish stocks (Source: Munro et al., 2004). 134 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱ ȱȱȱȱęȱȱȱȱęȱ ȱ¢ȱȱȱȱȱęȱȱȱȱȱȱȱȱȱ ȱȱȱęȱȱǻǰȱŘŖŗŖǼǯ Transboundary fish stocks ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ęȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ śȬŚǼǰȱ ȱȱȱȱěȱȱǯǯȱȱȱęȱȱȱȱȱǯǯȬȱ ȱǻ ȱȱǰȱŘŖŗŘǼǯȱęȱȱ ȱěȱȱȱȱȱȱȱěȱȱȱȱǰȱǰȱȱǯȱȱȱȱȱřȱȱŚǰȱ ȱȱĚȱȱȱ¡ȱȱęȱȱȱȱȱȱ migrations (Agostini et al., 2007; Nye et al., 2009). In addition, the age structure of the ȱȱȱȱȱěȱȱȱ¢ȱȱȱęȱDzȱȱȱ ǰȱȱęȱȱȱȱȱȱ ȱ¢ǯȱȱŘŖŖřǰȱȱǯǯȱȱȱ ȱȱ¢ȱȱȱȱȱȱȱȬ ȱęȱȱǯȱȱ ȱ¢ȱȱ¢ȱȱȱȱȱȱȱȱȱȱ¢Ȃȱ ȱȱȱȱęȱǯȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱȱȱǯ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ¢ȱęȱǯȱęȱǰȱ ȱȱȱȱ boundaries, are a case in point. Currently, no international management agreement exȱȱęȱǰȱȱȱȱȱȱ¢ȱȱȱǯǯǰȱ¡ǰȱ ȱȱ¢ȱȱȱȱȱȱȱǰȱ ȱȱ ȱȱȱȱ¡ǯȱȱ ȱȱȱȱȱȱęȱȱȱ ȱ ¢ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ Ȃȱ ¢ȱ ȱ ȱ ěȱ Ȃȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱǯȱ If cooperative conservation and management is a positive sum game, a related concern ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǻ ȱȱǯǰȱŘŖŖŝDzȱȱȱŚȱȱȱǼǯ ȱȱ¡ȱȱȱȱȱȱȱ¢ȱęȱȱ ȱȱęǰȱȱǰȱȱȱęȱǯȱȱȱ¢ȱȱ¢ȱ¢ȱȱǯǯȱęȱ¢ȱȱȱȱȂȱment of Fisheries and Oceans in British Columbia. Highly migratory fish stocks 3 řȲȱȱȃ¢ȱ¢ȱȄȱȱȱȱŜŚȱȱȱȱȱȱȱȱ ȱȱ ȱȱǻǼǯȱȱȱȱȱȱȱȱȱęȱȱȱǰȱCLOS Annex 1 lists the species considered highly migratory by Parties to the Convention. The list includes: ȱȱǻǰȱęǰȱ¢ǰȱǰȱ¢ ęǰȱęǰȱĴȱ¢ǰȱȱęǰȱȱǼǰȱȱȬȱȱǻǰȱǰȱęǰȱ ęǰȱ¢ȱȱȱȱǰȱǰȱȱ other cetaceans). International Implications of Climate Change ȱ ęȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ǻȱ śȬŚǼǯȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱ¢ȱ¢ȱęȱȱ ȱǰȱȱǰȱȱ ȱě¢ȱ they can maintain member nations’ incentives to cooperate despite the uncertainties and shifting opportunities that may result from climate-driven changes in productivity, mi¢ȱǰȱȱ¢ȱȱȱęȱȱȱ¢ȱȱȱǻǰȱŘŖŖŝǼǯȱ ȱȱȱȱȱȱȱęǰȱȱȱȱȱěȱȱ ȱȱȱȱǰȱ£ȱȱȱȱ¢ȱȱȱ ǯȱȱȱȱȱęȱȱȱ¡ȱȱę¢ȱ ȱȱȱȱȱęȱȱȱǯǯȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱǯȱȱȱȱȱęȱ ȱȱȱ£ȱȱȱȱȱęȱȱȱ¢ȱ ǻǼȱȱȱȱȱȱęȱ¢ȱǯȱȱ¢ȱȱę¢ȱ ȱȱ¢ȱȱ Ȭęȱȱȱȱȱȱȱȱ ǯȱȱȱęȱȱȱȱę¢ȱȱ¢ȱȱȱ is a priority to supplement income from access license fees. ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱǯȱ¢ǰȱȱȱȱȱȱȱȱ¢ȱȱ dramatically if the sea temperature changes, but the spatial distribution may shift sub¢ȱǻȱȱ¢ǰȱŘŖŖŖǼǯȱȱȱ ȱȱȱȱęȱ ȱȱȱȱȱȱȱȱȱęȱǰȱ ȱȱȱȱȱȱȱ¢ȱȱȱȱȱȱęȱȱȱȱȱȱȱȱȱ ǯȱȱȱȱȱȱȱȱȱęȱȱȱȱ ȱȱȱǯȱȱȱȱȱęȱ¢ȱ ȱȱȱȱȱȱȱȱȱǯȱ¢ȱȱ¢ȱ ȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱ ȱęȱǰȱȱȱ ȱȱȱ¢ȱȱȱ¢ȱ¡ȱ¢ȱǻǰȱŘŖŗŖǰȱȱȱŚǼǯ Arctic Climate change is expected to have profound impacts in the Arctic; some of these changȱ ȱ ¢ȱ ȱ ȱ ǻȱ ȱ Řǰȱ řǰȱ ŚǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱȱȱȱȱȱȱ¡ȱȱ ȱǯȱ¡ȱȱ movement of some sub-Arctic species into the Arctic may occur over time and the rates ȱ ¡ȱ ȱ ȱ ȱ ěȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ climate change (see Section 3). Fishing may expand in response to periods of reduced ȱȱȱȱȱȱȱǯȱȱȱȱȱ¢ǰȱȱȱ ęȱ¢ȱȱȱȱ ¢ȱȱȱȱǯǯȱȱ¡ȱȱ ȱȱęȱȱĜȱȱȱȱȱȱȱȱ¢ȱǻȱȱǰȱŘŖŖşDzȱȱȱŜǼǯȱȱȱȱȱȱ ȱȱǯǯȱȱǰȱȱȱȱ ȱȱȱ ȱȱ ȱȱ ȱęȱȱ¢ȱȱȱȱęȱ¢ǯ ȱ ȱ ȱ ęȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱ ȱȱ¡ȱȱ structures and processes to be strengthened or enhanced. Agreements, both multilateral 135 136 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱǰȱ ȱȱĚ¡¢ȱȱȱȱȱǰȱ¢ȱǰȱȬȱȱȱȱȱȱȱȱȱȱȱ seas areas. 5.4 Climate Change and Other International Issues Maritime transportation and security ȱȱ ȱ¢ȱěȱȱ¢ǰȱǰȱȱǯȱȱ ¡ǰȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱȱȱǰȱ ȱȱȱȱȱȱȱȱȱǰȱ including marine resource and ecosystem-based management. According to some reǰȱȱȱȱȱȱȱȱ ȱȱȱȱĚȱ and increasingly severe clashes over the extraction of natural resources among the global ȱǻȱȱǰȱŘŖŖşǼǯȱȱ¢ȱȱȱȱȱȱ ¢ȱȱȱȱȱȱȱȱĴȱǻǰȱŘŖŖŞDzȱȱȱǯǰȱ ŘŖŖŝDzȱǰȱŘŖŗŗǼǯȱȱȱęȱȱ¡ȱȱȱȱ ȱȱȱȱȱȱȱ ȱǯȱȱ¢ȱǰȱȱȱ ȱěȱȱȱȱ ȱ¢ȱȱȱȱȱǯǯȱȱȱ ǰȱȱ ȱȱȱȱ¢ȱȱ ȱ¢ȱǯȱ Climate change adaptation and mitigation actions often extend beyond regional scales and regional governance and security concerns. According to the Energy, EnviǰȱȱȱȱǻǼȱȱȱȱǰȱȃȱȱ ȱ ȱ ȱ ȱ ȱ Ȃȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ǯȱȱȱȱȱ¢ȱȱȱǰȱ¢ȱȱȱȱȱ ȱȱȱ¢ȱȱȱěȱȱȱȱ ȬǰȱȬĜ¢ȱ ¢ȱ ȱȱȱoutsideȱȱęȱȱȱǯȱȱȱȱȱȱȱȱ areas of foreign and trade policy, security and geopolitics, energy policy and investment ȱ ȱȱȱĚȱȱȱȱȱȱȱȄȱǻǰȱŘŖŖŝǰȱȱ 11; also see Section 5). ǯȱ ȱȱȱ¢ȱȱȱ ȱȱȱȱȱȱ ǰȱ¢ȱȱȱȱȱȱǻĴǰȱŘŖŖŜǼǯȱȱǰȱȱ ǯǯȱȱ¢ȱȱȱȱȱȱȱȱȱȱǰȱ and marine-dependent communities are in an especially vulnerable position. If a subȱȱȱȱȱǰȱȱ ȱȱȱȱȱ ¢ȱȱȱǰȱ ȱȱȱ£ȱȱȱȱǯǯȱȱǰȱ ȱȱȱȱ radical socio-economic changes to marine resource-based communities. The central role ȱȱǯǯȱȱȱȱȱȱȱ ȱȱȱȱ¢ȱȱȱȱ¢ȱȱȱȱȱȱDZȱȃȱȱȱ ȱȱ¢ȱȱǰȱ ȱȱ¢ȱȱȱȱȱǰȱȱ ȱ¢ȱ ȱȱȱȱǯǯǰȱ ȱȱȱ ȱȱȱȱ ȱǻȱȱȱȱǯǯȱ¢Ǽǰȱȱȱȱȱȱȱ£ȱȱ ȱȄȱǻȱȱǯǰȱŘŖŖŝDZŗŖŞǼǯ ǯǯȱȱ¢ȱȱȱ¢ȱǰȱȱȱȱȱtion they serve and represent, face numerous challenges in this and coming decades. International Implications of Climate Change In addition to energy security, global trade, terrorism, nuclear non-proliferation, and ȱ¢ǰȱȱȱȱ¢ȱȱȱęȱȱ¢ȱȱtional security challenge as it complicates and exacerbates many more traditional security issues. TRANSPORTATION. According to the Arctic Council’s 2009 Arctic Marine Shipping ȱ ǻǼȱ ǰȱ ȃȱȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ and severe climate change on earth… Of direct relevance to future Arctic marine activity, and to the AMSA, is that potentially accelerating Arctic sea ice retreat improves ȱȱȱ ȱȱȄȱǻȱǰȱŘŖŖşǰȱȱŘŜǼǯȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱǻȱȱŘDzȱȱśȬśǼǰȱ ȱ ȱ Ĵȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱȱȱȱȱǻȱȱǰȱŘŖŖşDzȱ¢ǰȱŘŖŖŝDzȱȱȱǯǰȱŘŖŗŖDzȱ ȱȱǯǰȱŘŖŖŝDzȱȱŚȬŗŚǼǯȱ ȱȱȱȱȱȱ ȱȱȱȱȱȱ¢ȱ vessels because of melting Arctic sea ice, these regions are experiencing greater mariȱȱǻȱȱǯǰȱŘŖŗŖǼȱȱȱȱ ȱȃȱȬȱȱȱȄȱ ǻǰȱŘŖŖŘǰȱȱŗŚşŖǼǯȱȱȱȱȱȱȱǯȱ ȱ ȱ ȱ ¢ȱ Ěȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱ ¢ȱ ¢ȱ ěȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ¢ǯȱ ǰȱ ȱ ȱȱȱǰȱ ȱȱȱȱȱȱȱ ǰȱ ǰȱȱȱȱȱȱȱǻ ǰȱŘŖŖŞǼǯȱȱȱȱȱ ěǰȱȱȱȱȱȱȱȱȱ ȱ¢ȱȱȱ ȱȱȱȱȱȱȱǯǯȱȱȱǯ ¢ȱȱȱȱȱȱ ȱȱȱȱȱȱǰȱ ȱ¢ȱȱȱȱȱȱǰȱ¢ȱȱȬȱěȱȱ as sea level rise. These issues are considered in depth in the Coastal Impacts, Adaptation, and Vulnerabilities Technical Input for the 2013 National Climate Assessment. Blue carbon ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ¢ȱ ǰȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ sediment of coastal and marine ecosystems (as discussed in section 2.9). Accounting for ȱȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱformational tool in the implementation of improved coastal policy and management. ¢ȱ ȱ ¢ǰȱ ęǰȱ ǰȱ ȱ ȱ ¢ȱ ę¢ȱ ȱ ȱ ȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ¢ǯȱ ǰȱĴȱȱȱȱȱȱȱ¢ȱȱȱȱ ȱȱǯǯȱ ȱ¢ǯȱȱȱȱ¢ȱȱęȱȱ¢ȱ¡ȱȱ support nature-based climate change mitigation solutions such as blue carbon: • ȱȱȱ ȱȱȱȱȱǻǼDZȱ Reducing Emissions from Deforestation and Forest Degradation (REDD+), National Appropriate Mitigation Actions (NAMAs), and the Clean Development 137 138 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱǻǼȱȱȬǰȱȬȱȱȱ¢ȱǻǼȱ ǻȱǰȱŘŖŗŗǼǯȱȱȱȱȱȱęȱ ȱȱȬȱȱȱȬȱȱȱ conservation, restoration, and sustainable use of natural systems such as forests and peatlands. Coastal ecosystems can be integrated into these existing Ȭȱǯ • ȱȱ¢ȱ¢ȱȱęȱȱȱȱǻǼȱ ȱ£ȱȱȱȱȱ¢Ȭȱ ȱȱ¢ȱȱ coastal carbon and has invited the submission of information on emissions from ȱȱȱ¢ȱȱȱ¢ȱǻȱǰȱŘŖŗŗǼǯȱ • ȱȱǰȱȱȱȱȱȱ¡ȱ ȱȱȱ ȱȱŘŖŖŜȱȱȱȱȱ ȱȱȱȱȱǯȱȱȱ ȱȱȱȱȱȱȱ ȱ ȱ¢ȱȱǻǰȱŘŖŗŗǼǯ • The Blue Carbon Initiative is a global agenda to maintain the blue carbon stored in coastal ecosystems and to avoid emissions from their destruction. The initiative, coordinated by Conservation International (CI), the International ȱȱȱȱȱǻǼǰȱȱȱȱȱ Figure 5-5 U.S. Coast Guard Vessel in Arctic Ocean (Source: http://www.msnbc.msn.com/id/39394645/ns/world_newsworld_environment/t/ships-take-arctic-ocean-sea-ice-melts/). International Implications of Climate Change ȱǻǼȱȱǰȱȱȱȱ¡ȱ ȱ ȱȱDZȱŗǼȱȱ¢ȱęȱȱȱȱȱŘǼȱȱȬȱȱȬȱ¢ȱ ȱȱȱȱȬȬ based policy, management, conservation, and science globally. Field-based ȱȱȱȱęȱ¢ȱȱ ȱȱȱȱȱ ¢ȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱment of practical, science-based methodologies and building capacity in target countries. • ȱęȱȱǰȱȱȱȱ¢ǰȱȱȱȱ ȱȱȱȱȱȱȱȱ ȱȱȱȱ ęǯ • A number of countries including Indonesia, Costa Rica, and Ecuador have idenęȱȱȱȱȱ¢ȱȱȱȱ¢ȱȱȱ ȱǯȱȱȱȱǯǯȱȱȱȱ¢ȱȱ the integration of coastal blue carbon into their priority activities. These countries are in need of technical and resource support to complete this process and ȱěȱȬȬȱȱȱ¢ǯ • ǰȱȱȱ¢Ȃȱȱȱȱȱ ȱȦ Connecticut 139 Chapter 6 Ocean Management Challenges, Adaptation Approaches, and Opportunities in a Changing Climate Executive Summary ǰȱǰȱȱǰȱȱȱȱȱǯǯȱȱginning to understand, plan for, and address the impacts of climate change on oceans. Although the practice of climate adaptation is relatively nascent, particularly for marine ¢ǰȱȱȱȱȱǯȱȱȱȱȱȱȱ best available science, including long-term monitoring and assessment of environmental ȱȱǰȱȱȱǰȱȱȱȱǰȱȱȱ ȱěȱȱǯȱȱȱȱȱ¢ȱȱȱȱȱȱ ȱȱȱȬ¢ǰȱȬȱȱȱȱȱȱěǯȱ Ȭ ¢ȱȱ ȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱǯ ȱȱȱȱȱȱ ȱȱȱ¢ȱȱȱȱȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ ǯȱȱȱȱȱȱȱȱ ȱěȱȱ ȱę¢ȱȱȱȱȱȱȱȱȱ ȱȱȱǯȱȱ¢ȱ¢ȱȱȱ¢ȱȱȱȱȱȱȱȱ to reduce non-climatic stressors such as pollution and habitat destruction. Existing legal ȱ¢ȱ ȱȱȱȱȱȱȱȱȱěǯȱ ȱ ȱ ȱ ȱ ȱ Ě¡ǰȱ ȱ ȱ ȱ ȱ ȱ uncertainty. Key Findings ŗǯȲȱȱȱȱȱȱȱȱȱȱȱȱȱǯȱ • ȱȱȱǰȱ ǰȱȱȱ¢ǰȱ¢ȱ ȱ adaptation actions have been designed and implemented for marine systems. • ȱȱȱȱ¢ȱ¡ȱȱȱȱȱȱȱęȱ ǰȱ ǰȱȱȱ¢ǯȱ • Despite barriers, creative solutions are emerging for advancing adaptation planning and implementation for ocean systems. R. Griffis and J. Howard (eds.), Oceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment, NCA Regional Input Reports, DOI 10.5822/978-1-61091-480-2_6, © 2013 The National Oceanic and Atmospheric Administration 140 Ocean Management Challenges, Adaptation Approaches, and Opportunities in a Changing Climate ŘǯȲȬȱȱǰȱǰȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱǯ • Long-term observations and monitoring of ocean physical, ecological, social, and economic systems provide essential information on past and current trends as ȱȱȱȱȱǯȱȱȱȱȱȱȱ ȱȱȱ¢ȱȱȬ¢ȱȱȱȱ ȱȱ ȱȱȱȱ ȱȱȱȱǯ • Ȭ¢ȱǰȱǰȱȱȱȱȱȱȱǰȱ ȱ communities of practice, and inform and support decisions to enhance ocean resilience in the face of climate change. řǯȲȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱǰȱǰȱȱȱěǯ • ȱȱȱȱȱȱęȱȱȱȱ ǰȱȱ ȱȱȱȱȱȱȱȱȱȱȱience and adaptive capacity. • ȱȱ¡ȱȱȱ¢ȱ ȱȱȱ ȱȱěȱȱȱȱǯ ŚǯȲȱȱȱȱȱȱǯǯȱȱȱȱȱȱȱȱ ȱǰȱǰȱǰȱǰȱȱȬȱȱ ȱ ȱDzȱ ǰȱȱ ȱȱǯ Key Science Gaps/Knowledge Needs: A strategic, use-inspired, and integrated science agenda is necessary to inform and supȱěȱȱȱȱě¢ȱȱȱȱȱǯȱȱ ȱȱȱǰȱȱȱ¡ǰȱȱȱȱǰȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱ ȱȱȱȱȱȱȱȱȱǯȱȱȱ ȱ ȱȱDZ • Enhance and sustain long-term observations and monitoring of ocean physical, ecological, social, and economic systems to inform adaptive management; • Apply integrative indicators of ocean ecosystem health to foster holistic understanding, monitoring, assessment, and evaluation of change; • ȱȱȱȱǰȱǰȱȱȱȱȱ ¢ǰȱ ȱȱȱȱȬȬȱǰȱȱȱȱ actions; • Support research on relevant social, behavioral, and economic sciences to assess ȱȱȱȬěǰȱȱȱȱȱǯȱǰȱȱ ěȱȱǰȱ¢ȱȱȱȱȱȱȱ ¢ǰȱȱȱȱȱ¢ǰȱȱȱstanding of human responses to change for marine systems; and 141 142 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE • ȱȱȱȱȱȱȱěȱȱȱ ȱȱȱȱȱȱĚ¡ȱȱȱȱǯ 6.1 Challenges and Opportunities for Adaptation in Marine Systems Adaptation involves processes related to preparing for and building resilience to climate ǰȱȱ ȱȱȱȱȱȱǻǰȱŘŖŖŝDzȱǰȱŘŖŗŖǼǯȱȱ ȱȱȱ¢ȱ ȱȱȱȱȱȱȱȱ¡ȱȱǰȱȱȱ ȱȱȱȱȱȱǻǰȱŘŖŗŖǼDzȱǰȱȱȱȱȱȱȱȱȱ¢Ȃȱěȱȱȱȱȱ sustainable future through enhancing the social, economic, and ecological resilience of ocean systems. ȱ ȱ ¢ȱ ȱ ȱ ȱ ¡ǰȱ ȱ ȱ ȱ ȱ ȱ ȱǰȱȱȱ¢ȱȱȱǯȱǻŘŖŗŗǼDZ • Assess vulnerability to climate change; • Identify, design, and implement management, planning, and/or regulatory ȱȱȱȱȱȱȱęDz • Design and implement monitoring programs to assess change and evaluate ěDzȱ • ȱȱȱȱ¢ȱ ȱȱȱȱȱȬȱȱ redesigned as necessary. ȱȱȱȱ¢ȱȱȱȱȱȱȱ ǰȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱȱȱȱȱȱǻ ȱȱǯǰȱŘŖŗŖDzȱȱȱǯǰȱ 2011). ȱȱǰȱǰȱȱȱ¢ǰȱ¢ȱ ȱȱȱȱȱȱȱȱȱȱ¢ǯȱȱĴȱȱ ȱȱȱȱȱǰȱȱ¢ȱ ȱȱȱȱȱȱ ȱȱǰȱ ȱȱȱ ȱȱȱǻȱȱǯǰȱŘŖŗŗǼDZ • ȱȱȱȱȱ¢ȱDz • ȱȱȱǰȱǰȱȱȱȱȱȱ action; • ȱȱȱ¢ȱȱȱȱ ȱȱȱDzȱ • ȱȱ¢ȱȱȱ¢ȱȱ¢ȱęȱȱǰȱ and tools to support assessments and monitoring; • ¢ȱȱȱȱ¢Dzȱ • ȱȱ ǰȱȱǰȱȱǯ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǻǯǯǰȱ ǰȱ ŘŖŖŞDzȱ ȱ ȱ ǯǰȱ ŘŖŖşDzȱ IPCC, 2007a). Fortunately, solutions exist for overcoming many of these barriers, including enhanced provision of information, tools, and services that support ocean-related adaptation decisions and integration of climate change into existing policies, practices, Ocean Management Challenges, Adaptation Approaches, and Opportunities in a Changing Climate ȱǯȱȱȱ¢£ȱȱȱǰȱǰȱȱȱȱȱȱȱȱǯǯ 6.2 Information, Tools, and Services to Support Ocean Adaptation ǰȱ ǰȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ mand for user-friendly, science-based information that supports ocean adaptation ěǯȱȱȱȱȱȱȱȱȱǰȱǰȱȱǯȱȱȱ¢ȱȱȱȱȱ¢ȱȱ ȱȱȱȱȱȱȱȱǰȱȱȱǰȱȱ ȱǰȱȱȱȱěȱȱȱǯȱȱȱȱȱ ȱȱȱȱȱȱȱȱtioners can help to ensure that the information provided is accessible, understandable, ȱǯȱȱǰȱȱȱȱ ȱȂȱ ȱȱȱ Ȃȱ¢ȱȱǯȱ Importance of long-term observations and monitoring for management The establishment of current baselines and trends are a core element of adaptation apȱ ǻǰȱ ŘŖŖŞǼǯȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ¢ȱȱȱȱȱȱȱȱȱȱǻ £ȱ ǰȱŘŖŖŞDzȱȱȱǰȱŘŖŖşǼǯȱȱȱȱȱȱ¢ǰȱcal, social, and economic systems are needed to provide information on past and current ȱȱ ȱȱȱȱȱȱȱǯȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱǰȱ developing meaningful climate indices, and supporting adaptive management. Observations and monitoring data can provide critical insight into the relative contributions of anthropogenic change versus natural variability in ocean systems. In addition, longterm data can inform the development of more accurate and higher-resolution climate ȱȱȱȱȱ¢ȱȱȱȱȱȱǯȱ Key variables that inform the development of ocean adaptation actions include but are not limited to: • ¢ȱǰȱȱȱȱȱȱ ȱǰȱ ȱ ¢ǰȱȱǰȱ¢ǰȱ ǰȱǰȱȱȱȱǻǰȱŘŖŗŖǼDzȱ • Ecological parameters such as phenology (e.g., timing of the spring phytoȱȱȱȬ¢ȱǼǰȱȱǰȱǰȱsity, and primary productivity (NCA, 2010b); and • Socio-economic parameters, such as demographics, food supplies, social and ȱ ȬǰȱȱȱȱǻǰȱŘŖŗŗǼǯ ȱȱȱȱȱȱȱ¢ȱȱ ȱȱȱȱȱȱȱ£ȱȱȱȱ¢ȱȱǯȱȱ opportunity is to leverage existing observation and monitoring systems, including those ȱȱȱȱǻȱ¢ȱŜȬǼǰȱȱȱȱȱȱȱ and managing for climate change (National Ocean Council, 2012). 143 144 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 6-A Marine protected areas as sentinel sites for monitoring, understanding, and managing climate change ȱ ȱ ŗşşşȱ ȱ ȱ ȱ ǰȱ ȱ through a public-private partnership, California is ȱȱ ǰȱŗǰŗŖŖȬȱ ȱȱ marine protected areas (MPAs) to protect marine ǰȱ ǰȱ ȱ ¢ǯȱ ȱ ȱ ȱ toring and evaluating these MPAs to inform adapȱ ȱ ȱ ȱ ȱ ȱ ęǯȱ £ȱǰȱȱȱȱȱ Council has invested over $20M to conduct baseȱ£ȱȱȱ¢ȱȱȱȱȱȱȱȱǰȱę¢ȱ ǰȱ ȱ Ȭěȱ ȱ ǯȱȱ ȱ ¢ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ future assessments of ecosystem health and MPA performance can be evaluated. ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ¢ǯȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ pogenic stressors are reduced, provides a large-scale natural laboratory to understand ȱȱȱȱȱȱsystems. The innovative approaches to MPA monitoring being developed in the state also ȱȱ ȱȱȱȱȱȱ inform the climate change management dialogue. ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ for climate change monitoring (MPA Monitoring Enterprise, 2012), leveraging the opportunity preȱ ¢ȱ ȱ ȱ ǯȱ ȱ ȱ Ĝ¢ȱȱě¢ȱȱȱȱ ȱȱȱȱȱȱȱěȱ ȱȱȱǰȱȱȱěȱȱ MPA performance, and evaluate climate change adaptation measures. Sea Ranch, California (Photo Credit: J.J. Meyer). A challenge ahead is to ensure that coastal and ocean resource managers have access ȱȬ¢ȱȱȱȱȱ ȱȱȱȱ ȱȱȱȱǻǰȱŘŖŖŞDzȱȱȱǰȱŘŖŗŘǼǯȱȱ¡ǰȱ¢ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱȱȱȱ ȱȱȱȱ¢ȱȱȱȱȱȱȱ young animals (see Case Study 3-A). Oceanographic models developed at the Woods ȱȱȱȱȱ¢ȱȬȱȱȱ ȱȱ to predict blooms of the toxic alga, Alexandrium fundyenseǰȱȱȱȱĜȱȱȱ ȱȱ¢ȱ ȱȱȱ£ȱȱȱȱȱ ȱȱȱęȱǻȱȱǯǰȱŘŖŖşǼǯȱȱ¡ȱȱȱ¢ȱȱsible information at relevant decision scales. Ocean Management Challenges, Adaptation Approaches, and Opportunities in a Changing Climate Barriers remain in providing long-term information to support ocean adaptation deǯȱ ȱ ȱ ¢£ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ creasingly important for providing practical information to inform management. The ȱȱȱ¢ȱȱȱǰȱȬȱȱȱȱ¢ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻǰȱŘŖŗŗǼǯȱěȱȱȱȱȱ ȱ¡ȱǻȱ¢ȱŜȬǼȱěȱȱȱ ȱȱ¢£ȱȱȱ¢ȱȱȱȱȱȱȱ ȱȱȱȱ¢ȱȱȱ ȱȱǯȱȬ¢ȱ ȱǰȱǰȱȱȱȱȱȬȱȱ ȱȱȱȱȱȱȱȱȱȱǻ £ȱǰȱŘŖŖŞǼǯ Tools and services for supporting ocean management in a changing climate ěȱȱ ¢ȱȱȱȱȱȱ¢ȱȱȱȱȱ ȱDzȱȱȱȱȱ ȱȱȬȱDzȱȱȱ enhance analytic capacity to translate understanding into planning and management acȱǻǯǯǰȱȱȱǰȱŘŖŖŞǼǯȱȱȱȱȱȱȱȱȱȱǰȱ the information provided must be timely, accessible, relevant, and credible. Although ȱ ȱȱ¡ǰȱȱ ȱȱȬȱȱȬȱȱȱȱ ȱȱȱǯȱ ǰȱȱ¢ȱȱȱȱȱ¢ȱȃcessible” to adaptation practitioners; it is either unavailable, too technical to be underȱȱȱ¢ȱȬǰȱȱȱȱȱȱęȱȱȱȱ ǯȱ ȱ ȱ ȱ ǰȱ ȱ ¢ȱ ȱ Ȭ¢ȱ ȱ ȱ ȱ ȱ emerging. ȱ ȱ ȱ ¡ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ȱ ȱ ȱǰȱ ȱȱȱǰȱȱȱȱȱȱȱhance ocean resilience in the face of climate change. • ȱȱȱȱ ȱȱȱȱȱȱȱȬȱȱȱȱȱǰȱȱȱǰȱȱȱ ȱǰȱȱȱ ȱȱȱȱȱȱȱ ¢ǰȱȱ¡ȱȱǻĴDZȦȦ ǯǯȦǼǯ • ȱȱȱȱęȱȱȱȱȱȱǯȱ Several tools and services have been developed to help reef managers anticipate and respond to bleaching events. For example: The Reef Manager’s Guide to Coral Bleaching, produced by NOAA, the ȱȱȱȱȱȱ¢ǰȱȱȱȱ ȱȱȱȱȱǰȱȱȱȱȱȱ ȱȱȱȱǰȱȱ ȱȱȱȱȱȱȱ to help reef managers respond and enhance resilience to bleaching events. ǻĴDZȦȦǯǯȦȦȏȏȦǼ ȂȱȱȱȱǻĴDZȦȦ ǯǯȦȦǼȱȱ developed several tools, including the Satellite Bleaching Alert System ǻĴDZȦȦ ȬǯǯȦǯǼǰȱȱȱȱ ȱ¢ȱȱęȱȱ ȱȱȱȱ conducive to bleaching at select reef. 145 146 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Case Study 6-B The Ocean Health Index Protecting or restoring healthy oceans represents a core goal of almost any marine resource manageȱǰȱȱ¡¢ȱ ȱȱȱ¢ȱȃȱ Ȅȱ ȱ ȱ ȱ ȱ ¢ȱ ęǯȱ ȱ ȱ ȱ ęȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱȱǯȱȱȱ ȱ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ the aim of providing a tool for guiding management decisions. ȱ¡ȱęȱȱ¢ȱȱȱȱȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ŗŖȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ǰȱ ȱ vision, livelihoods, and cultural values (McLeod ȱǯǰȱȱ Ǽǯȱȱǰȱȱ¡ȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ sustainably used, rather than simply protected, to score highly. The Index converts into a common ȱȱȱ ¢ȱȱ ȱȱǰȱęȱǰȱǰȱȱǰȱȱǰȱȱȱȱȱǯȱ The Index can be used to assess the impacts of climate change on each of the 10 public goals as ȱȱȱ¢ȱęȱȱ¢ȱȱȱȱ management scenarios that target climate impact ȱȱȱęȱǰȱ land-based pollution regulations, or other measures. For example, climate change impacts that reduce the extent of coastal habitats (e.g., through ȱ ȱ ǰȱ ȱ ȱ ¢Ǽȱ ȱ fect many goals including carbon storage, coastline protection, and biodiversity, in turn reducing overall ocean health. Management actions that increase resilience and reduce non-climatic pressures on coastal habitats should help ameliorate climate impacts and maintain or even improve ocean health in the face of climate change. Global results for the Index have recently been ȱ ǻ ȱ ȱ ǯǰȱ ŘŖŗŘǼǰȱ ȱ ȱ ǯǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ improvement. Regional assessments for the Caliȱȱȱȱǯǯȱȱȱȱȱ Ȭȱȱȱ¢ȱ ¢ǯ • ȱȱȱ £DZȱȱȱȱȱȱ¢ȱ ȱǻȱȱǯǰȱŘŖŗŗǼDZȱȱǰȱȱ¢ȱȱȱȱ ȱȱȱ ȱȱȱȱǰȱȱȱȱ ǰȱȱǯǯȱȱȱȱǰȱȱǯǯȱȱǰȱǰȱȱ ȱǯǯȱȱ¢ǰȱȱȱȱȱȱ ȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱ¢ȱǻĴDZȦȦ ǯ ǯȦ ȬȬ£ȦȬȦȦȦŘŖŗŗȦȬȬ £ǯ¡Ǽǯ • ȱȱȱ ȱ¡ȱǻǼǰȱȱȱȱȱ ȱȱȱǰȱȱȱȱȱȱȱ ȱȱȱ managing natural systems including oceans in the face of climate change. CAKE ȱȱ¢ȱĴȱȱ£ȱȱǰȱȱ Ocean Management Challenges, Adaptation Approaches, and Opportunities in a Changing Climate adaptation case studies, building a community via an interactive online platǰȱȱȱ¢ȱȱȱȱȱ ȱȱǰȱ and identifying and explaining data tools and information available from other ȱǻĴDZȦȦ ǯ¡ǯȦǼǯ • ȱȱȱȱ ȱȱȱȱȱȱȱ provides a diversity of resources in support of coastal and ocean adaptation, such as state-level adaptation plans, case studies, climate communications inforǰȱȱȱ¢ȱǰȱȱȱȱȱȱ ǻĴDZȦȦǯǯǯȦȦǯ¡Ǽǯȱ ȱȱȱȱȱȱȱȱȱȱȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ¡ȱ ȱ ȱ ěȱȱȱ ȱȱ¢ǰȱ ǰȱȱȱ ȱǰȱǰȱȱȱȱȱȱȱǯȱ ǰȱȱȱȱȱ ȱ remains in providing accessible information to meet the diverse set of adaptation planning, implementation, and evaluation challenges faced by marine resource managers ȱǯȱȱȱ ȱȱȱȱȱȱȱȱȱ Ȭȱȱȱȱȱȱȱ¢ȱȱęȱ ¢ȱȱȱȱȱȱǯȱ 6.3 Opportunities for Integrating Climate Change into U.S. Ocean Policy and Management Although climate change presents challenges to marine resource managers and other ȱȱǰȱȱ¡ȱȱȱȱȱȱȱagement. For example, because climatic and non-climatic stressors interact, reducing ȱȱȱȬȱȱȱȱȱȱ ȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ǻ¢ȱ ȱǯǰȱŘŖŗŗDzȱȱȱǰȱŘŖŗŖǼǯȱ ǰȱ ȱȱȱȱȱ climate-related vulnerabilities of oceans by incorporating climate change considerations ȱȱȱȱȱȱȱȱǰȱęȱǰȱ ȱȱȱ¡ȱȱȱ¢ȱ ǯ Incorporating climate change into marine spatial planning and marine protected area (MPA) design Both coastal and marine spatial planning (CMSP) and MPAs spatially allocate human ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ¢ȱ ȱ ȱ ǯȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱ ¢ȱȱ£ȱǰȱǰȱǰȱȱȱȱ ȱ supporting and improving resource use and conservation goals (Ehler and Douvere, 2009). MPAs instead focus primarily on limiting access to some or, in the case of “noȄȱȱǰȱȱȱȱ ȱȱǰȱ¢¢ȱȱȱȱęȱȱȱǻȱȱǯǰȱŘŖŖŞǼǯȱȱȱȱ and management of existing protected areas and refugia, and increasing connectivity 147 148 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE and the amount of protected space, provide mechanisms for enhancing climate resilȱǻȱȱǯǰȱŘŖŖşǼǯȱȱǰȱȱȱȱȱȬȱěǰȱȱ and MPA processes must incorporate climate change into their planning, implementaǰȱȱȱěǯ Accounting for the impacts of global climate change in CMSP and MPA planning ¢ȱȱȱȱȱȱȱěȱȱȱȱȱȱȱ ȱȱǯȱ ǰȱȱȱȱȱȱ¡ȱȱing climate change into the design of management plans: 1) build resilience to climate ǰȱŘǼȱȱȱȱĴȱȱȱǰȱȱřǼȱȱȱterns of change. Building climate resilience into spatial management remains the most commonly ȱ ȱ ȱ ȱ ȱ ȱ ǻ ȱ ȱ ǯǰȱ ŘŖŖŞDzȱ ȱ ȱ ǯǰȱ ŘŖŖşǼǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¡ȱ regulations and mandates. Targeted actions to limit or remove non-climatic stressors can help reduce the cumulative impact of total stressors, thus improving the ability of ȱ¢ȱȱȱ ȱȱȱȬȱȱǻ ȱȱǯǰȱŘŖŖŞǰȱ ŘŖŗŖǼǯȱ ȱ ¡ǰȱ Ȭȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱȱěȱȱȱȱ¡ȱȱȱȱȬěȱȱȱȬȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻ ȱ ȱ ǯǰȱ ŘŖŖşǼǯȱěȱȱȱȬȱȱ ȱȱȱȱȱȱ ȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱ ǯȱǰȱȱ£ȱȱȱȱȱ£ȱȱȱȱȱȱǰȱȱȱ ȱ ȱȱȱǰȱȱȱȱȱěȱȬed impacts and other increasing or catastrophic stressors (Allison et al., 2003; McLeod et al., 2009). For example, the large areas encompassed by the MPAs recently established in ȱ ȱ ȱǰȱȱ¬¬ȱȱȱǰȱȱǯǯȱęȱǰȱȱǰȱȱǰȱȱęȱȱȱ National Marine Monuments, are protected from many human activities and therefore ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȬ climatic stress from human activities. ¢ȱȱȱěȱȱȱȱȬȱȱȱȱȱ ȱ ȱ ¢ȱ ¡ȱ ȱ ǯȱ Ĵȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ęǰȱ ȱ ȱ ȱ ȱȱȱ¢ȱȱǻ ȱȱǯǰȱŘŖŗŗDzȱ ȱȱǯǰȱŘŖŖŞǼǯȱȱȱ ȱȱȱǰȱȱȱȱȱȱǰȱȱȱ¢ȱȱȱȱtected areas in locations that exhibit high resilience to climate change. As assessments designed to inform CMSP and MPA planning processes engage and inform more sectors ȱȱȱǰȱȱěȱ ȱȱĴȱȱȱȱǰȱęǰȱȱȬěȱȱȱȱǻȱȱǯǰȱŘŖŗŘǼǯ ȱȱĴȱȱȱȱȱȱȱȱȱȱ and MPA design is the most challenging of the three options, primarily because of the Ĝ¢ȱ ȱ ȱ Ȭȱ Ĵȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ¡ȱȱȱȱȱ ȱȱȱȱȱȱ¢ȱȱ larval transport. MPA planning and CMSP processes can be designed to both anticipate Ocean Management Challenges, Adaptation Approaches, and Opportunities in a Changing Climate ȱȱȱȱȱ ȱȱȱȱȱȱȱȱ ȱȱȱȱȱěȱȱȱȱȱȱȱ¢ȱȱȱȱȱ ȱ ȱǻȱȱǯǰȱŘŖŖşǼǯȱȱȱǰȱȱ ȱ ȱȱ¢ȱȱȱěȱȱȱ¢ȱȱȱȱȱȱȱ ȱȱȱȱȱȱ ȱȱ¢ȱǻǰȱŘŖŖŞǼǯ Integrating climate change into fisheries management Ȭȱ ȱ ȱ ěǰȱ ȱ ȱ ȱ ȱ ěǰȱ ȱ ȱ ȱ ęȱȱȱȱ¢ȱȱǯǯȱȱȱ¢ȱǻȱ ȱ ǯǰȱ ŘŖŖşDzȱ ¢ȱ ȱ ǯǰȱ ŘŖŗŘDzȱ ȱ ȱ řǰȱ Śǰȱ ȱ śǼǯȱ ȱ ȱ ¢ȱ ȱ ȱȱȱȱȱ¢ȱȱ ¢ȱȱȱȱ¢ǰȱǰȱȱ ȱ Ĵǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ę¢ȱ ȱ¢ǰȱȱ¢ȱȱȱȱȱȱęȱǰȱȱȱ¢ȱ ȱȱȱȱȱȱȱǻȱȱǯǰȱŘŖŖşǼǯ ȱȱ¢ȱȱȱȱęȱȱȱȱȱȱȱDZȱŗǼȱȱǰȱǰȱȱȱȱȱȱȱŘǼȱ ȱȱȱȱȱęȱȱȱę¢ȱȱȱ ȱȱȬȱȱě¢ȱȱȱȱȱ¡ȱęȱȱȱ ȱȱ ȱȱȱȱȱǻȱȱǯǰȱŘŖŗŖDzȱȱȱǯǰȱ ŘŖŗŗǼǯȱȱȱȱȱȱǰȱȱ ȱȱȱȱȱęȱȱȱě¢ȱȱȱȱȱȱȱȱȱȱȱ ȱęȱȱȱȱȱȱȱȱȱȱȱǻ ȱȱǯǰȱ ŘŖŗŖDzȱȱȱǯǰȱŘŖŗŖǼǯȱ ȱȱȱȱȱȱȱȱȱȱȱȱęǯȱȱ¡ǰȱȱȱǯǯȱǰȱȱȱęȱȱ¢ȱȱ¢ȱȱ£ȱȱȱȱȱȱȱȱȱ¢ȱȱȱ ȱęȱȱȱȱȱǯȱȱȱ¢ȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ęȱ Ĵȱ ȱ Ȭȱ ȱ ȱ ȱ ȱǻȱȱǯǰȱŘŖŗŖDzȱ¢ȱȱǯǰȱŘŖŖşǰȱŘŖŗŗDzȱĵȱȱǯǰȱŘŖŗŗǼǯȱȱȱ ȱȱ¢ȱȱȱȱȱȱȱȱȱȱ¢ȱȱ ȱȱȱȱȱ¢ȱȱȱȱȱȱěȱȱȱ ȱ¢ȬȱȱǻǰȱŘŖŖşǼǯȱ ȱȱȱȱěȱȱ ¢ȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ǻ ȱ ȱ ǯǰȱ ŘŖŖşDzȱ ȱ ȱ ǯǰȱ ŘŖŗŗǼǯȱ ȱ ¡ǰȱ ȱ ȱ ǯȱ ǻŘŖŖşǼȱ ȱ ȱ ȱ ȱ ȱȱȱęȱȱęȱȱȱȱȱǯȱ ȱȱ ǯȱ ǻŘŖŗŖǼȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱ ȱȱȱȱȱ that could translate into a 30-100 percent increase in maximum sustainable yield. Mueter ȱǯȱǻŘŖŗŗǼȱȱȱ¢ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ¢ȱȱȱȱȱȱ Sea. Another promising step is the development of ecosystem models to help explore ȱ¡ȱ¢ȱȱȱ¢ȱȱȱȱȱǻȱȱǯǰȱŘŖŗŖǼǯȱ 149 150 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE In addition, the body of literature and tools for assessing the vulnerability of natural ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻǯǯǰȱ ȱ ȱ ǯǰȱ ŘŖŗŗǼǯȱȱ ȱ ȱ ȱ ȱȱ¢ȱȱȱȱȱ ȱǰȱȱȱ ěȱȱȱȱȱȱȱ¢ȱȱȱȱ ȱǻȱȱǰȱŘŖŗŖǼǯ ¢ȱ ȱ ¡ȱ ¡ȱ ȱ ę¢ȱ ȱ ěȱ ȱ ȱ ¡¢ȱ ȱ Ȭȱ ǰȱ ȱ ȱ ěȱ ȱ ¡ȱ ȱ ȱ ȱ more information and tools on climate impacts and vulnerabilities become available. ȱȱȱ¢ȱȱȱ ȱęȱȱȱȱȱǰȱ¢ǰȱȱęȱǯȱȱȱ ǰȱ ȱȱȱȱȱȱȱęȱǰȱȱ ȱȱ ȱȱ¢ȱȱǵȱȱǰȱĴȱ ȱȱȱ¡ȱȱȱęȱȱȱȱȱ ǯȱȱȱǯȱǻŘŖŗŗǰȱȱŚŜŗǼȱȱȱȱȱȱȱ ȱęȱǰȱȱȱȱȱȱȃȱ ȱ¡ȱǰȱȱȱǰȱęȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱęȱǯȄȱȱȱȱȱȱ ę¢ȱȱ ȱ¢ȱȱȱȱ ȱȱȱȱtion of ecosystem-based approaches through mechanisms such as integration of changȱȱȱȱȱȱę¢ȱȱǯȱ Efforts to integrate climate considerations into existing legislative and regulatory frameworks ȱ¢ȱȱ ȱȱȱȱ ȱȱȱȱȱȱȱěȱȱȱȱȱȱȱȱǻ£ǰȱŘŖŖşDzȱǰȱŘŖŗŖǼǯȱ¢ȱȱȱ ȱȱȱȱȱȱȱȱěȱȱȱ ȱȱȱȱ¢ȱęȱ¢ȱȱȱǻǯȱŘŖŗŖDzȱȱ et al., 2011). Although no single piece of existing federal legislation directly targets climate change adaptation in the marine environment, several potential mechanisms have ȱǰȱȱȱ ȱȱ¢ȱȱǰȱȱȱȱ change considerations into existing statutory and regulatory processes (Gregg et al., ŘŖŗŗDzȱȱȱǯǰȱŘŖŗŖǼǯȱȱȱ¢ȱȱȱ¢ȱĜǰȱȱ ȱȱȱȃȱ¢ȱ£ȱǯȱǯȱǯȱȱȱȱȱsource conditions resulting from climate change in their management activities” (GAO, ŘŖŖŝǰȱȱŘǼǯȱȱȱȱȱȱȱȱȱȱȱȱ delegated statutory and regulatory authority. Broadly applicable policy initiatives may enable climate change adaptation in the ocean and marine environment. For example, the National Ocean Council has develȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ DZȱ ŗǼȱ ȃ¢ȱȱȱȱȱȱȱȱęǰȄȱȱŘǼȱȃȱ conditions in the Arctic” (National Ocean Council, 2012). The Council on Environmental Quality has also drafted guidance for federal agencies regarding the incorporation of consideration of greenhouse gas emissions and adaptation measures into environmental ȱȱȱȱȱȱȱ¢ȱȱǻDzȱŚŘȱǯǯǯȱ ȗȱŚřŝŗȱet seq.; CEQ, 2010). ȱǰȱȱǯǯȱȱȱęȱěȱȱȱȱȱȱ Ocean Management Challenges, Adaptation Approaches, and Opportunities in a Changing Climate change impacts in the marine environment through existing legislative and regulatory ǯȱȱ ȱȱěȱȱȱȱȱȱsiderations into regulation and management. • ȱęDZ The Clean Water Act (CWA) has been cited as a potential ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ȱ ǻǰȱ ŘŖŖşDzȱ Kelly et al., 2011). The purpose of the CWA is to restore and maintain the chemical, ¢ǰȱȱȱ¢ȱȱǯǯȱ ȱǻřřȱǯǯǯȱȗȱŗŘśŗȱet seq.). One of ȱ¢ȱȱȱ¢ȱȱȱȱęȱȱȱȱȱ ȱ ǰȱ ȱȱ ȱȱȱȱȱȱęȱ ȱ¢ȱ ǯȱȱȱȱĴȱ ȱȱȱȱȱ¢ȱ and the Environmental Protection Agency (EPA), the EPA solicited input on ȱȱȱȱ ȱ ȱȱȱȱȱ¢ȱ ȱęȱǻȱǯȱȱŘŖŖşDzȱȱǯȱŘŖŗŖǼǯȱȱȱ ȱȱ ¢Ȃȱȱȱȱȱȱęȱȱȱȱǰȱ ȱĜȱȱȱǰȱȱȱȱȱ ȱȱȱ ȱ ȱȱ ȱȱȱȱǻȱȗȱřŖŚǻǼǰȱǰȱŘŖŗŖDzȱ¢ȱȱ ǯǰȱŘŖŗŗǼǯȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱ ȱ¢ȱȱȱȱȱęDzȱȱǰȱ ȱȱȱ fail to meet criteria established for coral reef ecosystems, bivalves, or other organȱȱȱȱȱȱȱȱȱȱȱȱȱ (Bradley et al., 2010). • ȱ ȱ ȱ DZ Climate change is adversely impacting ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǻȱ ȱ řǼǯȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱȱȱ ȱȱȱȱȱǻŗŜȱǯǯǯȱȗȱŗśřŗȱet seq.), ȱȱȱǯǯȱȱȱȱȱǻǼȱǰȱǰȱȱ recover threatened and endangered species. These agencies cited climate change impacts such as increased sea surface temperatures, sea level rise, loss of sea ice, ȱȱęȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱǻȱǰȱŘŖŖŜǼǰȱȱȱǻȱ ǰȱŘŖŖŞǼǰȱȱȱȱȱȱȱȱȱĴȱȱ ǻȱǰȱŘŖŗŖǼǰȱȱ ȱȱȱęȱȱȱȱȱęȱ ȱȱ ȱȱȱȱ ȱǻȱǰȱŘŖŗŗǼǯȱȱȱęȱȱȱȱȱ¢ȱȱȱęȱȱŞŘȱȱȱ¢ȱ ȱȱ threatened or endangered listing (Federal Register, 2010c). In addition to listings, agencies could factor climate adaptation considerations into critical habitat designations, recovery plans, and consultations on proposed Federal actions (Craig, ŘŖŖşDZȱ¢ȱȱǰȱŘŖŖŞDzȱ ǰȱŘŖŗŘǼǯȱ • ȱ DZȱ ȱ ȱ ȱ ěȱ ȱ ǰȱ ǰȱ ȱ ¢ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ǻȱ ȱ řȱ ȱ ŚǼǯȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱȱǻŗŜȱǯǯǯȱȗŗŞŖŗȱet seqǯǼȱȱȱę¢ȱȱ ȱ ȱ ȱ ę¢ȱ ȱ ȱ ǻǼȱ ȱ ȱ ȱ ȱ 151 152 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ¢ȱ ȱ ¢ȱ ȱ ǯȱȱ ȱ ȱ ¢ȱ ation of climate change exist, at least one regional council has begun to consider ȱǯȱȱŘŖŖşǰȱȱȱęȱ¢ȱȱȱǻǼȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ǻǰȱ ŘŖŖşǼǯȱ£ȱȱȱȱȱȱȱȱȱȱ¢ȱȱ ęǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǻǰȱŘŖŖşDzȱȱȱŚȱȱśǼǯȱȱȱĚȱȱ¢ȱ ȱȱȱȱȱęȱȱȱȱȱȱǯȱ ȱȱȱȱȱȂȱȱȱȱȱ ȱȱȱ ȱȱǯȱȱȱ¢ǰȱ¢ǰȱȱ¢ȱěȱȱȱȱ ȱȱȱ¡ȱȱȱȱȱȱȱȱȱȱȱ management of climate change impacts in the marine environment. In addition, many ȱȱȱȱȱȱȱȱȱȱȱěȱȱǯȱȱ example, many state coastal management programs have already developed adaptation policies (CSO, 2007). Kelly et al. (2011) identify several actions that local and state ȱ¢ȱȱȱȱȱȱȱȱȱȱȱęǰȱȱȱȱěȱȱȱǯȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱ ȱ¡ȱȱȱ¢ȱ ȱȱȱȱȱȱȱȱȱěȱȱǯ 6.4 Emerging Frameworks and Actions for Ocean Adaptation Although the science and practice of marine adaptation are relatively nascent, many ǰȱ ǰȱ ¢ȱ ǰȱ ȱ ȱ ȱ ȱ ǯǯȱ ȱ developing strategies for enhancing ocean resilience in the face of a changing climate. Marine systems, and especially coral reef systems, are the sites of some of the earliȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ Ĵǰȱ ŘŖŖŜǼǯȱȱ ǰȱȱȬȱȱěǰȱȱȱ ȱȱǯǯȱȱȱǻȱȱȱȱ¢ȱǰȱŘŖŗŘDzȱȱ ȱŜȬŗȱȱ¡Ǽǯȱȱǰȱȱ¢ȱȱ ȱȱȱȱtion have been developed at national, regional, state, local, and non-governmental levels ǻȱȱŜȬŗȱȱ¡Ǽǯȱȱěȱȱȱȱȱȱȱȱȱ planning and implementation of on-the-ground actions. ȱȱȱȱȱȱȱ ǰȱȱȱȱ ȱȱ Ȭȱȱȱȱȱȱȱȱȱȱ¢ȱȱȱǯǯȱȱ¡ǰȱȱȱęȱȱȱȱ ¢ȱ ¢ȱ ǻǼȱ ǻĴDZȦȦ ǯǯǯȦȦȦǼȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱęȱȱȱȱ¢ǯȱȱŘŖŖŖȬŘŖŖśǰȱ¢ȱ ȱȱȱȱȱȱȱȱȱ ȱ ȱȱǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ¢ȱȱȱǻǼȂȱȱȱȱĴǯȱȱ ȱ ȱ ȱ ȱ Ĵǰȱ ȱ ȱ ¢ȱ ȱ ȱ Ocean Management Challenges, Adaptation Approaches, and Opportunities in a Changing Climate 153 ȱ ȱŘŖŖŜȱȱŘŖŗŖȱȱȱȱȱǯȱȱěȱtrates adaptive management based on changing environmental conditions. Coral reefs are being impacted by both climatic and non-climatic stressors (see Table 6-1: Examples of ocean-related climate adaptation frameworks in the U.S. ȱ NATIONAL/FEDERAL Interagency Climate Change Adaptation ȱȱ ȱ¢ȱȱȱȱȱȱǻǼȱ ȱȱȱ Spring 2009 to determine progress on federal agency actions in support of national adaptation and to develop recommendations for additional actions. The ICCATF is ȱȱȱŘŖȱȱȱȱ¡ȱȱĜȱȱȱȱȱřŖŖȱȱ¢ǯȱȱȱȱȱěȱȱȱȱȱ ¡ȱȱŗřśŗŚȱȱȱȱǰȱȱȱ ȱȬȱ responsibilities, to develop adaptation plans. ĴDZȦȦ ǯ ǯȦȦȦȦȦ National Fish, Wildlife and Plants Climate Adaptation Strategy The National Fish, Wildlife, and Plants Climate Adaptation Strategy, initiated through Congressional directive in 2009, is currently under development. The Strat¢ȱȱȱȬ ȱȱȱȱȱȱǰȱǰȱ tribal, and non-governmental entities to safeguard the nation’s valuable natural resources, including marine resources, against a changing climate. The draft Strategy ȱȱȱ¢ȱŘŖŗŘȱȱȱ ȱȱǯȱ ĴDZȦȦ ǯ ¢ǯȦ¡ǯ National Ocean Policy ȱȱȱ¢ȱ ȱȱȱ¢ȱŘŖŗŖȱȱ¡ȱȱŗřśŚŝȱ ȱȱȱǰȱȱ ȱȱȱ ȱȱȱǰȱ ǰȱȱȱȱȱȱǯǯȱȱ¢ȱŘŖŗŘǰȱȱȱȱ¢ȱ ȱȱȱȱȱȱ¢ȱȱȱȱȱȱ ȱȱ¢ȱȱȱȱȱȱȱȱęǯ www.whitehouse.gov/administration/eop/oceans/policy REGIONAL West Coast Governors Alliance ȱȱ ȱǯǯȱȱȱȱȱȱȱȱȱ ȱȱŘŖŖŜȱ ȱȱȱ ȱȱȱȱȱȱȱȱȱ ocean and coastal resources. The Alliance includes a Climate Change Action Coordination Team that is initially focusing on a West Coast assessment of shoreline change and anticipated impacts to coastal areas and communities due to climate ȱȱȱ¡ȱȱǯȱȱěȱ ȱȱȱȱȱ ȱȱȱ£ǯ ĴDZȦȦ ǯ ǯȦ 154 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Table 6-1: Examples of ocean-related climate adaptation frameworks in the U.S. (Continued) ȱ STATE State of California Climate Adaptation Strategy ȱŘŖŖşǰȱ£ȱȱȱȱȱȱȱǰȱȱȱȱȱ released their Climate Adaptation Strategy. The Coastal and Ocean Resources ȱȱȱ¢ȱ ȱȱȱȱȱȱ¢ȱ ȱȱȱȱȱȬȱǰȱȱȱȱǰȱ and conducting vulnerability assessments, among other actions. ĴDZȦȦǯǯȦȏȦȦ ȏȏȱ¢ǯ ĴDZȦȦ ǯǯǯȦȦ Ĵȱȱ ȱȱȱȱȂȱȱȱȱȱȱŘŖŖŞǰȱȱ¢ȱȱ¢ȱ Change Adaptation ȱȱěȱȱȱĴȱȱȱȱ¢ȱ Report ĴȱȱȱĴȱȱȱȱȱȱȱ Ȭȱȱǰȱǰȱȱȱȱȱ¢ȱǰȱ including Coastal Zone and Oceans. ĴDZȦȦ ǯǯȦȦȬ ȬȬȦȬȦȬȬȬ report.html ĴDZȦȦ ǯǯȦȦȦȦ¢ȦȦȬȬȬŞǯ NON-GOVERNMENTAL ȱȱȱ ȱȱ¢Ȃȱȱȱȱȱȱȱȱ Conservation Action ȱȱȱ£Ȃȱȱȱȱěȱȱȱǯȱ ȱȱȱȱ ȱȱȱęȱȱȱȱȱȱ¢ȱȱȱȱȂȱȱ and Beaufort Seas resources. An expert panel helped guide the selection of primary conservation targets ȱ ȱ ǰȱȬȱȱǰȱǰȱȱȱ ǰȱȱȱȱȱęǯȱȱȱȱ adaptation strategies and ecosystem-based management, investing in baseline and longterm data collection, and identifying and protecting climate refugia, among others. ĴDZȦȦ ǯǯȦȦ¢ȬȬȬȬŘǯ A Climate Change Action Plan for the Florida Reef System (2010-2015) The Florida Reef Resilience Program, a public-private partnership, released a Climate ȱȱȱȱŘŖŗŖǯȱȱȱȱȱȱȬȱȱȱ ȱȱȱȱȱ¢ȱǯȱ¢ȱȱęȱ in the Plan include expanding disturbance response monitoring throughout the ȱȱǰȱȱȱȱ£ȱȱȱȱȬȱǰȱ ȱȱȱȱȱęȱȱǰȱȱȱȱȱȱ ȱȱȱ£ȱǰȱȱȱȱǯȱȱȱȱȱ adopted by reef managers into existing management plans. ĴDZȦȦǯȦƖŘŖȦƖŘŖƖŘŖƖŘŖȬǯȱ Ocean Management Challenges, Adaptation Approaches, and Opportunities in a Changing Climate ȱřǼǯȱȱȱȱȱȱǰȱȱǯǯȱȱ¢Ȃȱȱ ȱ¢ȱȱǻǼȱǻĴDZȦȦǯǯǯȦȦǼȱȱȱing drivers and trends of coral reef ecosystem change. CREST is conducting monitoring ȱȱěȱȱȱȱȱȱȱ¢ȱǰȱȱǰȱȱ¢ȱȱȱȱȱȱ¢ȱȱȱ¢ǯȱȱȱȱ ǰȱȱȱęȱȱȱȱȱęǰȱęȱ of diseases, and improving understanding of reef responses to sea-level change, among ǯȱȱ ȱ ȱȱȱȱȱǰȱȱȱ¢ȱȱ forecast future change, and guide management decisions. ¢ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ǰȱȱȱȱȱęȱ ǯȱȱȱȱȱȱ ȱȱȱ ȱ ȱ ȱ ȱ ęȱ ǯȱ ȱ ǰȱ ȱ ęȱ ȱ ęȱ ȱȱȱȱȱȱ¢ȱ¢ȱȱȱǻĴDZȦȦ ǯǯȦ ȦęȏǯǼȱȱȱȱȱȱȱȱȱ¢ȱǰȱȱȱȱȱ¢ȱ production, and identify resilient oyster genotypes. Some hatcheries are already impleȱȱȱȱ¢ȱȱ ȱȱȱȱȱ of high acidity. ȱ ěȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱȱǯǯȱ¢ȱȱǰȱȱȱ ȱȱȱȱǰȱ ȱȱȱȱȱȱȱȱȬȱěǰȱȱǰȱpact, and vulnerability assessments, to the development of guidance and tools, to onthe-ground implementation. In general, most ocean-related adaptation activities are still ȱȱȱȱȱȱȱǰȱǰȱȱDzȱȱ ȱȱȱǰȱ ȱȱ ȱȱȱǯȱ ǰȱȱȱȱ ȱ ȱȱ¡ȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱǯ 155 Chapter 7 Sustaining the Assessment of Climate Impacts on Oceans and Marine Resources Key Findings ŗǯȲȱȱȱȱȱȱǯǯȱȱ¢ȱȱȱȱȱȱǰȱȱȱȱǰȱȱȱȱȱěȱ adaptation to a changing climate. ŘǯȲȱ ȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱ¢ȱȱǯȱ¢ȱȱȱȱȱ¡ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ marine ecosystems. řǯȲȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ advance assessment of impacts of climate change on oceans and marine resources. • Identify and collect information on a set of core indicators of the condition of ȱ¢ȱȱȱę¢ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱęȱȱ ȱȱȱěȱȱȱȱȱěȱȱȱȱȱȱȱǯ • ȱ¢ȱȱěȱȱ¡ȱȬȱ¢ȱȱǰȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱ¢ical, chemical, biological, and social/economic impacts of climate change on oceans and marine resources. • Increase capacity and coordination of existing observing systems to collect, ¢£ǰȱȱȱȱȱȱ¢ǰȱǰȱǰȱ ȱȦȱȱȱȱȱȱǯǯȱȱ¢ǯ • ȱȬȱȱȱȱȱȱȱȱȱ ȱȱȱęȱȱȱ¢ǰȱǰȱȱȱ components and human uses. • ȱǰȱǰȱȱ¢ȱȱȱȱȱȱȱȱ climate change on marine ecosystems. • Build and support mechanisms for sustained coordination and communication ȱȱȱȱȱȱȱȱȱȱȱmation needs related to impacts, vulnerabilities, mitigation, and adaptation of ocean ecosystems in a changing climate are being met. R. Griffis and J. Howard (eds.), Oceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment, NCA Regional Input Reports, DOI 10.5822/978-1-61091-480-2_7, © 2013 The National Oceanic and Atmospheric Administration 156 Sustaining the Assessment of Climate Impacts on Oceans and Marine Resources • ȱȱȱȱȱĴȱȱȱȱȱ ȱȱǰȱǰȱȱȱȱǯǯȱȱ¢ȱ in a changing climate. • ȱȱȱȱ ȱȱȱȱȱnational partners for assessing and addressing impacts of climate change and ȱęȱȱȱ¢ȱȱ¢ȱȱȱȱǯǯ 7.1 Challenges to Assessing Climate Impacts on Oceans and Marine Resources ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ¢ȱȱǯǯȱȱȱȱ ȱȱȱȱěȱ¢ȱȱȱ through a suite of changes in ocean physical, chemical, biological, social, and economic ¢ȱǻ¢ȱȱǯǰȱŘŖŗŘDzȱ ȱȱǯǰȱŘŖŗŗDzȱȱȱǼǯȱȱȬ ȱȱ ȱȱęȱȱȱǯȱȱǻȱȱŘȱȱřǼǰȱȱ ȱȱȱȱȱȱȱǻȱȱŚǼǰȱȱǯǯȱȱ relations (see Section 5). Despite this foundation of information, many uncertainties and gaps remain in unȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱȱ¢ȱǻȱȱȱȱȱȱŘǰȱřǰȱŚǰȱśǰȱŜȱȱ¢ȱ ȱǯǰȱŘŖŗŘǼǯȱȱ ȱȱ ȱȱǰȱǰȱȱȱȱȱȱȱǰȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱǯǯȱȱ¢ǯȱȱ ȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱǯȱ • ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ¢ȱȱȱȱȱȱȱȱDZȱŗǼȱȱȱȱȱ ȱȱȱęȱȱǯǯȱȱȱŘǼȱȱěȱȱȱěȱȱǯ • Limited capacity and coordination of existing observation systems to collect, assess, integrate, and deliver information on physical, chemical, biological, ǰȱȱȱȱȱȱȱȱǯǯȱȱ¢ȱȱ decision-relevant scales. • ȱȱȬȱȱȱȱȱȱȱȱȱęȱȱǯǯȱȱ¢ǯ • ȱȱȱȱȱȱȱȱȱȱȱȱ ǯǯȱȱǰȱǰȱȱȱȱȱȱ ecosystems. • ȱ¢ȱȱȱȱ¢£ȱȱȱȱȱ ȱěȱȱȱǰȱǰȱ¡ȱǰȱǯȱȱȱȱȱ ȱȱȱȱǯ • ȱȱȱ¢ȱǰȱǰȱȱ¢ȱȱȱȱȱȱ ȱȱȱȱȱ¢ȱǻȱȱȱȱȱȱ¢ȱ science needs). 157 158 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE • ȱȱȱȱȱ¢ǰȱ¢ȱ ȱǰȱǰȱȱ examples for incorporating climate change information into ocean management processes. • ¢ȱ ȱȱȱȱȱȱǯ 7.2 Steps for Sustained Assessment of Climate Impacts on Oceans and Marine Resources ȱȱȱȱȱȱǯǯȱȱ¢ȱȱȱȱȱȱǰȱȱȱȱǰȱȱȱȱȱěȱ ȱ ȱ ȱ ȱ ǯȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ the capacity to assess and respond to climate impacts on ocean and marine resources ǻ¢ȱȱǯǰȱŘŖŗŘDzȱȱȱǯǰȱŘŖŗŖDzȱ ǰȱŘŖŗŗDzȱǰȱŘŖŖŞǼǯȱȱ ȱȱ ȱȬȱȱȱ ȱ¢ȱȱȱȱȱȱȱing and advancing future assessments of climate change impacts on oceans and marine resources. This is not intended to be a comprehensive list, and items are not listed in priority order. • Identify a set of core indicators of the condition of marine ecosystems that can ę¢ȱȱȱȱȱȱDZȱŗǼȱȱȱȱȱȱȱ ȱęȱȱŘǼȱȱěȱȱȱȱȱěȱ over time at regional to national scales. • ȱ¢ȱȱěȱȱ¡ȱȬȱȱȱ ¢ȱȱǰȱǰȱȱȱȱȱȱȱ¢ǰȱical, biological, social, and economic impacts of climate change on oceans and marine resources. • Enhance capacity and coordination of existing observing systems to collect, ¢£ǰȱȱȱȱȱȱ¢ǰȱǰȱǰȱ ǰȱȱȱȱȱȱȱȱǯǯȱȱ¢ǯ • ȱȬȱȱȱȱȱȱȱȱȱ ȱȱȱęȱȱȱǰȱ¢ǰȱȱȱ ¢ȱȱ ȱȱȬȱȱ¢ǯ • ȱǰȱǰȱȱ¢ȱȱȱȱȱȱȱȱ climate change on marine ecosystems, including (also see previous sections for ȱȱ¢ȱȱǼDZ ȱȱ ȱȱȱ¢ǰȱǰȱȱȱȱ use components of marine ecosystems respond to changes in climate and ȱęǰȱ ȱȱȱȱǰȱȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱ changes in marine ecosystems; Information on past variability in climate and ocean conditions for use in ȱ ȱȱȱȱ¢ȱĚȱȱ ocean conditions on a variety of temporal and spatial scales; Sustaining the Assessment of Climate Impacts on Oceans and Marine Resources ȱȱ¢ȱȱȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱȱȱęȱȱǻǯǯǰȱǼȱ ȱȱǻǯǯǰȱǼȱȱȱȱȱȱDzȱ ȱȱ¢ȱȱȱȱȱȱȱȱ change impacts on physical, chemical, biological, and ocean use components of marine ecosystems. • Build and support mechanisms for sustained coordination and communication ȱȱȱȱȱȱȱȱȱȱȱȱ information needs are being met related to impacts, vulnerabilities, and adaptation of ocean ecosystems in a changing climate. • Build and support mechanisms for obtaining and sharing information and ȱȱǰȱǰȱȱȱȱǯǯȱȱ¢ȱ in a changing climate. • ȱȱȱȱ ȱȱȱȱȱnational partners for assessing and addressing impacts of climate change and ȱęȱȱȱ¢ȱȱȱȱȱȱǯǯ A diversity of potential mechanisms could enhance the sustained coordination and assessment of climate impacts on ocean systems. For example: • ȱȱȱȱ ȱȱȱ ȱ ȱȱȦȱȱěȱȱȱȱȱȱǰȱ National Ocean Policy, National Fish, Wildlife, and Plants Climate Adaptation ¢ǰȱȱ¢ȱȱȱȱȱǯȱȱ ȱ ȱȱȱȱȱ ȱȱȱȱȱȱȱ through a coordinated federal science agenda. • ȱȱȱȱȱ¡ȱȱ¢ȱ ȱȱȱȱȱment process for the National Climate Assessment. These individuals could ȱȱȱ¡ȱȱȱȱȱȱȱȱȱȱȱ on a staggered rotational basis. • Informally convene federal agencies that are developing ocean-related compoȱȱȱ¢ȱȱȱȱȱŗřśŗŚȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱǯ • ȱȱ ȱȱȱȱȱȱȱȱȱȱ scientists and local, state, tribal, federal, NGO, and private sector practitioners to ȱȱȱǰȱǰȱȱǯȱȱěȱ ȱ¢ȱȱȱȱǰȱǰȱȱȱ¢ȱȱǯ • Improve regional coordination to connect climate information to the large ȱ¢ȱȱȱȱȱ ȱȱȱ climate and ocean entities such as NOAA Fisheries Science Centers, NOAA Regional Climate Service Directors, DOI Climate Science Centers, and DOI ȱȱȱȱȱȱȱ ȱȱ regions. 159 Appendix A Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. A.1 Commercial and Recreational Fisheries 4 Commercial fisheries ȱ ŘŖŖşǰȱ ȱ ęȱ ȱ ȱ ǯǯȱ ȱ ŝǯşȱ ȱ ȱ ȱ ęęȱ ȱ ęǯȱȱȱȱȱǰȱȱȱȱȱ¡Ȭȱǰȱ ȱǞřǯşȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻǞřŝŞȱ Ǽǰȱ ȱ lop (Placopecten magellanicusDzȱ ǞřŝŜȱ Ǽǰȱ ęȱ ȱ ǻǞřŝŖȱ Ǽǰȱ ȱ ¢ȱ ȱ ǻTheragra chalcogrammaDzȱ ǞřŖŞȱ Ǽǯȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǻŗǯşȱ ȱ Ǽǰȱ ȱ ǻȱ ¢Dzȱ ŗǯŚȱ ǼǰȱȱęȱȱǻŝŖśȱǼǰȱ ȱȱȱȱȱȱȱ ȱȱȱŘŖŖşǯȱȱǯǯȱȱ¢ȱȱŘŖŖşȱȱ¡¢ȱŗȱ ȱȬȱȱȬȱȱȱȱǞŗŗŜȱȱȱȱǰȱǞřŘȱȱȱ ȱǰȱȱǞŚŞȱȱȱȱȱǯ5 ǰȱǰȱȱȱȱ¢ȱ ¢ȱȱȱȱȱ ȱ ǯǯȱ ǻȱȬŗǼǯȱ ȱ ¡ǰȱ ȱ ęȱ ȱȱ ȱ ȱ ȱ salmon (Oncorhynchus sppǯDzȱŜŝŗȱȱǼȱȱȱǞřŚśȱȱȱȱȱ ȱŘŖŖşǯȱȱȱȱȱ ȂȱȱŗśȱȱȱȱȱǞŚŞȱȱȱǯȱȱȱȱǰȱȱęȱȱȱȱ¢ȱȱcan lobster (Homarus americanus) in 2009, earning $231 million for the 79 million pounds ǯȱȱĴǰȱȱȱ ȱȱȱȱȱȱǰȱȱ $197 million for 30 million pounds landed. Louisiana harvesters caught more blue crab (Callinectes sapidusDzȱ śŗȱ ȱ Ǽȱ ȱ ¢ȱ ȱ ǰȱ ȱ ȱ ǞřŜȱ ǰȱ ȱȱȱȱȱȱǯǯȱȱȱȱŘŖŖşȱǻŝŞŜȱȱǼǰȱȱǞŚřȱȱȱȱǯȱȱȱȱȱ¡ǰȱȱ ȱȱ¢ȱȱ ǰȱȱǞŗřŗȱȱȱȱŘŖŖşȱȱȱşŖȱȱȱ¢ȱ¡ȱęǯȱȱȱȱȱȱ ȱȱȱȱǻŗŗŚȱȱǼǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻǞŗŘŗȱ Ǽǯȱ ȱ ȱ ¢ȱ ȱ ŚȲData reported in this subsection (Commercial Fisheries) are documented in NOAA Fisheries, 2010. śȲThe seafood industry includes the commercial harvest sector, seafood processors and dealers, seafood wholesalers, and distributors, importers, and seafood retailers. R. Griffis and J. Howard (eds.), Oceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment, NCA Regional Input Reports, DOI 10.5822/978-1-61091-480-2, © 2013 The National Oceanic and Atmospheric Administration 160 Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. 161 1RUWK3DFL¿F New England 3DFL¿F Mid-Atlantic South Atlantic :HVWHUQ3DFL¿F Gulf of Mexico Figure A-1 U.S. Commercial Fisheries by region (2009 landings, revenue, and job impacts) (Source: National Marine Fisheries Service, 2010). ȱ ¢ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ŗŘŗǰŖŖŖȱ ǰȱ ȱ ¢ȱ Ĵȱ ȱŝŞǰŖŖŖȱǰȱȱ ȱŜśǰŖŖŖȱǰȱȱȱ ȱśŞǰŖŖŖȱ ǯȱȱ ȱȱȱȱ ȱȱȱ ǰȱ ȱȱ¢ȱŚŖŝȱȬ¢ȱǯȱȱȱȱȱȱȱȱȱȱǰȱ Ĵǰȱǰȱȱǯȱ Recreational fisheries 6 ȱ ŘŖŖşǰȱ ¡¢ȱ ŗŗȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ¡¢ȱşǯŚȱȱȱȱȱ ȱȱȱȱǯǯȱȱ¢ȱȱŗǯŝȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ ¢ǯȱ ȱ ȱ ȱ ŝŚȱ ȱ ȱęȱǰȱȱǞŚǯśȱȱȱȱȱȱ ȱȱǞŗśȱȱȱȱęȬȱǯȱȱ¡ȱȱǞśŖȱȱȱȱȱȱ ǯǯȱ¢ȱȱȱȱřŘŝǰŖŖŖȱǯȱȱȱȱȱȱ sea trout (Cynoscion regalisDzȱŚŚȱȱęǼȱȱȱȱȱȱǻMicropogon undulatus and Leiostomus xanthurusǰȱ¢DzȱřŜȱȱęǼǯȱ ŜȲȱȱȱȱȱǻȱǼȱȱȱȱȱǰȱŘŖŗŖǯ 162 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ŘǯŞȱ ȱ ǰȱ ȱ ȱ ŘŘȱ ȱȱȱȱŘŖŖşǰȱ ȱȱȬȱǻŘǯŜȱȱǰȱŗŝȱȱǼȱȱ ȱȱȱǻŘǯŚȱȱǰȱŗşȱȱǼȱȱ¡ȱȱȱǯȱ ȱ ęȱ ǻŗǯŞȱ ȱ ǰȱ Ŝǯřȱ ȱ Ǽǰȱ ȱ ȱ ǻŗǯŚȱ ǰȱ ŝǯśȱ ȱǼǰȱȱęȱǻŘŞŚǰŖŖŖȱǰȱşŗŚǰŖŖŖȱęȱ¢Ǽǰȱȱȱȱęȱ ǻŘŚŜǰŖŖŖǰȱŘǯŘȱȱǼȱȱ ȱȱȱȱȱǯ ȱęȱȱȱȬȱȱȱȱȱȱȱǻŗśȱȱ ęǼȱ ȱ ȱ Ěȱ ǻParalichthys dentatusDzȱ ŘŚȱ Ǽǰȱ ȱ ȱ ȱ glers caught most of the striped bass (Morone saxatilis; 9 million) in 2009. Most sea trout ǻřśǯśȱ Ǽȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ǯȱ ȱ ȱ ȱ ęȱ ǰȱ ȱ ǻȱ ǻOncorhynchus tshawytscha), chum (Oncorhynchus keta), coho (Oncorhynchus kisutchǼǰȱȱǻOncorhynchus gorbuschaǼǰȱȱ¢ȱȱęȱȱǻOncorhynchus nerka and Hippoalossus stenolepisǰȱ¢Ǽȱ ȱȱȱ¢ȱȱȱ ȱȱȱŘŖŖşȱ ȱŗǯŗȱȱęȱȱŝŜŗǰŖŖŖȱęȱǰȱ¢ǯȱęȱȱ ȱ ęȱ ǻŘǯŝȱ ȱ ęǼǰȱ ȱ ǻScomber scombrusDzȱ Řȱ ȱ ęǼǰȱ ȱ (Sphyraena barracudaǼǰȱ ȱ ȱ ȱ ǻAtractoscion nobilis) and bonito (Sarda chiliensis) ǻŗǯŜȱȱęǼȱ ȱȱȱȱȱȱȱęȱǰȱ ȱ¢ȱȱ (Thunnus obesusǼȱȱȱǻŗǯŗȱȱęǼȱ ȱȱȱȱęȱȱ¢ȱ ȱȱȱȱęǯȱ A.2 Commercial and Recreational Fishing-Dependent Communities 7 ǯǯȱęȬȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ £ǯȱ ¢ȱ ȱ ęȬȱ ȱ ȱ ȱ ȱȱȱęȱȱȱȱ£ȱȱ ȱȱȱȱȱ ȱȱ£ȱȱ ȱȱȱȬȱǰȱȱȱȱęȱǰȱȱȱȱȱȱȱǯȱȱȱȱȱǰȱȱ coastal areas of the South Atlantic region’s states of South Carolina, Georgia, and Florida are all subtropical as are the coastal areas of all the states in the Gulf of Mexico region. ȱȱȱȱȱ¢ǰȱȱȱǰȱȱȱȱęȱȱȱȱ ȱǯȱȱěȱěȱȱȱȱęǯ ȱȂȱȱȱęȬȱȱȱǰȱęȱȱ ȱȱȱȱȱȱȱǰȱȱȱȱȱȱȱȱȱȱ ǰȱ¡ȱǻǯȱŗǰşśřǰŜřŗǼǰȱȱǰȱȱǻǯȱ ŗǰŘŘřǰŚŖŖǼǰȱ ǰȱ ȂȱǻǯȱŞŝŜǰŗśŜǼǰȱȱǰȱȱǻǯȱŝřśǰŜŗŝǼǰȱȱ ȱȱȱȱȱ ǰȱȱǻǯȱşŞŞǼǰȱǰȱȱǻǯȱŜŝŞǼǰȱȱ ǰȱȱǻǯȱřŝŗǼǰȱǰȱȱǻǯȱŘřŜǼǰȱȱǰȱȱ ǻǯȱŗŘřǼǯȱȱŘŘŘȱȱęȬȱȱȱȱǯǯȱȱȱȱ ¢ȱȱȱŗŖǯŗȱǰȱȱȱȱȱȱȱşǯŘȱǯȱ¢ȱȱȱ ȱȱęȬȱȱȱȱŖȱȱȱǰȱȱȱřřǯŝȱȱȱȱ¢ǰȱǰȱ ȱȱ¢ȱȱȱȱ ŝȲȱȱȱȱȱǻȱȬȱǼȱȱȱȱȱ Fisheries, 2009a. Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. ȱ Řȱ ȱ ȱ ŗŖȱ ǯȱ ȱ ęȬȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ¡ǰȱ ȱ ȱ ȱ ȱȱęȬȱȱęȱ¢ȱȱȱȱȱ ȱȱȱguage other than English at home range from 0 percent of Crescent, Georgia’s residents ȱ ŗȱ ȱ ȱ ȱ ǰȱ ȱ ȱ Şŝȱ ȱ ȱ ǰȱ ¡ȱ ȱ şřȱ ȱȱȂǰȱ Ȃǯȱ ¢Ȭ ȱǰȱȱŚŞȱȱŘŘŘǰȱȱȱȱęȬȱȱȱȱǯǯȱȱȱȱȱȱȱȱȱȱȱǯȱ ȱȱȱȱȱ ȱǞŚŘǰŖŖŖȱȱȱȱŘŖŖŖȱǯǯȱDzȱ ȱ ȱ ęȬȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǞŗŞǰŖŖŖȱ ȱ ęǰȱ ¢ȱ ȱ ǞŗŚŜǰŝśśȱ ȱ ǰȱ ǯȱ ¢ȬȱǰȱȱŞŚȱȱŘŘŘǰȱȱȱȱȱęȬȱȱ ȱȱǯǯȱȱȱȱȱȱȱȱȱǰȱȱȱ ȱȱ ¢ȱ¢ȱȱȱȱȱęǯ A.3 Regional Involvement in Commercial and Recreational Fishing Although described to some extent in the previous sections, a more detailed description of the socio-economic impacts and climate change implications of commercial and recreȱęȱȱȱȱȱȱǯǯȱȱȱ ǯ North Pacific ȱȱȱ¢ȱ¡ȱȱȱ ȱěȱDZȱȱȱȱȱǻǼǰȱ ȱ ȱ Ȯȱ ȱ ǻǼǰȱ ȱ ȱȱ ¢ǯȱ ȱ ęȱ ȱ ¢ȱȱȱęǰȱȱęȱȱ¢ȱ¡ȱȱȱǯȱȱȱ ȱ¡ȱȱȱȱȱȱȱȱȱęȱǯȱȱȱ ȱȱȱȱȱ£ȱ¢ȱȱ¢ȱĚ ȱȱȱȱ¢ǯȱȱing Sea is a semi-enclosed high-latitude sea and its broad continental shelf is one of the ȱ ¢ȱ ȱ ȱ ȱ ȱ ǯȱȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱ ȱȱǯ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ¢ȱ ȱ (Theragra chalcogrammaǼǰȱ ęȱ ȱ ǻGadus macrocephalusǼǰȱ ¢ ęȱ ȱ ǻLimanda asperaǼǰȱ ȱ ȱ ȱ ǻĴȱ ¢¡¢Ǽǰȱ ȱȱ ȱ ǻPleurogrammus monopterygius). Other species comprise a minor fraction of the total catch. Total groundęȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱęȱ ¢ȱȱǯȱȱȱǰȱȱȱȱȱȱ ¢ȱǰȱęȱǰȱĚęǰȱęȱȱȱǻSebastes alutusǼǰȱȱȱȱęǰȱȱęȱǻAnoplopoma ę). ęȱęȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ǯȱȱ ĴȱȱǯȱǻŘŖŗŖǼǰȱȱȱęȱȱěȱȱȱȱ ŗǯśȱȱȱȱȱȱȱŘŖŗŖȱ ȱȱ¡ȬȱȱȱǞŜřŜȱǰȱ ȱ ȱȱŚřȱȱ ȱȱ ǰȱ ȱŗŚȱ ȱ ȱȱ ¡Ȭȱǰȱ ȱȱ ǯǯȱȱǯȱȱȱȱȱ¢ȱȱȱȱŘŖŗŖȱęȱ ȱěȱȱȱ ȱ¡¢ȱǞŗǯşȱǰȱȱȱȱŗŗȱȱȱŘŖŖşǯȱ ȱ ęȱ ęȱ ȱ ȱ ȱ ȱ ȱ ǻŚŗȱ Ǽȱ ȱ ȱ ¡Ȭȱ ȱȱȱȱęȱěȱȱȱŘŖŗŖǰȱ ȱȱęȱȱę¢ȱ ȱ 163 164 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱ ȱǞśŖŜȱȱȱřŘȱȱȱȱȱȱ¡Ȭȱǯȱȱȱȱ ȱęȱę¢ȱȱȱǞŘŖŜǯřȱȱȱŗřȱȱȱȱȱȱȱȱ ¡ȱȱȱȱęȱȱ¢ȱȱǞśǯŞȱǯ ¢ȱȱȱȱȱȱȱȱȱȱęȱȱ ěȱǯȱȱŘŖŗŖȱȱȱȱŞŞŞǰśŖŖȱȱȱȱȱśŜȱȱȱȱ ȱęȱȱȱŗǯŜȱȱǯȱ ȱȱȱȱȱȱȱ ȱ ¢ǯȱ ȱ ȱ ȱ ȱ ǻǼȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱǰȱ ȱȱȱŗǯśȱȱȱȱȱŘŖŖŚȬŘŖŖŝǯȱȱ ȱȱ ¢ȱȱŘŖŖŞȱȱŗǯŖȱȱȱȱȱȱȱȱŘŖŖşȱȱŘŖŗŖȱȱȱĴȱ ȱŞŖŖȱȱȱǰȱȱȱęȱȱȱȱȱȱȱȱȱȱ ŘŖŗŗȱȱŘŖŗŘȱ ȱ¡ȱȱŗǯŘȱȱȱǯȱ ¢ȱ ȱ ěȱ ǻŘŖŗŘǰȱ ǯȱ ǯǼȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱȱȱ¢ȱǻŘŖŖŜȬŘŖŖşǼǰȱȱ ȱȱȱȱ ȱ colder than average years in the Bering Sea. A large ice and cold pool extent concentrates ęȱȱȱȱȱȱȱȱęȱǰȱȱęȱȱȱ north an advantage over those in the south. The redistribution has occurred in the sumȱ ȱ ę¢ǰȱ ȱ ȱ ȱ ȱ ę¢ǰȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱȬȱęȱȱ ȱȱȱȱȱȱȱȱȱǰȱȱ ȱĴȱȱȱěǯȱȱȱěȱȱȱȱęȱȱȱȱę¢ȱ ȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱȱǯ ¢ȱȱȱȱȱȱȱ ȱȱȱȱȱȱ ȱęǰȱȱȱȱ ȱȱȱȱȱȱ ȱ¢ȱȱǯȱȱȱȱȱȱȱȱ ȱ ȱȱȱǻȱȱǯǰȱŘŖŗŗǼǰȱȱȱěȱȱęȱ ȱȱȱ¢ȱȱ¢ǯȱȱȱȱȱȱȱ ¢ȱȱěȂȱǻŘŖŗŘǰȱǼȱǰȱ ȱȱȱȱȱȱ¢ȱ ȱ ȱęȱ ǯȱȱȱȱȱȱȱȱȱȱȱȱěȱȱȱ ěȱȱȱȱǰȱ ȱȱ¢ȱȱǯȱȱ ȱȱ the importance of considering the economic, institutional, and ecological characteristics ȱȱę¢ȱȱȱȱȱȱěȱȱȱȱȱęǯ ȱŘŖŗŖȱȱȱĚęǰȱ ȱȱ¢ ęȱȱǻPleuronectes asperǼǰȱȱȱ (Pleuronectes bilineatusǼǰȱȱ ȱĚȱǻAtheresthes stomiasǼǰȱ ȱŘşŗǰŞŖŖȱȱ ȱ ŗŞǯřȱ ȱ ȱ ȱ ȱ ŘŖŗŖȱ ęȱ ȱ ǻ Ĵȱ ȱ ǯǰȱ ŘŖŗŗǼǯȱ ȱ ęȱ ȱ ȱȱŘŖŗŖȱȱȱŘśŖǰřŖŖȱȱȱŗŜȱȱȱȱȱŘŖŗŖȱęȱǰȱ ȱȱşȱȱȱȱ¢ȱǯȱǰȱęȱǰȱȱĚęȱȱȱ ȱşŖȱȱȱȱȱŘŖŗŖȱǯȱȱȱȱȱęȱǻAnoploȱęǼǰȱęȱǻSebastes and Sebastolobus spp.ǼǰȱȱȱȱǻPleurogrammus monopterygius). ęȱȱǻHippoglossus stenolepisǼȱȱȱ¢ȱȱȱęȱ ȱȱ¢ȱȱȱęȱǯȱȱę¢ȱȱȱaged under an Individual Transferable Quota system since 1995. The species is found ȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱǯȱȱŘŖŖşǰȱęȱȱśŝǯŝȱȱ ȱȱȱȱȱǞŗřŚǯŜȱȱȱǰȱ ȱ¢ȱǰȱǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ ȱ ęȱ ǻȱ ǰȱ Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. ŘŖŗŖǰȱȱŘŖǼǯȱȱǰȱȱ ȱȱę¢ȱ ȱȱȱȱȱȱȱȱǯȱȱŘŖŖşǰȱȱȱȱȱȱȱȱȱ ŚŞŜǰŖŖŖȱǯ ȱ¢ȱȱȱ ȱȱěȱȱȱ¢ȱȱȱȱęȱ ǯȱ ȱ ȱ ŘŖȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ recruitment of the species have occurred that cannot be readily explained by changes in ȱ£ȱǻȱȱǯǰȱŗşşşǼǯȱȱ ȱȱ¢ȱȱȱȱȱȱȱ¢ȱ¢ȱȱęȱȱȱǻǼȱǻȱȱŘȱȱǼȱǻȱȱ ǰȱŘŖŖŘǼǯȱȱȱȱȱ ȱǰȱȱȱ for halibut, and negative, or unproductive, phases every 25 to 35 years (Mantua et al., 1997). ȱȱȱȱDZȱȱǻParalithodes camtschatica), blue (P. platypus) and goldȱȱ ȱǻLithodes aequispinaǼǰȱȱ ȱȱȱȱǰȱȱȱǻChionoecetes bairdiǼȱȱ ȱȱǻC. opilioǼǰȱȱ¢ȱȱȱ¢ȱěȱ ǯȱȱŗşŜŝǰȱȱȱȱęȱȱȱȱǰȱȱ ȱęȱ ȱȱȱ¢ȱŗşŝŚȱǻ ǰȱŘŖŖŞǼǯȱȱȱȱǰȱȱȱ ȱȱŗşŞŖȱȱȱȱ¢ȱȱŗşŞŗǯȱȱȱǰȱȱȱȱ ŗşŜśȱȱȱȱȱ¢ȱ ȱȱȱȱ¡ȱȱȱȱ ȱȱ ȱŗşŞřǯȱȱȱȱȱȱęȱȱȱȱȱŗşŞřǯȱȱȱǰȱ ȱŗşŜśȬŗşŝśȱȱ ȱȱȱȱȱȱęǯȱȱȱȱŗşŝşȱ ȱȱȱȱŗşŞŚǯȱȱŗşŞŚǰȱȱȱǰȱȱȱȬȱȱȱ ŗşşŗǰȱȱȱȱȱŗşşŝǰȱ ȱȱȱȱę¢ȱ ȱǯȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱȱȱȱȱŗşŝŖȱȱȱ ȱȱȱŗşŞśǯȱȱȱȱȱȱ ȱȱȱȱŗşŞşȱȱȱ¢ȱȱȱ ȱǯȱ ȱȱȱ ¢ȱȱȱ ȱȱȱŗşŞśǰȱȱȱȱȱȱŗşşŖǰȱȱȱȱ ȱŗşşşȱȱ ȱȱǻ ǰȱŘŖŖŞǼǯ ȱŘŖŖŝȬŘŖŖşǰȱȱȱȱȱ¢ȱǰȱȱȱ¢ȱȱȱȱ ę¢ȱȱȱȱȱȱ¢ȱŗŘȱȱȱȱęȱȱ ȱ ȱȱȱ ȱ ȱ ȱ ęȬ ȱȱ ȱȱ ǞŗŖŝȱ ȱ ȱ ȱ ¢ȱ ǻȱ ȱ ȱ ŘŖŖşȱ ǯǯȱ Dzȱ Ȭȱ ȱ ǰȱ ŘŖŗŗǼǯȱ ȱ ǰȱȱȱȱȱǻǼȱ ȱȱę¢ȱȱȱȱȱ ȱȱŘŜȱȱȱȱęȱȱȱ ȱȱȱȱȱ ęȬ ȱȱȱȱǞŗŗŝȱȱȱ¢ǯȱȱȱȱ¢ȱǰȱ ǰȱȱ£ȱȱ¡ȱǰȱ ȱȱȱȱȱȱǯȱȱȱ ȱęȱ ȱ£ȱȱŘŖŖŚȬŘŖŖśǯȱȱȱȱȱȱȱȱ the year to avoid molting, mating, and soft-shell periods to both protect crab resources ȱȱȱ¢ǯȱȱȱȱȱȱȱȱǰȱ ȱȱȱȱęȱȱȱȱ¢ȱǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱŗşŝŖȱȱȱȱ¢ȱȱȱȱ ȱȱȱŗşŞśǯȱȱǰȱȱ ȱȱȱȱȱ¡¢ȱ ȱȱȱȱęȱ¢ȱ ǻǰȱŘŖŗŗǰȱȱŗŜŞǼǯȱȱȱ ȱȱȱ ȱȱęȱ¢ȱ ȱȱȱŗşşşǰȱȱȱȱȱ ȱȱ¡ȱȬ¢ȱȱȱ ȱ ǯȱ ȱ ŘŖŖşǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ 165 166 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱ ȱȱ ȱȱęȱȱȱǰȱ ȱ ȱȱȱȱ ȱȱ¡ȱȬ¢ȱǯȱȱȱȱȱ ȱ¢ȱȱę¢ȱȱȱ¡ȱȱ ȱȱȱȱǯȱȱȱȱȱę¢ȱ ȱȱ ȱŗşşŝȬŘŖŖŚȱȱ ȱ ¢ȱ ȱ ȱ ȱ ǻǰȱ ŘŖŗŗǰȱ ȱ řŖŗǼǰȱ ǰȱ ȱ ȱ ȱ ŘŖŗŖȱȱǰȱȱȱ ȱȱ¢ȱȱȱȱȱęȱ ǻǰȱŘŖŗŗǰȱȱŘŞśǼǯȱ ȱȱȱȱȱȱę¢ȱȱȱ¢ȱǰȱ ȱ ȱȱęȱȱȱȱȱ ȱȱȱȱȱȱȱȱęȬ ȱȱȱȱǞŗŝȱȱȱ¢ǯȱȱȱ¢ȱȱ ȱ ȱ ȱ ȱ ȱ ę¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱȱȱȱȱȱȱȱǯȱȱȱȱę¢ȱȱ ȱ¡ȱȱęȱȱȱȱ¢ǰȱȱȱ ȱȱȱ ȱ ȱȱȱȱ¢ǯȱǰȱȱȱȱȱ ȱȱ¡¢ȱȱ until a population dynamics model is available for an assessment. ȱȱȱȱȱȱȱȱȱȱȱȱȱȱęȱ ¢ǯȱȱȱȱȱȱȱȱȱȱȱȱȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ŘŖŖŘȱ ǻ ǰȱ ŘŖŖŞǼǯȱ ȱȱȱȱȱȱȱȱŘŖŖŚȱȱȱ ȱȱ ȱȱ ǯȱĴȱȱȱȱȱȱȱȱǰȱ ȱȱȱȱ ¢ȱȱŗşşśǯȱȱ ȱȱȱȱȱ ȱ¢ȱȱ ȱȱȱǯȱȱȱȱȱȱǯȱĴ ȱȱȱ ȱȱęǯȱȱȱȱȱ¢ȱȱŗşşŞȱǻ ǰȱŘŖŖŞǼǯȱ ȱȱȱȱȱȱȱ ȱȱȱȱ¢ȱŗşŞŖȱȱȱ ŗşŞŞȱȱŗşşŘȱǻ ǰȱŘŖŖŞǼǯȱȱȱȱȱ ȱȱȱȱ¢ȱȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱęǯȱȱę¢ȱȱȱȱȱŗşşŜȱ ǻ ǰȱŘŖŖŞǼǯ ȱȱȱȱȱ ȱȱ ȱȱȱȱȱȱ¢ȱŗşŞŖȱȱ ȱŗşŞŝȱȱŗşşŝȱǻ ǰȱŘŖŖŞǼǯȱȱȱȱ¢ȱȱŗşşŞȱȱŗşşşǰȱȱȱ ȱȱȱęǯȱ ȱȱȱ ȱȱȱŗşŝşȬŗşŞŝȱȱ ȱȱ¢ȱǻ ǰȱŘŖŖŞǼǯȱ ȱȱȱȱŗşŞŞȱȱȱȱȱęǰȱ ǰȱȦȱȱ ȱȱȱ ȱȱȱǻ ǰȱŘŖŖŞǼǯȱ ȱȱȱĚȱěȱȱȱȱ¢ȱȱ¢ǰȱ ȱȱȱ¢ȱ¢ȱ¢ȱȱȱȱȱȱȱ ȱȱȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǯȱ ȱ ȱ ȱ ǻŘŖŖŜǼȱ ¡ȱ ȱ ěȱȱȱȱȱȱȱ¡ȱȱȱȱȱȱȱ ǯȱȱȱȱǰȱȱ¢ȱȱȱȱȱȱȱȱlate most strongly to decadal shifts in physical oceanography, particularly the Aleutian ȱȱ¡ǰȱ¢£ȱȱěȱȱ¢ȱȱȱȱȱǻȱ ȱǰȱŘŖŖŜǼǯȱȱǻŘŖŖŗǼȱ¢£ȱȱȱȱȬĴȱȱ ȱ ȱȱŗşŝŜȦŝŝȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱǯȱȱȱȱ ȱȱ ȱȱȱ¢ȱ ȱ ȱȱȱȱǻǰȱŗşşŖǼǰȱȱěȱȱǯȱ£ȱ ȱǯȱǻŘŖŖŚǼȱȱȱȱ¢ȱȱ¡ȱȱȱȱ ȱǯȱȱ Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. ǰȱȱ¡ȱ ȱȱȱ¢ȱȱȱ ȱȱȱȱȱǻ£ȱȱǯǰȱŗşşŞǰȱŘŖŖŗǼǯȱ ȱȱȱęȱȱ¡ȱȱȱȱȱȱȱȱȱȱȱDZȱȱǻOncorhynchus gorbuschaǼǰȱ¢ȱǻO. nerka), chum (O. keta), coho (O. kisutchǼǰȱȱȱǻO. tshawytscha). Each species spends most of its ocean life in the ěǰȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ě ȱ ȱ Ȧ ȱ Ěǰȱ ȱ ȱěȱȱȱȱȱȱȱǻ ǰȱŘŖŖŞǼǯȱȱȱǰȱȱȱ ȱȱȱȱȱ¡¢ȱȱȱȱ ȱȱȱ ȱ ȱǯȱȱȱȱȱěȱȱȱȱȱȱȱȱ ȱ ȱ ȱ £ȱ ¢ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ǯȱȱȱȱ¢ȱȱ¢ȱȱȱȱȱ ȱ¢ȱ ȱǯȱȱȱȱȱȱȱȱȱĜȱȱ¢ȱȱȱ ęȱ¢ȱȱ¡¢ȱ ȱȱȱȱǯȱȱȱ ȱȱȱęȱȱȱȱȬŗşŝŖȱȱȱȱŗşşŖȱȱ ȱȱȱȱȱȱȱ¢ǯȱȱ¢ȱȱĴȱȱȱȱȱ ȱȱȱȱȱ ȱęȱȱȱ¢ȱȱǻ ǰȱ ŘŖŖŞǼǯȱ ȱ ȱ ȱ ȱ ęȱ ȱ ǻClupea pallasii) are harvested commercially ȱȱȱȱǻǼǰȱȱǰȱȱȱȱȱȱȱ ȱǰȱȱȱȱȱȱ¢ǯȱęȱȱȱȱ PWS experiences high variability as a result of at least three main types of factors: largescale environmental factors, smaller-scale environmental factors, and diseases such as viral hemorrhagic septicemia virus and parasite Ichthyophonus hoferiȱǻ ǰȱŘŖŖŞDzȱĜĴǰȱ ŘŖŖŚǼǯȱ¢ǰȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱȱ ȱ ȱǯȱȱŗşŞŖǰȱȱȱȱȱ¢ȱȱȱ¡ȱȬȱ ȱȱ¢ȱȱȱ ȱȱĚȱȱȱȱȱȱȱȱȱȬȱȱǻ ǰȱŘŖŖŞǼǯȱȬȱ¢ȱ ȱȱȱȱȱȱȱȱ ¢Ȭ£ȱȱȱȱŗşŝŞȬ ŗşŞŞǰȱŗşŞşȬŗşşŞȱȱȬŗşşŞȱȱȱȱęȱǻ ǰȱŘŖŖŞǼǯȱ ǰȱȱȱ recruitment events are variable. A large-year class occurs once every 9 or 10 years, and ȱȱȱȱȱȱǯȱȱȱȱȱȱȱ¢ȱ ȱȱȱȱȱȱȱ¢Ȭȱȱȱ ȱȱ ȱȱǰȱ ȱȱȱȱȱĚȱȱȱ ǻ ǰȱŘŖŖŞDzȱȱȱȱřȱȱȱǼǯȱ West coast ȱęȱȱȱǰȱǰȱȱǯȱȱęȱȱȱ ȱȱęȱȱęǰȱęȱȱǰȱȱȱǰȱȱ ȱ ȱ ¢ȱ ¢ȱ ǯȱ ȱ ęȱ ęȱ ȱ ȱ ęȱ ȱ ȱȱ ȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱ ȱ ȱ¢ȱȬȱȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱȱȱȱȱȱȱȱ ȱȱȱȬȱȱȱȱ 167 168 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱę¢ǯȱȱȱȱȱȱ¢ȱȱȱȱȱ ȱȱȱȱȱȱȱǰȱȱȱȱ ȱȱ¢ȱȱȱȱǰȱȱȱȱ ȱȱȱȱȱ ȱȱȱȱȱȱǯ ȱ ŘŖŖşǰȱ ȱ ęȱ ȱ ȱ ęȱ ȱ ȱ ¢ȱ ŞşŚȱ ȱ ȱȱęęȱȱęȱǻȱǰȱŘŖŗŖǰȱȱŘşǼǯȱ ȱȱȱȱ ȱȱȱȱȱȱęȱȱȱŘŖŖşǰȱ ȱŘśřȱȱȱȱ ŘŖŚȱ ȱ ǰȱ ¢ǯȱȱ ¢ȱ ȱ ȱ ȱ śŗȱ ȱ ȱ ȱȱȱȱȱęȱǰȱ¢ȱȱȱ¢ȱŗŚȱȱȱȱǞŚŞŞȱ ȱȱȱȱȱȱȱŘŖŖşǯȱȱȱ ȱȱ ¢ȱ ȱ ęȱ ǻǞŗŘşȱ Ǽȱ ȱ ȱ ǻǞŗŘŚȱ Ǽǯȱ ȱ ȱ ȱ ȱ ǰȱ ȱȱȱȱǻřŝŘȱȱǼǰȱ ȱ¢ȱȱǻŗşŞȱȱ Ǽȱ ȱ ȱ ǻŗŜŚȱ ȱ Ǽǯȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱǰȱ ȱǞŘŘŞȱȱȱŘŖŖşǰȱ ȱ¢ȱȱǻǞŗśŖȱǼȱ ȱȱǻǞŗŖŘȱǼǯȱȱęȱȂȱȱ¢ȱȱǞŘŖȱȱ in sales impacts in California, $1.1 billion in sales impacts in Oregon, and $7.3 billion in sales impacts in Washington. California also generated the largest value added income ȱ¢ȱȱǻǞŚǯřȱDzȱǞŝǯŗȱDzȱŗŘŗǰŖŖŖȱǼȱǻȱǰȱŘŖŗŖǰȱ page 29). ȱŘŖŖşǰȱȱŗǯŞȱȱȱȱȱŜǯřȱȱęȱȱȱȱęȱȱǻȱǰȱŘŖŗŖǰȱȱřŖǼǯȱȱŜŚȱȱȱȱȱ ȱȱȱȱȱȱ¢ǯȱȱȱȱȱęȱȂȱ¢ȱȱȱȱ ǰȱęȱȱȱęȱǻŘǯŝȱȱęǼǰȱȱǻŘȱȱęǼǰȱǰȱ ȱ ȱ ȱ ǻŗǯŜȱ ȱ ęǼȱ ȱ ȱ ȱ ǻŗǯśȱ ȱ ęǼȱ ȱ ȱ ȱȱȱ¢ȱȱȱŘŖŖşǯȱȱȱȱęȱȱȱęȱȱȱ ęȱȱ ȱȱȱǰȱ ȱȱȱȱȱȱȱȱ ȱ ȱȱȱȱǯȱ¢ȱȱȱȱęȱ¡ȱȱȱ ȱȱȱȱȱȱ ȱȱŗŚǰŖŖŖȱȬȱȱȬ ȱȱȱȱȱǰȱ ȱȱǻřǰřŖŖȱǼȱȱȱǻŗǰŜŖŖȱǼȱ ǯȱȱȱȱ¢ȱǰȱȱȱȱȱęȱ ȱ ȱ ęȱ Ȃȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ the contribution of these activities to gross domestic product (value-added impacts). In ŘŖŖşǰȱȱȱ ȱȱȱȱȱȱǻǞŘȱȱȱȱǼǰȱ ȱ¢ȱȱǻǞřŚŝȱǼȱȱȱǻǞŗŜŞȱǼȱǻȱǰȱŘŖŗŖǰȱ page 30). ęȱȱǻSardinops sagaxǼȱěȱȱȱȱȱȱȱȱȱȱ ȱ DZȱ ȱ ȱ ȱ ǻȱ ȱ ǰȱ ¡ǰȱ ȱ ǼDzȱȱȱȱǻěȱȱǼDzȱȱȱȱȱǰȱ¡ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ǻǼȱ ȱȱȱ¢ȱǰȱ¢ȱȱȱȱ¡ǰȱȱǯǯǰȱȱǯȱȱ ȱȱęȱȱȱ¢ȱ¢ȱȱ¢ȱȱȱȱȱȱ ȱ¢ȱ ȱ¢ǰȱ ȱȱȱȱ¢ȱȱȱȱ ǯȱȱ¢ȱȱȱȱȱȱȱȱȱ¢ȱĚȱ¢ȱȱ variability on both inter-annual and decadal scales. Observed decadal-scale climate vari¢ǰȱȱȱȱȱǻȱȱǯǰȱŗşşŝǼǰȱěȱȱȱȱȂȱȱ Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. ȱȱȱȱǻĴȱȱǯǰȱŘŖŖśDzȱ ȱȱǯǰȱŘŖŖŜDzȱ£Ȭ£ȱȱ ǯǰȱŘŖŖŘǼDzȱǰȱȱȱȱ¢ȱȱȱȱȱ ȱȱȱęȱ ȱȱęȱȱȱȱ¢ȱȱȱȱǻȱȬŘǼǯȱ ȱ ȱȱȱ¢ȱȱȱęȱȱȱǻǯǯǰȱȱ ȱǯȱȱDzȱȱȬřDzȱ ȱȱǯǰȱŘŖŖŖǼȱȱȱ¢ȱ¡ȱǻ ȱȱǯǰȱŘŖŖŝDzȱȱȱǰȱŘŖŖřǰȱŘŖŖŚǰȱŘŖŖśǼǯȱȱȱ ȱǰȱȱȱęȱȱǯȱ¢ǰȱȱȬ ȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ¡¢ȱěȱȱǰȱǯǯǰȱȱȱǯȱȱȱȱ ȱȱǯǯȱȱȱȬ ȱǰȱ¢ǰȱǰȱǰȱȱȱ ȱȱȱǰȱęȱȱȱȱ¢ȱȱȱȱȱȱȱ ȱȱǯȱȱĴȱ ȱȱȱȬę¢ȱȱȱȱ samples from the Southern California Bight (Baumgartner et al., 1992). Similarly, the ǯǯȱę¢ȱ ȱȱŝŖȬ¢ȱĴȱȱȱǰȱǰȱȱȱȱȱŘŖth ¢ȱǻȱȱǰȱŘŖŖřǰȱŘŖŖŚǰȱŘŖŖśǼǯ ȱȱȱĚȱȱ¢ȱȱȱȱ¢ǰȱȱǯǯȱęȱ ȱę¢ȱȱȱ ȱȱ¢ȬȱȱȱȱȱȱȱȱȱȱǻȱȬŚǼǯȱȱȱȱȱȱȱȱ ȱęǰȱȱȱ¢ȱȱǻ ȱȱǯǰȱŘŖŖŜǼǰȱȱȱȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱǻȱȬŚǼǯȱȱǰȱȱȱȱȱȱȱ based on a three-year average of SST observed at the Scripps Institution of Oceanogra¢ȱȱȱȱǰȱȱǻ ȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱĚȱȱȱȱ ȱȱȱȱȱ ȱDzȱȱȱ ǰȱȱȱȱȱȱȱȱȱȱǯȱ ǰȱȱ ȱ ¢ȱȱȱǯȱǻŘŖŗŖǼȱęȱȱȱȱȱȱ¢ȱȱȱ is no longer valid for predicting sardine reproductive success and should not be used in ȱȱȱǯȱȱȱȱȱęȱȱȱ ȱŘŖŗŘȱȱȱęȱ¢ȱȱȱǻǼȱȱȱŘŖŗŗǰȱȱȱȱ£ȱǰȱȱȱȱȱȱ¢ȱȱ to environmental conditions, the temperature relationship underlying the harvest conȱȱȱȱȱǯȱȱȱǰȱȱȱȱ¢ȱȱȱ ȱȱęing should be incorporated into its Coastal Pelagic Species Fishery Management Plan. In general, the motivation for an environmentally-based harvest-control rule is that ęȱ ¢ȱ ȱ ȱ ¡ȱ ȱ ¢ȱ ȱ ȱ ¢ȱ ȱ ȱȱȱȱȱȱ ȱȱȱ ȱ¢ȱ Ȭȱtions persist. The use of environmentally-based rules has advantages for responding to climate change. • ¢Ȭȱȱȱȱ£ȱȱȱȱȱȱ ę¢ȱȱDzȱȱ¡ȱȱȱȱȱȱȱȱȱ ę¢ȱȱȱŗşŚŖǰȱ ȱȱȱĴȱȱȱȱȱȱ ȱȱęȱǻ ȱȱǯǰȱŘŖŖŜǼǯȱ • ȱȱȱ Ȭęȱȱȱȱȱ¢ȱȱęȱ ȱȱȱȱȱȱĜ¢ȱȱȱȱtives for conservation. 169 170 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Figure A-2 Pacific sardine yield, abundance, and the Pacific Decadal Oscillation (PDO) through 2001. Sardine productivity is higher during the warm, positive phase of the PDO, and the collapse of the sardine stock that began in the 1940s has been attributed to a regime shift around 1945 (Source: M. Dalton, pers. comm.). • Environmentally-based harvest control rules can potentially incorporate other ¢ȱǰȱȱȱ¢ȱȱȱȱȱȱ ęȱǯ ȱȱȱȱȱ¡ȱȱȱȱȱȱȬȱ ȱ ȱ ȱ ȱ ȱ ęǰȱ ȱ ȱ ȱ ęȱ ȱ ęȱ ȱǯȱȱȱǰȱ ȱȱȱȱȱȱȱ¢ȱȱ ȱȱȱȱȱȱȱęǯȱȱęȱȱȱȱȱȱ ȱȱȱȱȱȱ ȱȱȱ ȱȱ¡ȱȱȱ ȱ ȱȱȱȱǰȱ ȱȱȱȱȱ¢ǯȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱǯǯȱȱěȱȱȱ ȱ ǰȱ ¢ȱ ěȱ ȱ ȱ ęȱ ǰȱ ȱ ȱ ȱ Ȃȱ ǰȱǰȱȱȱȱ¡ȱȱȱ ǰȱ¢ȱȱȱ ȱ ȱ ǯǯȱ ȱ ěȱ ȱȱ ǻȱȬśǼǯȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ǰȱ ȱȱȱȱȱȱǯǯȱęȱȱęȱȱ ȱ¢ȱȱ corresponding increase in economic activity and economic value. Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. Figure A-3 Pacific sardine abundance and cumulative SST anomalies observed at the Scripps Institution of Oceanography pier in La Jolla, California (Source: S. Herrick, pers. comm.). The second scenario assumes that an increase in ocean temperature results in a north¢ȱ¡ȱȱȱȱȱȱǯȱȱ ȱȱȱȱȱ ȱȱȱ¢ȱȱȱȱęȱȱǰȱ ȱȱęǰȱ ȱ ¢ȱ ęȱ ȱ ȱ ȱ ¢ȱ ȱ ǰȱ ȱ ¡ȱ ȱ ȱ ȱ ȱęȱǯȱȱȱȱȱȱ ȱȱȱȱȱ ȱȱȱȱȱęDzȱȱ¡ǰȱȱȱȱǰȱȱǰȱ ȱǯǯȱȱȱȱȱȱǰȱ¢¢ȱȱȱȱ ěȱ ȱ ǯȱ ȱ ȱ ǰȱ ęȱ ȱ ȱ ȱę¢ȱȱǯǯȱȱȱȱęȱȱȱ ȱęȬȱ economic activity and economic value. Northeast ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ Ǽȱ ȱ ȱȬȱǻ ȱȱȱǼǯȱȱȱǰȱȱȱȱŘŖŖşȱ ȱŗǯřȱȱǰȱȱȱǞŗǯŘȱǯȱȱȱȱ ȱȱ ȱ ȱ¢ȱȱȱǻǞŘşŞȱǼȱȱȱȱȱǻǞŘŗŖȱǼǯȱ ȱȱȱŜśȱȱȱȱȱȱȱ¢ȱŘŖȱȱȱ total landed pounds (NOAA Fisheries, 2010, page 50). Mid-Atlantic landings revenue 171 172 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Figure A-4 Pacific sardine harvest-control rule implements a decreasing exploitation fraction in cool years based on a 3-year moving average of sea surface temperatures (SST) at Scripps Pier, San Diego, California. ‘Harvest’ is the guideline harvest level in metric tons (mt), ‘Biomass’ is current biomass estimate, ‘Cutoff’ is the lowest level of estimated biomass at which harvest is allowed (150,000 mt), and ‘Fraction (SST)’ is the environmentally-based percentage of biomass above the cutoff that can be harvested (Source: M. Dalton, pers. comm.). ȱ¢ȱȱȱȱǻǞŗŜŘȱǼȱȱȱȱǻǞŞśȱǼǰȱȱśŝȱ percent of total landings revenue but only 15 percent of total landed pounds (NOAA ǰȱŘŖŗŖǰȱȱŝŚǼǯȱȱȱȱȱȱǰȱȱŘŖŖşǰȱȱȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ŘřŘȱ ȱ ǰȱ ǞŘśȱ ȱ ȱ ǰȱǞŜȱȱȱǰȱȱǞŗŜȱȱȱȱȱȱȱȱȱȱǻȱǰȱŘŖŗŖǰȱȱśśȱȱŝŞǼǯ ȱȱȱȱǰȱȱȱȱȱǻŚŘŜȱȱǼǰȱ ȱ ¢ȱ Ĵȱ ǻřśŜȱ ȱ Ǽȱ ȱ ȱ ǻŗŞśȱ ȱ Ǽǯȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǞŚŖŖȱ ȱ ȱ ŘŖŖşǰȱ ȱ ¢ȱ ȱ ǻǞŘŞŜȱ Ǽȱ ȱ ȱ ǻǞŗśřȱ Ǽǯȱ ȱ ȱ Ȃȱ ȱ¢ȱȱǞŗǯŘȱȱȱȱȱȱǰȱǞŜǯŝȱȱȱĴǰȱǞŜśŗȱȱȱ ȱ ǰȱǞşŖŜȱȱȱȱǰȱǞśŝȱȱȱ ǰȱǞŗǯŜȱȱȱ¢ǰȱǞśǯŞȱȱȱ ȱ¢ǰȱśǯřȱȱȱ ȱǰȱ ȱǞŗǯŝȱȱȱȱǻȱǰȱŘŖŗŖǼǯȱĴȱȱȱȱ ȱȬȱȱȱ¢ȱȱǻǞŗǯŝȱDzȱǞŘǯŜȱDzȱŝŝǰŞŘŖȱ ǼȱǻȱǰȱŘŖŗŖǰȱȱŜřǼǯ Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. 173 Figure A-5 The expected changes in the harvestable biomass and distribution of the northern Pacific sardine stock due to climate change. The harvestable biomass increases (lower left to upper right) and decreases (upper right to lower left, heavy arrows) depending on the duration of favorable climate conditions. The vertical lines show which fisheries become involved as the harvestable biomass increases and declines: left, at lowest harvestable biomass, is a Mexican (Mex)-only fishery; middle left is Mex and California (CA) fisheries; middle right is Mex, CA, Oregon (OR), Washington (WA) and Canadian (Can) fisheries; and the far right is Mex, CA, OR, WA, Can and Alaskan (AK) fisheries. (Source: Sam Herrick, NOAA). ȱȱęȱȱȱȱȱ ǰȱ ǰȱęȱȱȱ ȱȱȱȱȱDzȱȱȱȱ ¢ȱȱǯȱȱ ȱȱęȱȱȱȱȱȬȱěȱ¢ȱęȱǻȱȱ.ǰȱŗşŞśDzȱ ȱȱ¢ǰȱ ŗşşŖDzȱ ȱ ȱ ǰȱ ŗşŞŞDzȱ ȱ ȱ ¢ǰȱ ŘŖŗŖǼȱ ȱ ¢ȱ ȱ £ȱ ęȱ ȱȱȱȱȱǻȱȱǰȱŗşŞřǰȱȱŗŞśȬŗşřǼȱȱ¢ȱȱȱȱ ǰȱ ȱ¢ȱȱȱ¢ȱȱȱȱȱȱ ȱǻȱȱ.ǰȱŗşŞŜǰȱȱŚŝǼǯȱȱȱǰȱȱȱȱȱ ¢ȱȱȱȱ ȱȱȱȱȱǰȱĴǰȱȱȱȱ ȱȱȱ ǰȱĴǰȱȱǰȱȱǰȱ¢ȱȱȱȱȱȱ ȱȱȱȱȱ¢ȱȱǯȱ ȱȱȱȱȱȱȱȱȱ¢ȱȱȱĚȱȱȱ ȱȱ ȱęȱ¡£ȱęȱǻǰȱŗşşŗDzȱǰȱŗşşŝǼȱȱȱ ¢ȱȱęǰȱ¢ȱ¢ȱȱȱęǰȱȱęȱȱȱǯȱ ¢ȱ ȱȱȱȱ¢ǰȱȱȱ¢ȱȱȱȱȱ¢ȱȱȱǰȱ¢ȱ¢ȱȱȱǰȱȱęȱȱǰȱ trip vessels, even if this means earning a more modest living (Maurstad, 2000). Festivals ȱęǰȱȱȱȱȱȱǰȱȱȱȱȱȱ ȱȱȱȱ¢ǰȱȱȱęȱȱȱȱǻȱȱȱ Fisheries, 2009b for examples from the Northeast). ȱęęȱȱȱȱęȱȱȱȱǻ ȱȱǰȱ ŗşşŘǼǰȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǰȱ ŘŖŖşȱ ȱ ¡ȱ ȱ ȱ Ǽǯȱ ȱ ęȱ ȱ ȱ ȱ ȱ ęǰȱ¢ȱȱȱ¢ǰȱǰȱȱȱǻȱȱ ǰȱŗşşŝǼǯȱȱȱ 174 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱȱȱ.ȱǻŘŖŖşǼȱȱȱŘŞȱȱȱȱȱȱ ȱȱęȱȱȱȱȱǰȱȱȱȱǰȱȱ ȱ ȱřȱȱȱȱ¢ȱęȱȱȱ¢ȱȱȱȱǯȱǰȱśŚȱȱȱȱ ȱǰȱ ȱȱȱȱęǰȱȱȱȱȱ ȱȱǯȱȱ ȱęȱȱȱȱȱȱȱ ȱȱ¢ȱȱ ¢ȱȱȱȬęęȱȱȱȱȱęǰȱǰȱ ǰȱȱȱ ǻȱȱ., ŘŖŖşǰȱȱśŚǼǯȱ ȱǰȱ¢ȱȱȱȱȱȱȱ¢ȱȱ¡ȱȱ ȱ ȱ ȱ ǰȱ ȱȱ ǰȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ¢ȱ ȱ ¡ȱ ȱ ǯȱ ȱ ŘŖŖşȱ ǻȱ ǰȱ ŘŖŗŖǼǰȱȱȱȱȱǻȱęǼȱȱȱǞřŜǯŜȱȱ ȱřŖǯŞȱȱȱȱȱȱȱ ȱǯȱȱǰȱşŘǯŗȱȱ ȱȱȱĴȱǻȱȬŜǼǰȱŝǯřȱȱȱ ȱ ǰȱȱŖǯŜȱȱȱǯȱȱȱȱȱȱ ȱ¢ȱŚǯŝȱȱȱȱȱȱȱ ȱȱȱŘŖŖşȱȱŚǯŞȱȱȱȱǰȱȱȱęȱę¢ȱȱ ȱ ȱȱȱȱȱȱȱȂȱęȱ¢ǰȱ ȱȱȱ ȱȱȱȱ¢ȱę¢ȱȱȱȱǻŗǰřŚŝȱȱȱȱȱşŖŖȱȱǼȱȱęȱ¢ȱŘŖŗŖȱǻĴȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱȱȱȱ ęȱDzȱȱŘŖŖşȱǻȱǰȱŘŖŗŖǼǰȱŚŞřǰŖŖŖȱȱ ȱȱ¢ȱȱ ȱ ȱǰȱ ȱȱȱŗǯŗȱȱȱȱȱȱǯȱ ȱȱȱȱȱȱȱȱǻ¢ȱȱǯǰȱŘŖŖŞǼǰȱȱ the level of impact varies. Some research suggests that certain prey species may not ȱȱ¢ȱ ȱǰȱȱȱĜȱȱȱȱȱǻ ǰȱ ŗşşřǼǯȱȱȱȱǰȱ¢ȱěȱȱȱȱȱ¢ȱȱ¢ȱȱ ȱȱȱȱȱǻ¢ȱȱǯǰȱŘŖŖŞDzȱ¢ȱȱǯǰȱŘŖŖşǼǰȱȱǯǯȱȱęȱ ȱȱȱȱȱȱȱ¢ȱȱ ȱȱȱȱȱ ȱ ǯ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ǰȱ ȱ ȱ ȱȱȱȱǯȱȱȱȱȱȱȱȱȱȱȱȱ ǻǰȱŘŖŗŗǼǰȱȱȱȱǰȱȱ¢ȱȱȱȱ ȱ¢ȱěȱ ȱȱȱ ȱȱȱ ȱ¢ȱȱȱȱ Ĵǰȱȱȱǻ ȱȱ ǯǰȱŘŖŗŖǼǯȱȱȱȱȱȱȱȱȱǰȱȱ¢ȱŖǯŝȱȱ of total Mid-Atlantic landings revenue and 2 percent of Mid-Atlantic landed pounds ȱŘŖŖşȱǻǰȱŘŖŗŖǼǰȱȱȱȱȱȱȱ¢ȱȱǰȱ ȱŗśȱȱęȱ ǰȱȱ¢ȱȱȱĚȱǻParalichthys dentatus) in the Mid-Atlantic. ȱȱȱǻǼȱȱȱȱȱ¡ȱȱ¢ȱȱ ȱȱȱȱǻǰȱŘŖŖŝǼǯȱȱȱŘŖŗŖǰȱȱ ȱȱěȱȱ ȱȱȱȱȱ ȱȱȱǻǰȱŘŖŗŘǼǯȱ ȱȱǯȱǻŘŖŗŖǰȱȱŚśŘǼȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȃǽǾȱ ȱ ȱ ȱ ęǰȱ ȱ ȱ ǻŘŖŗŖȬŘŗŖŖǼȱ ȱȱȱȱȱȱȱȱȱ¢ȱŜŖȬŗŖŖȱǯȱ¢ǰȱȱȱȱȱȱȱȱȱȱśŖȬŗŖŖȱȱ ǯȱȱ ¢ȱ¢ǰȱ ȱȱȱȱȱȱȱę¢ȱǰȱȱ ȱȱ¡ȱȱ¢ȱ ȱȱ¢ȱřŖȬŗŖŖȱǯȄȱȱȱ ȱȱȱȱȱȱ2 emissions into the 21stȱ¢ǰȱȱęȱȱȱ ȱȱȱȱȱȱȱȱę¡ȱ2 concentration of 350 Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. Figure A-6 Gloucester, MA Stern Trawler (Source: http://www.photolib.noaa.gov/htmls/fish0533.htm). ppm, the second is the B1 scenario that assumes an increase in CO2 to 550 ppm, and the third is the A1B scenario that assumes an increase in CO2 to 720 ppm (IPCC, 2007b). ȱ ȱ ȱ ǰȱ ȱ ę¢ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȬȱȱ¡ȱȱȱ ȱǰȱȱǰȱȱǰȱȱĴǯȱȱȱȱǻŘŖŖśǼȱȱȱȱ ȱȱ ȱȱȱȱȱǯ ȱęȱȱȱȬȱ ȱ¢ȱȱȱȱȱȱȱȱǰȱ ȱęȱȱȱ ȱȱȱ ȱǰȱǰȱ ȱȱ ȱ ǰȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ǰȱ ȱ ȱ ȱ ǻŗşşşǼȱ ȱ ȱ ȱ ȱ ǻŗşşşǼȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ¢ȱ ę¢ȱ ȱ ȱ ǯȱ ȱęȱȱ ȱȱǻȱȱǰȱŘŖŖşǰȱȱ¡ȱȱ ȱȱǼȱ ȱ¢ȱȱȱȱȱȱȱȱǯȱȱęȱȱȱ ȱȱ¢ȱȱȱȱȱǰȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ǻȱȱǯǰȱŘŖŖşǼȱȱęȱȱ¡ȱȱȱ¢ȱȱ¢ȱȱȱęǯ Pacific Islands ȱ Ȃǰȱ ȱ ȱ ȱ ŘŖŖşȱ ȱ Řŝȱ ȱ ȱ ȱ ęęȱ ȱ ęǰȱȱȱǞŝŗȱǯȱȱȱȱȱŜŝȱȱǻǞŚŞȱǼȱȱȱ 175 176 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱśŚȱȱȱȱȱǻŗśȱȱDzȱȱǰȱ ŘŖŗŖǰȱȱŗŖŖǼǯȱ ęȱǻǞŝǯřȱǰȱřǰŞŞŗȱǼǰȱȱȱǻǞŘǯşȱǰȱŗǰŘŞŝȱ ǼǰȱęȱǻǞŘǯŚȱǰȱŗǰŞŞŚȱǼǰȱȱȱǻǞŘǯŗȱǰȱŗǰŜŝŞȱǼȱ also contributed to the region’s overall landings. In terms of overall economic impacts, ȱŘŖŖşǰȱȱȱ¢ȱȱ Ȃȱ ȱȱȱŗŚȱȱǰȱǞŗǯřȱȱȱǰȱǞřŜşȱȱȱǰȱȱǞśŚŜȱȱȱȱȱȱȱȱ (NOAA Fisheries, 2010, pages 100 and 120). ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ǯȱȱ ȂǰȱŘǯŘȱȱȱ ȱȱ¢ȱȱȱȱŘŖŖşǯȱȱ ęȱȱȱȱ ȱȱȱŚǰŘŞŜȱǰȱǞŚŜŖǯŞȱȱȱǰȱǞŘŘŞǯŜȱȱ in value added from the industry, and $150.9 million in income (NOAA Fisheries, 2010, ȱŚŝǼǯȱȱȱęȱȱ¢ȱȱȱ Ȃȱȱ¢ǰȱǰȱȱ ęǯ Southeast ȱȱȱȱȱȱȱȱȱǰȱ ȱȱȱȱȱ ȱȱȱ ȱȱȱȱȱȱȱȱȱǰȱȱȱȱȱ¡ǰȱ ȱȱȱȱȱȱ ȱȱȱȱȱ¡ǯȱȱȱǰȱȱȱȱŘŖŖşȱ ȱŗǯśȱȱǰȱȱȱǞŝŝřǯŚȱǯȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱǻǞřśǯřȱǼȱȱȱǻǞřŘǯŝȱ ǼǯȱȱȱȱŚŝȱȱȱȱȱȱȱśŗȱȱ of total landed pounds (NOAA Fisheries, 2010, page 100). Gulf landings revenue came ¢ȱȱȱǻǞřŘŚǯŝȱǼDzȱ ǰȱȱȱȱśŗȱ ȱȱȱȱǰȱȱ¢ȱȱŗŝǯŚȱȱȱȱȱȱ (NOAA Fisheries, 2010, page 120). The next most economically-important species in the ȱ ȱ¢ȱǻǞŝŘȱȱȱŗŗǯśȱǼȱȱȱǻǞŜŖǯŜȱȱȱşǯŜȱcent). In terms of overall economic impacts, in 2009, the seafood industry in the Southeast ȱ ȱȱȱŘŗŖȱȱǰȱǞřŘǯŞȱȱȱǰȱǞŜǯśȱȱȱǰȱ and $11.2 billion in value added from such activities as processing (NOAA Fisheries, 2010, pages 100 and 120). In addition, Adams et al. (2009) reported that the Gulf region ȱ ŘŖǰŚŝŖȱ ȱ ęȱ ǰȱ ȱ ȱ ¡¢ȱ Ȭȱ ȱ ȱ ȂȱȱĚȱȱŘŖŖřǰȱȱȱȱȱȱȱǯǯȱȱȱ ȱȱ ȱȱȱȱ¡¢ȱŘśȱȱȱȱȱ ȱȱ¢Ȭȱęȱǯȱ¢ǰȱ ĵȱǻŘŖŖşǼȱȱ ȱȱȱȱȱȱȱȱȱ¡ȱȱȱǯǯǰȱȱęȱȱȱȱ value of resources extracted from, or value of services generated as a result of, proximity ȱȱǰȱȱ¢ȱǞŝŜȱǰȱȱȱȱȱǞŘŞǯśŖȱȱǰȱȱ¢ȱ ǞŝŖŖȱȱȱęȱȱŘŖŖřǯ In terms of pounds landed, Louisiana contributed the most by far (1 billion pounds), ȱ¢ȱȱǻŘřŖȱȱǼȱȱ¡ȱǻŗŖŖȱȱǼǯȱȱ ȱȱȱȱȱȱȱȱȱ ȱǞŘŞŚȱȱȱŘŖŖşǰȱ ȱ by Florida ($157 million) and Texas ($150 million). The Southeast region’s seafood industry generated $13 billion in sales impacts in Florida, $1.7 billion in Texas, $1.7 billion in ǰȱǞŗȱȱȱǰȱǞŝŖŖȱȱȱȱǰȱǞŚŖŖȱȱȱǰȱ $300 million in Mississippi, and $70 million in South Carolina (NOAA Fisheries, 2010). Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. Florida also generated the largest value-added income and employment impacts ($2.5 DzȱǞŚǯřȱDzȱŜŚǰŝŚŚȱǼȱǻȱǰȱŘŖŗŖǰȱȱŗŖŘǼǯ ȱęȱȱȱȱȱȱ¢ȱȱȱǯȱȱȱȱ ǰȱŗşǯŗȱȱȱ ȱȱ¢ȱȱȱȱŘŖŖşǯȱȱǰȱȱęȱȱȱȱ ȱȱȱśŗǰřŗŚȱǰȱǞśǯŜȱȱȱǰȱǞŗǯŞȱȱȱ value added from the industry, and $2.9 billion in income (NOAA Fisheries, 2010, page ŗŖŗǼǯȱȱȱęȱȱ¢ȱȱȱȱȱȱȱȱȱȱ ǰȱ Ĵȱ ǰȱ ȱ ȱ ęǯȱ ȱ ȱ ǰȱ ŘŘǯřȱ ȱ ȱ ȱ ȱ ¢ȱ ȱȱȱŘŖŖşǯȱȱǰȱȱęȱȱȱȱ ȱȱ ȱşŘǰŘŚŗȱǰȱǞşǯşȱȱȱǰȱǞřǯřȱȱȱȱȱȱȱ¢ǰȱȱ $5.1 billion in income (NOAA Fisheries, 2010, page 121). In addition, charter and party ȱȱȱȱȱȃȱǞŗŚşǯśȱȱȱȱǰȱǞŜŞǯśȱ ȱȱǰȱȱřǰŚŞŝȱȱ ȱȱȱȱȱ¡ȱȱ¢Ȅȱ ǻȱȱȱȱȱȱǯǰȱŘŖŖşǰȱȱřşǼǯȱȱŘŖŖŚǰȱȱȱȱ¡ȱ ȱȱȱȱȱŝǯřȱȱȱȱ ȱȱŘśǯŜȱȱęȱ ȱ ȱ ȱ ¡¢ȱ Ȭȱ ȱ ǯǯȱ ǯȱ Ȭȱ ȱ ȱ ȱȱȱǰȱȱȱȱȱȱȱȱȱǯǯȱȱǻȱȱǯǰȱŘŖŖşǼǯȱȱȱȱȱ ¢ȱȱĴȱǰȱȱ red drum and sand and silver seatrouts are also caught in substantial numbers. ȱęȱȱȱȱȱ¡ȱ¢ȱȱȱȱ ȱǯȱȱȬȱǰȱȱȱ ȱȱǯȱǻŘŖŖşǰȱȱŝśǼǰȱ ȃĚȱȱȱȱȱȱȱȱȱǽǾȱȱȱȱȱ ȱȱȱȱȱǰȱ¢ǰȱȱ¢ǯȄȱȱȱęȱȱ ǰȱ ȱ ȱ ǯȱ ǻŘŖŖşǼȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱȱęȱȱ¡ǰȱǰȱǰȱȱȱȱȱ ȱ ǞŘǯŘȱȱȱǞŘǯŞȱȱȱŘŖŖŚǯ ȱŘŖŖşǰȱ ȱȱǯȱǻŘŖŖşǰȱȱŚŝǼȱ¡ȱȱȱȱȱȱ ȱȱǯǯȱȱȱ¡ȱȱȱȱȃȱȱȱȱȱȱȱȱ special area have been intensifying for many years … and the economies of the Gulf ȱȱ¡¢ȱȱȱȱ¢ȱȱȱȱȱȂȱȱǰȄȱ ȱȱȱȱę¢ȱěȱ¢ȱȱǯ Changes in the Gulf of Mexico marine environment have the potential to change the ¡ȱȱȱDzȱǰȱęȱȱ¢ȱȱȱȱȱȱ ȱȱ ěǯȱȱȱǯȱǻŘŖŖśǼȱ¡ȱȱȬȱȱȱȱȱĚȱȱȱȱȱ¡ȱȱȱȱȱȱȱȱěȱȱȱȱȱȱȱȱȱǯȱȱȱȱěȱȱ ȱȱȱȱȱȱȱȱǰȱȱȱ ȱ ȱȱȱȱ¡ȱȱěȱȱȱȱ¢ǯȱȱǰȱ ȱȱȱȱȱȱȱȱęǰȱ ĵȱǻŘŖŖşǰȱȱ ŘśȮŘŜǼȱǰȱȃȱęȱ¢ȱȱȱȱȱǯȱȱȱȱȱȱ£ȱȱ ȱ¡¢ǰȱȱ¢¡ǰȱȱȱȱȱȱȱȱȱ ǽ ȱȱ¢ȱȱȱ¡ȱȱȱȱǾdzǯȱȱȱȱȱȱ ęȱȱȱȱ¢ȱȱȱȱȱ¡ȱȱęȱȱȱǰȱȱȱ ȱȱȱěȱȱȱ¢ǯȄ 177 178 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE A.4 Subsistence Fisheries For generations, subsistence harvesting of marine resources has been important to rural ȱȱȱǯǯȱ ȱȱȱȱȱȱȱȱlihoods. In addition to providing basic nutrition and sustenance, subsistence activities ȱȱ£ȱ¢ȱȱȱȱȱȱǰȱ¢ȱ Ȭ being, family structures, and resource conservation. Based on the numerous physical and biological changes that are occurring in the ȱȱȱȱȱȱǻȱȱŘȱȱřǼǰȱȱ ȱ¢ȱȱ ȱęȱȱ¡ȱȱȱȱȱ ȱȱȱȱǯȱȱ¢ȱȱȱȱȱȱǰȱȱȱǰȱǰȱęȱȱ ǰȱ ȱ ǰȱ ęǰȱ ȱ ȱ ǰȱ ȱ ¡ȱ ȱ Ȭȱ ȱ ȱ ȱ ǻ ¢ȱ ȱ .ǰȱ ŗşşşǼǯȱ ȱ ǰȱ ȱ ȱ ȱ ęȱ ȱ ȱȱȱȱȱȱȱȱȱȱęǰȱ ȱȱ ȱ ȱ ęȱ ¢ȱ ǰȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ę¢ȱ ȱ ȱ ȱ¢ǯȱȱ¢ȱȱȱ¢ȱȱȱȱȱȱȱ ȱȱǰȱȱȱȱȱȱȱȱȱǻlach et al., 2011). Perhaps most importantly, subsistence resource users are typically the least mobile constituency of all marine resource users due to their strong, place-based cultural identities and/or limited incomes. Partly because of this, many subsistence resource users fall ȱȱȱȱ¡ȱȱŗŘŞşŞȱǻśşȱȱŝŜŘşǰȱŗşşŚǼǰȱȃȱȱȱ ȱȱȱȱ¢ȱȱȱ ȬȱǯȄȱ ȱȱȱǰȱȱȱ ȱȱȱęȱ ȱȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱȱǯȱ ȱ¢ȱȱȱȱȱęȱȱȱǯǯȱȱ¡ȱȱȱȱ ȱȱȱǰȱȱȱȱȱ¡ȱȱȱȱȱęȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱęȱȱȱȱȱȱȱȱȱǯǯȱȱȱ ȱȱ ȱěȱȱȱȱȱȱęǯ North Pacific ȱȱȱȱȱ¢ȱȱȱǰȱ ǰȱȱ¢ǯȱ Northern people have relied for millennia on the landscape for their food through a ¢ȱ ȱ ȱ ȱ ȱ ǰȱ ǰȱ ǰȱ ęǰȱ ȱ Ȭȱǯȱȱȱȱ ȱęǰȱ ȱȱȱȱ ȱȱȱȬȱȱȱȱ ęȱǻCaulolatilus princeps) is the noȱȱȱȱȱȱȱȱǯȱǻȱȱȱȱȱ ȱȱǰȱȱǰȱŘŖŖŚǰȱǰȱŗşŞŜǰȱǰȱŗşŜşǰȱȱǰȱŘŖŖŘǼǯȱ ȱęȱȱȱȱȱ¢ȱĜ¢Ȭȱȱęȱȱȱǯǯȱȱǰȱęǰȱȱǰȱǰȱȱȱǰȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǯȱ ǰȱ ȱ¢ȱȱȱ ¢Dzȱȱǰȱȱȱȱȱȱȱ ȱȱȱȱęȱȱȱ ȱȱȱȱȱ are more reliant on harvesting marine mammals. Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. ȱȱȱȱȱȱȱęȱȱȱǰȱȱ ȱȱȱȱęȱȱȱȱȱȱȱȱȱȱ ȱ ęȱ ȱ ȱ ȱ Ě ȱ ȱ Ȃȱ ȱ ǻȱ ȬŝǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ ȱ ǰȱ ȱ ŘŖŖŞǰȱ ŘřǰŝŞŖȱȱȬęȱȱ ȱȱȱȱȱȱȱşŞşǰŘŜŜȱ ǰȱȱȱęȱȱȱǰȱ ȱȱȱȱȱ¢ȱȱ in 177 communities around the state (Fall et al., 2011). ȱȱȱ ȱȱęȱǻ Ǽȱȱȱ¢ȱȱǰȱȱȱȱȱȱȱȱęȱ ȱȱȱȱȱȱȱ ȱȱ ȱȱȱŘŖŖřǯȱȱ ȱ ŘŖŖşǰȱ ȱ ȱ ŝŝȱȱ ȱ ¢ȱ ęȱ ȱ ȱ ȱ ȱ ȱȱŚŚǰşŞşȱȱ ȱȱȱȱŞśŗǰśŝşȱȱǻȱȱǰȱŘŖŗŗǼǯȱ ȱ¢ȱȱȱȱȱȱȱȱȱȱǰȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱǻȱ A-7). ȱŘŖŖŘȱȱŘŖŖŝǰȱȱȱśŜȱȱȱȱȱęȱ ȱ ȱ Ȭȱ ęȱ ȱ ȱ ȱ ȱ ǻȱ ȬŝǼǯȱ ȱ ȱ ȱǰȱȱȱȱŞŗŖǰŝśŝȱęȱǻŗǰŚŖŚǰŘŗŝȱǼȱ ȱȱȱȱȱȱ ȱȱȱȱȱȱ ȱȱȱȱǯȱȱ¢ȱȱȬȬęȱȱȱȱȱȱȱȱȱȱȱǰȱȱȱ ǰȱ ȱ ȱ ȱ ǯȱ ȱ ǰȱ ȱ ŘŖŖŖȱ ȱ ŘŖŖŝǰȱ ȱ ȱ řŘȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ǯȱȱȱȱȱȱȱȱǻǼȱȱǰȱȱȱ ȱǰȱřŘǰŚŝŞȱȱȱȱȱȱȱŞřǰŖřřȱȱ ȱ ȱǻǰȱŘŖŗŗǼǯȱȱ¢ȱȱȱęȱȱȱȱȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱȱ ǰȱ ȱ ȱ ȱǯ ȱȱȱȱȱȱȱ¢ȱȱȱȱȱ ǰȱ ¢ȱ ȱ ȱȱ ǻȱȬŞǼǯȱ ȱ ŘŖŗŖǰȱ ȱ ȱ ŗřȱ polar bears (Ursus maritimusǼǰȱŜŝŞȱ ȱǻOdobenidae divergensǼȱȱşŜşȱȱĴȱǻEnhydra lutris kenyoniǼȱ ȱȱȱȱȱǻǰȱŘŖŗŗǼǯȱȱȱȱȱȱȱȱ ȱǻDelphinapterus leucasǼȱȱȱȱ ȱ ȱŘŘŘȱȱ ȱ ȱȱȱŘŖŖŜȱǻȱȱ¢ǰȱŘŖŗŖǼǯȱȱȱȱȱŚǰȱ ȱ¢ȱȱ ȱȱȱȱȱȱȱǯȱ ȱǰȱȱ ȱ ǰȱȱȱ ǯȱȱ ȱȱ¢ȱȱȱȱȱȱ ȱȱ¢ȱȱȱ ȱȱȱǯȱȱ¢ȱȱȱĴȱȱȱȱ ȱǰȱȱęȱȱȱȱȱȱȱȱȱȱȱȱȱȱ£ǯ Other subsistence fisheries ȱȱȱȱȱęȱȱȱȱȱȱȱȱ ǯǯȱ¡ǰȱȱȱȱȬȱęȱȱȱȱȱȱȱęȱȱȱęǯȱȱ ȱȱȱ ȱȱ ȱȱ ȱȱȱȱȱȬȱȱęȱȱ ȱȱǰȱ ȱǰȱȱęȱǰȱȱȱȱȱ¡ǯ 179 180 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE West coast Native Americans have harvested marine resources along the West Coast for centuries. ¢ǰȱȱȱȱȱȱȱȱȱȱȱȱĴȱ ǻȱǰȱŘŖŖşǼǯȱśŖȱ¢Ȭ£ȱȱȱȱȱȱǻŘşȱȱǰȱŗŖȱȱȱȱŗŗȱȱǼǰȱ¢ȱȱ ȱȱ¢ȱȦȱ¢ȱȱȱȱǰȱę¢ȱęȱǯȱȱǰȱŘŖȱȱ ȱȱȱȱ ȱȱǯǯȱȱȱȱȱȱȱȱ resources (NOAA Fisheries, 2009a). ȱ¡ęȱ¢ȱȱȱȂȱȱǰȱȱ ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ęȱ ȱ ŞŖȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ¢ȱȱȱȱȱȱȱǻ£ǰȱŘŖŖŗǼǯȱǰȱ ȱ¢ǰȱşşȱȱȱȱȱȱȱȱ¢ȱȱȱȱǻ£ǰȱŘŖŖŗǼǯȱȱȱȱȱȱ ȱȱ ¢ȱȱȱǰȱǰȱ¢ǰȱȱȱDzȱ ǰȱȱȱ¢ȱ on a vast array of marine resources for subsistence near their reservations or traditional ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ȱ ęȱ vests such as Dungeness crab (Cancer magisterǼǰȱǰȱȱǻPanopea abrupta), butter clams (Saxidomus giganteus), and manila clams (Corbicula manilensis). In central Puget ǰȱȱ¢ȱȱ¢ȱȱȱȱȱȱȱęȱȱtence purposes. Tribes in the southern reaches of Puget Sound rely primarily on chum ȱȱȱ ȱȱȱȱȱǻȱǰȱŘŖŖśǼǯ ȱȱȱȱȱȱȱȱ ȱȱȱȱȱ ȱǯȱȱ cultural context and values of each tribe are intimately tied to salmon harvests and consumption. In addition, members of many tribes collect salmon for ceremonial purposes ȱȱ¢ȱǯȱ ǰȱȱȱȱȱȱ ǰȱĴȱ ȱȱěȱȱȱȱȱȱȱȱȱȱȱȱ for reporting are often absent. These realities lend themselves to absent or underreported subsistence harvest data through the states’ formal reporting programs. Figure A-10 deȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱ ǰȱȱȱȱȱȱǯȱȱȱ ȱ ȱ ȱȱǰȱȱȱȱȱȱȱ¡¢ȱ 25 percent of their total catch for personal consumption (Impact Assessment, 2005). ȱȱȱ ȱǰȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱ¢ȱ ȱȱȱȱǻȱȬşǼǯȱ ȱȱdance is considered to be one of the main factors in this decline (Impact Assessment, ŘŖŖśǼǯȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ŘŖȱ ȱ ŚŖȱ ȱ ¢ȱ ŘŖśŖȱ ȱȱȱȱȱȱȱ¢ȱȱěȱȱȱȱȱȱȱǻĴȱȱ., 2007). Given that so many tribes depend on salmon for ȱ ȱ ȱ ȱ ȱ ȱ £ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ¢ȱȱǰȱȱȱ¢ȱȱȱęȱȱȱȱ ȱȱȱ ȱǯǯȱȱ¢ȱěȱȱȱȱȱ Ȭȱ of tribal communities (Colombi, 2009). ȱȱȱęęȱȱęǰȱȱȱȱ¢ȱȱȱ¢ȱ ȱȱȱȱǰȱȱȱȱȱȱȱȱěȱȱȱȱ Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. A B C D Figure A-7a–d Relative harvests of non-salmon fish, salmon, marine invertebrates, and halibut in subsistence reliance communities around Alaska. Points on the maps represent species group harvests in individual communities. The point size varies based on the relative harvest of each community’s residents compared to all other communities harvesting that species group in the state. (Source: Amber Himes-Cornell, NOAA). ȱȱ¢ȱȱȱȱ¢ȱȱȱȱ ȱȱȱȱȱȱǻȱȱ¢ǰȱŘŖŖŚǼǯȱ In addition to the subsistence harvests of marine resources by tribal entities, subsistence harvests by non-tribal individuals on urban and rural coastal piers throughout ȱǯȱȱȱȱǰȱ¢ȱȱȱȱȱǻȱǰȱŘŖŖŚDzȱ ȱ ȱǰȱŘŖŖśDzȱǰȱŘŖŖřǼǯȱ¢ȱȱȱȱęȱ ȱȱȱȱ Ȭǰȱǰȱȱ¢ȱȱȱȱȱȱ ȱ ȱȱȱȱȱȱȱ¡ȱȱŗŘŞşŞȱǻȱ ȱǰȱȱ ǼǯȱȱȬęȱȱȱ¢ȱȱȱ 181 182 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE A B C D Figure A-8a–d Relative harvests of walrus, beluga whales, polar bears, and sea otters in subsistence reliance communities around Alaska. Points on the maps represent species group harvests in individual communities. The point size varies based on the relative harvest of each community’s residents compared to all other communities harvesting that species group in the state. (Source: Amber HimesCornell, NOAA). ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ Ĵǰȱ ȱ ǰȱ ȱ ǰȱ ȱ ȱǰȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ exists to document these activities. Extant data on non-tribal subsistence and personal ȱęȱȱ¢ȱȱȱȱȱȱȱȱȱ ǻȱǰȱŘŖŖŚDzȱȱȱǰȱȱ Ǽǯȱȱ¡ǰȱȱ¢ȱȱȱ ęȱȱȱȱ¢ȱȱǰȱȱȱȱ¢ȱȱęǰȱ Řŝȱȱȱ¢ȱȱęȱ ȱęȱȱȱȱȱ ȱ¢ȱǰȱ ȱȱȱęȱȱ¢ȱȱ ȱȱȱǻȱ ȱǰȱȱ Ǽǯ Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. Figure A-9 Total number of salmon taken by Northwest Indian Fisheries Commission tribes (Source: Impact Assessment, 2005). Northeast ȱȱȱęȱ ǰȱȱȱȱ¢Ȭ£ȱȱȱȱȱ ǯǯȱȱęȱȱȱ¢ǯȱȱǰȱȱȱȱȱȱȱ ȱę¢ȱȱȱ¢¢ȱǯȱȱȱȱȱȱȱȱ¡ȱȱȱęȱȱȱȱȱǯȱȱȱ ȱȱȱȱȱ ȱęȱ¢ȱ ȱȱȱȱ ȱ ȱ ȱ ¢ȱ £ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱ ¢ȱȬȱȱȱȱȱȱǻȱȱ.ǰȱŘŖŖşǼǯȱȱȱ.ȱǻŘŖŖşǼȱȱȱȱȱȱȱȱ ȱȱ ȱ£ȱȱȱȱȱ ȱę¢ȱȱęȱȱȱȱ ȱȱȱȱ ȱęȱ¢ȱȱǯȱȱȱȱȱȱǰȱ ȱ ȱ¡ǰȱȱ¢Ȭȱęȱȱǰȱȱęȱȱ ȱȱȱȱ¢ȱ¢ȱȬǯ ȱȱǯȱǻŘŖŖşǼȱȱȱŘŞȱȱȱ ȱȱ ȱȱȱȱ ȱ ȱ ȱ ȱ ǯǯȱ ęȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱęȱǯȱȱȱǰȱȱtimated 33 percent rely on their catch as a cost-saving food source or as a supplement ȱ ȱ ǯȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ęȱ ¢ȱ ȱ ȱ (72 percent), half reported using at least some of their catch for personal consumption. 183 184 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱ ȱ .ȱ ǻŘŖŖşǼȱ ȱ ȱ ¡¢ȱ ŝŞřǰŖŖŖȱ ȱ ȱ ȱ ȱ ȱ ǯǯȱ ǰȱ ȱ ȱ ¢ǰȱ ȱ Ȭȱ ęȱ ȱ ǰȱ ŗŘŝǰŖŖŖȱ ȱ ȱ Ȭȱęȱȱȱ¢ȱȱǰȱȱŗŖśǰŖŖŖȱȱȱȬȱęȱȱȱȱǰȱȱȱȱȱŗǯŘŘȱȱȱ ȱ¢ȱȱȱ¡ȱȱȱ ȱȱȱȱȱǯȱǰȱ¢ȱȱȱŜşǯŞȱȱȱȱ ȱ ȱ ęȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ śŚǯŘȱ ȱ ȱ ȱ Dzȱ ǰȱ ȱ ¢ȱȱȱȱ¢ȱ¢ȱȱȱȱȱȱ ȱȱȱ ǰȱȱȱȱȱ ȱȱ¡ȱȱȱȬȱȱȱ¢ȱȱȱȱǯȱȱǰȱ ǰȱȱȱȱ¢ȱȱ¢ȱ ȱȬȱȱǰȱȱȱȱ ȱȱȱȱȱ ȱȱ ǰȱ ȱȱǰȱȱ ȱȱ¢ȱȱ£ȱȱȱȱ minority. ȱ ȱ . (2009) also noted that approximately 12 percent of anglers in the ȱ ȱ Ȭęęȱ ȱ ȱ ȱ ȱ ęǰȱ ǰȱ ȱ ǰȱ ȱȱȱȱȱǻŗŜǯśȱǼȱȱȱ ȱęȱȱęęȱȱ ȱ ¢ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ęȱ ȱ ȱ ęęȱ ȱ ¢ȱ ȱ ȱ ȱ ŘŖŖśȱ ȱȱȱȱȱȱǻMorone saxatilisǼǰȱȱĚȱǻParalichthys dentatusǼǰȱęȱǻPomatomus saltatrixǼǰȱȱȱǻMicropogonias undulatus), and ȱ ȱ ȱ ǻCentropristis striataǼǰȱ ȱ ȱ ȱ ȱ ŝśȱ ȱ ȱ ȱ consumed species. Pacific Islands ¢ȱ ȱ Ȃȱ ȱ ęȱ ȱ ȱ ȱ ęȱ ȱ ¢ȱȱȱȱȱȱȱȱȱȱȱȱǰȱȱȱ Ȃǰȱ ȱȱȱǰȱ¢ȱȱȬȱȱęȱȱȱ¢ȱ ȱęǰȱȱȱȱȱǰȱȱĜǯȱ¢ǰȱȱȱǰȱȬȱ ęȱȱȱȱȱȱ¢ȱȱęȱȱȱȱ¢ǰȱǰȱ or even the trip. ȱ Ȃǰȱȱęȱȱȱȱȱǻ£ǰȱŘŖŖŘDzȱǰȱŗşşŜǼǯȱȱ Ěȱȱȱȱȱ Ȃȱ¢¢ȱȱȱȱȱȱęȱȱȱęȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ǻȱ ǰȱ ŘŖŗŗǼǯȱ ȱ ȱęȱȱȱȱęȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ǰȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱęȱ¡ǯȱȱȱŘŖŖŜȱ¢ȱȱŚŖŖȱ ȱ ȱęȱǻȱȱĜǰȱŘŖŗŗǼǰȱ¢ȱŚŖȱȱȱȱǰȱęȱȱęȱȱȱȱȂȱǰȱ¢ǰȱǰȱȱ¢ǰȱ ȱȱ ȱȱȱȱȱęȱǯȱȱȱŘŝȱȱȱȱ ȱȱȱȱ most of their trips, 25 percent for some of their trips, and less than 10 percent said that ȱȱȱȱ ȱȱ¢ȱȱǯ ȱȬȱȱęȱȱȱȱȱȱęǰȱȱȱ Ȭȱȱȱȱȱȱȱǻ£ǰȱŘŖŖŘǼǰȱȱ¢¢ȱȱȱȱȱ ȱ ȱȱ¢ǯȱ ȱȱ.ȱǻŘŖŗŗǼȱȱȱřŞȱȱȱȱęȱȱ ¢ȱȱęȱȱȱȱȱȱşŝȱȱȱęȱȱȱ¢ȱ Status of and Climate Change Impacts to Commercial, Recreational, and Subsistence Fisheries in the U.S. ȱ ȱ ęȬȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ŜŘȱ ȱ ȱȱęȱ¢ȱȱȱȱȱȱȱȱȱȱȱ¢ǯ ȱ¢ȱȱ¢ȱȱȱȱȱȱǻŗşşŚǼȱȱȱŘŞȱȱȱȂȱȱ ȱȱȱȱǰȱ ȱȱ ȱřŞȱȱȱ ȱǯȱ¢ȱ¢ȱȱȱȱ ȱȱȱȱȽȱ¢ǰȱȱ¢ȱȱȱȱȱȱȱcurement, including exercise, recreation, time spent in nature, a sense of environmental ǰȱȱȱȱȱȱ¢ȱȱ¢ȱǯȱȱȱ is a basis for sharing and gift-giving as both a process of reciprocity and providing reȱȱȱ ȱȱȱȱȱȱ ǯ ȱȱ¢ȱȱȱȱȱȱ ȱǰȱȱȱ continue to provide a source of food for a variety of celebrations and events, further culȱȱȱȱȱ¢ȱȱȱȱ ǯȱȱȱ ȱęȱȱȱȱȱȱȱǰȱ ǰȱȱ ȱ Ȃǰȱȱȱȱȱȱȱȱęȱȱ¢ȱȱǯȱȱȬȱ Ěȱȱȱȱȱȱ¢ȱȱȱȱ ȱȱ¢ȱęȱ ȱȱȱȱęǯ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ their catch for personal consumption. A 2011 survey of Marianas archipelago commerȱęȱǻ ȱȱǰȱŘŖŗŘǼȱȱǰȱȱȱ ȱȱȱ ȱ ȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ęȱ ǻŞŚȱ Ǽǰȱ ȱ ĴęȱęȱǻŞşȱǼǰȱȱȱȱęȱǻşŘȱǼȱȱȱęȱ¢ȱ ȱ ȱȱȱȱȱȱȱȱǯȱȱ ȱȱǰȱ ȱȱȱȱȱȱȱȱȱŗŘȱȱ ȱȱȱȱǻŘşȱ Ǽȱȱȱ ¢ȱȱ ǰȱ¢ȱǰȱȱȱȱȱǻřřȱǼȱ ȱ ȱȱǻŘśȱǼȱȱȱȱȱǻŞȱǼȱ ȱȱȱȱ ȱ ȱ ęȱ ȱ ȱ ¢ȱ ȱ ȱ ǯȱ ȱ ȱ ǰȱ ȱ ȱȱȱȱȱęǰȱȱȱŗşȱȱȱȱȱ ȱȱ ȱǰȱŘŚȱȱ ȱȱ ¢ǰȱȱŞȱȱ ȱȱȱęȱȱȱmunity or cultural events. ȱȱ ¢ȱ¢ȱ ȱęǰȱȂȱǻŘŖŖŗǼȱȱȱěȱęȱ ȱȱȱȱǯȱȱȱȱȱ¢ȱŜśȱȱȱȱ ȱȱȱ¢ȱȱȱęDzȱȱǰȱȱ¢ǰȱȱȱ¢ȱ¢ȱȱȱȱȱȱǰȱ ȱȱȱȱȱȱ¢ǯȱȱȱȱǻŗŞȱǼȱ ȱ ȱȱęȱ¢ȱȱ¢ǯȱȱęȱȱǻŗŜȱǼȱ ȱȱȱ ȱęǯȱȱȱȱǻśŗȱǼȱȱȱȱȱȱǰȱǰȱ¢ǰȱȱ ȱȱȱȱ ȱȱ¢ȱȱȱ¢ȱȱęȱȱ¢ȱȱǯȱ¢ȱȱęȱǻşŜȱǼȱ ȱ ȱ ¢ȱ ȱ ęȱ ¢ǰȱ ȱ ęȱ ȱ ¢ȱ ǻřŜȱ Ǽǰȱ ȱ ǻŗřȱ ǼǰȱȱȱǻŚŝȱǼǯ ȱ ȱ ȱ ¢ȱ ȱ ȱ ęȱ ȱ ȱ ȬŗşŞŖǰȱ ȱ Ȭȱ ȱ Ȭȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǻǰȱŗşŞŝǼǯȱȱęȱȱȱȱȱȱȱȱȱ ȱęȱȱȱ¡ȱ ȱȱȱDzȱȱ¢ȱȱȱȱ 185 186 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱ ȱ ęȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ǻ¢ȱ ȱ Ȭ ǰȱŗşŞşǼǯȱȱȱȱȱȱȱȱȱȱȱȱ to the subsistence needs of the Chamorro population and in preserving their history ȱ¢ȱǻȱȱǰȱŘŖŖŞǼǯȱȱȱȱȱȱȱ ȱȱȱȱ ȱȱȱȱȱĴȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱǯȱ ȱȱȱȱȱ ȱȂȱęȱȱ ȱȱȱǰȱȱȱȱȱȱȬ ȱȱȬȱȱęȱǻ¢ȱȱ ȬǰȱŗşŞşǼǯ ȱ ęȱ ȱȱ ȱ ȱ ¢ȱ ȱ ǯȱȱ ŘŖŖśȱ ¢ȱ ȱ ŚŘśȱȱȱřŚȱȱȱȱȱȱȱȱęȱ ȱȱ ȱȱȱȱȱȱȱȱśśȱȱȱȱęȱȱȱȱȱȱǻȱȱ.ǰȱŘŖŖŜǼǯȱȱęȱ¢ȱȱȱ ȱȱȱȱȱȱ ȱȱǻǰȱŘŖŖŝǼȱȱȱȱȱȱ ȱȱ ¢ȱȱȱȱ¢ȱȱ ȱȱȱȱ¢ȱȱ ȱȱȱ£ȱęǰȱ¢ǰȱȱǯȱȱȱȱȱȱȱȱęȱ as a food source is one that might be expected from a society that has been undergoing a shift from a subsistence-oriented economy to a cash economy (Levine and Allen, 2009); ǰȱęȱȱȱȱȱȱatule and paloloȱȱȱȱ£ȱ ȱ£ȱ¢ȱǯȱȱȱȱǻŘŖŖŝǼȱȱȱȱȱȱ ȱę¢ȱȱȱȱȱȱę¢ȱȱȱȱȱȱǻ ȱ ěǰȱȱǰȱ ȱǰȱ¡ȱęȱǼǯ Southeast ȱ ȱ ȱ ȱ ȱ ȱ ȱǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱęȱȱȱȱȱǰȱ¢ȱȱȱȱȱȱęȱȱȱȱȱȱęǯȱȱǰȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱ ȱȱȱȱȱȱȱȱ ȱ subsistence livelihoods today (NOAA Fisheries, 2009a). Coastal counties and parishes ȱ ȱ ȱ ȱ ¢ȱ ęȱ ȱ ȱ ȱ ȱ ȱęȱȱȱȱ¢ǰȱȱȱȱȱȱȱȱ ȱȱǻǰȱŗşŞşǼǯȱȱȱȱęȱȱȱȱǰȱ ęǰȱ ǰȱȱȱȱǻǰȱŗşŞşDzȱȱǰȱŘŖŖşǼǯ References ǰȱǯȱǭȱ¢ǰȱǯȱŘŖŖŖǯȱȱȱȱȱȱȱȱęȱȱȱȱ ȱǯȱȱȱŘŖŖŖǻŚǼǰȱǰȱ ¢ǯ ǰȱǯ ǯǰȱǰȱǯǰȱȬǰȱǯȱǭȱǰȱǯȱŘŖŗŗǯȱ¢ȱȱȱȱȬ indigenous species Gracilaria vermiculophylla ǻ¢ǼȱȱȱȱĴȱȱȱ de Aveiro lagoon, Portugal. European Journal of Phycology 46ǰȱŚśřȬŚŜŚǯ Acclimatise 2009a. Understanding the investment implications of adapting to climate change - oil and gas.ȱ¡ǰȱǯǯDZȱȱȱȱȱȱǯ Acclimatise 2009b. ȱȱȱȱȱȱǯȱȱȱ ȱȱŘŖŖŞǯȱȱȱȱǯȱ¡ǰȱǯǯDZȱȱȱȱȱment Ltd. ǰȱǯȱǯȱŘŖŖřǯȱCapturing the Commons: Devising Institutions to Manage the Maine Lobster Industryǯȱ ȱȱDZȱ¢ȱȱȱ ȱǯ Adger, N. W., 2003. Social capital, collective action, and adaptation to climate change. Economic GeographyȱŝşȱǻŚǼDZȱřŞŝȬŚŖŚǯ ȱǯǯǰȱ ¡ǰȱǯǯǰȱ ǰȱǯB., Wilson, C.D., Pierce, S. & Francis, R.C. 2007. ȱȱęȱDZȱȱȱȱǯȱJournal of Marine Systems ŝŗ, ŘřŝȬŘŚŞǯȱ ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǭȱ ¡ǰȱǯǯȱŘŖŖŜǯȱȱ ȱ ȱȱǻMerluccius productusǼȱȱȱ ȱȬȱ Ě ȱȱȱȱȱ¢ǯȱCanadian Journal of Fisheries and Aquatic Sciences Ŝř, ŘŜŚŞȬŘŜśşǯ ȱȱȱȱȱȱǻǼǯȱŘŖŗŗǯȱ¢ȱȱȱ ¢ȱǻǼǯȱȱȱȱǯȱȱȱ¢ȱȱȱȱ ȱȱȱȱȱǰȱĴǯȱȱ¢ȱŘŖŗŗǰȱȱ ĴDZȦȦ ǯǯǯȦȦȦǯ ǰȱǯǰȱǰȱǯǰȱĴǰȱǯǰȱ£ȂǰȱǯȱǭȱǰȱǯǰȱŘŖŖşǯȱȱȱȱȱ ȱȱȱȱȱȱ ȱȱȱŘŖȱȱŘŗȱȱȱȱȱȱȱǯȱ£¢ȱAtmospheric and Oceanic Physics ŚřǰȱŜŝśȬŜŞŜǯ ¡ǰȱǯǯǰȱǰȱǯǯǰȱ £ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŞǯȱ ěȱȱȱȱȱ¢ȱȱȱȱȱ¡ȱȱȱȱ River Basin, Environmental Science and Technology ŚŘǰȱŞŘŘȬŞřŖǯ ǰȱǯȱȱǯȱǯȱŘŖŖŞȱǯȱȱȱȱȱ¢ǯȱŘŖŖŞǯȱęȱȱȱ ȱȱȱȱ ȬŖŞȬŖŗǰȱǯȱŘŖŖŞǯ ǰȱǯȱǯȱȱǯȱĜǯȱŘŖŗŗǯȱȱȱȱȱȱȱȱȱȱȱ ȱęǯȱȱȱȱȱȱȱȱǰȱ¢ȱ ŗřǰȱ ǰȱ ǯȱ ǰȱǯȱ ǯǰȱǰȱǯȬǯȱȱǰȱǯȱŘŖŗŗǯȱȱȱȱȱȱ ȱȱȱǰȱȱęȱȱȱȱȱǻȱǯȱǯȱ ¢Ǽǰȱ¢Ȭ ǰȱ¡ǰȱǯȱDZȱŗŖǯŗŖŖŘȦşŝŞŖŚŝŖşŜŖşŜŝǯŗŝ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱǰȱ ǯǯȱŘŖŖřǯȱȱȱȱȱ DZȱȱȱȱȱȱǯȱEcological Applications ŗřǰȱŞȬŘŚǯ £ǰȱǯǰȱ ǰȱǯǯȱǭȱǰȱǯȱŘŖŖřǯȱȱ¢ȱ¢ȱȱȱȱȱ biodiversity. Trends in Ecology and Evolution ŗŞǰȱśŞşȬśşŜǯ R. Griffis and J. Howard (eds.), Oceans and Marine Resources in a Changing Climate: A Technical Input to the 2013 National Climate Assessment, NCA Regional Input Reports, DOI 10.5822/978-1-61091-480-2, © 2013 The National Oceanic and Atmospheric Administration 187 188 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE £Ȭǰȱǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱâ·ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱĴȱȱȱȱDZȱȬ ȱȱȱȱ¡¢ǯȱProceedings of the Royal ¢ȱ ŘŝŜ, 3019-3025. ǯȱŘŖŖŞǯȱȱȱȱȱŘŖŖŝǯȱDZȱȱȱȱȱǰȱŚŖȱǯ ¢ǰȱǯȱǯǰȱȱǯȱǯȱ ȬǯȱŗşŞşǯȱȱȱȱȱȱ¢ȱ ȱǯȱȱȱȱęȱȱ¢ȱȱǰȱ ǯȱ Micronesian Archaeological Research Services, Guam. ǯȱŘŖŖşǯȱȱȱȱȱŘŖŖşȱǯȱ¢ǰȱDZȱȱȱ the Arctic Marine Environment. Anand, G., Science. 283ǰȱŘŖŝŝȬŘŖŝşȱǻŗşşşǼǯȱȱ ȱȱȱȱ£ȱȱȱ ȱ¡ȱǯȱȱȱȱŗDZȱŗŜśȬŗŜşǯ ǰȱǯǰȱǭȱěǰȱǯȱŗşŝŝǯȱThe Fate of Fossil Fuel CO2 in the Oceans. ŝŚşȱǯȱǰȱǯȱ ǰȱǯȱŘŖŗŘǯȱ ȱǯȱĴDZȦȦ ǯ ǯȦ ȦȦǯȱȱ ¢ȱŗŖǰȱŘŖŗŘǯ ǰȱǯǯȱŗşŞşǯȱ¡ȱȱȱȱȱǯȱȱȱDZȱ¢ǰȱȱ Science, and ToxicologyǰȱǯȱȱȱǯȱǻǯǼǯȱ ȱDZȱǰȱǯȱŗŗȬŗŜǯȱ Anderson, D.M. 2009. Approaches to monitoring, control and management of harmful algal ȱǻ ǼǯȱOcean and Coastal Management śŘǰȱřŚŘȬřŚŝǯ ǰȱǯǰȱǯȱǯȱǰȱǯȱǰȱǯȱǰȱȱǯȱȱǻŘŖŗŖǼǰȱǰȱ ȱȱȱȱȱǰȱ¢ǯȱǯȱĴǯǰȱřŝǰȱŗŚŝŖŗǰȱ DZŗŖǯŗŖŘşȦŘŖŗŖŖŚřşşŗǯ ǰȱǯǰȱãǰȱ ǯǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱĴȱȱȱȱ responses in hypoxia exposed mussels Mytilus galloprovincialis. Journal of Experimental Marine ¢ȱȱ¢ řşŚ, 123-133. ǰȱǯǰȱãǰȱ ǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱ Response of Mytilus galloprovincialisȱǻǯǼȱȱȱ ȱȱȱȱosis: metabolic and physiological parameters. ȱ¢ȱȱ¢¢ȱȱ ŗśŜǰȱśŝȬŜŜǯ Anonymous. n.d. ȱĴDZȱȱȱ. Published by Published by William ȱǰȱ¢ȱȱȱ ǰȱ£ȱȱǰȱȱ ȱǰȱȱŗŜŗŗǰȱǰȱĴȱŖŘŗŖŞǯȱȱ¢ȱŗŝǰȱŘŖŗŘǰȱȱ ĴDZȦȦ ǯǯǯǯȦȦȦȏȏȏǯǯ ¢ǰȱǯǯǯǰȱǰȱǯǯǰȱ£Ȭǰȱǯǰȱǰȱǯȱǭȱ ȬǰȱǯȱŘŖŖŞǯȱȱ ęȱȱȱȱ¢ȱȱȱȱȱǯȱProceedings of the National Academy of Sciences USA ŗŖśǰȱŗŝŚŚŘȬŗŝŚŚŜǯ ǰȱǯǰȱǯȱǰȱȱǯȱ ǯȱŗşŞśǯȱȱȱȱ¢ȱĴȱ ȱȱȱ ȱȱǯȱCanadian Journal of Fisheries and Aquatic Sciences ŚŘǻŘǼDZȱŘśŜȬŘŜŝǯ ǰȱǯǯȱǭȱǰȱǯȱŘŖŖŞǯȱ ȱȱȱȱȱǯȱ¢ȱȱĴ řśǰȱŖŞŞŖřǯ Arctic Council. 2009. Arctic Marine Shipping Assessment Report. Exhibit 31 AEWC and ICAS. ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱȱǰȱ ǯǯȱŗşşřǯȱȱ ȱȱ¢ȱDZȱȱȱȱǻParalithodes camtschaticusǼȱȱ ȱęȱȱ ȱȱȱǯȱȱȱȱȱȱȱǰȱśŖǰȱŗşşřȬŘŖŖŖǯ £ǰȱǯǰȱǰȱǯǰȱȱ¸ǰȱǯǯȱǭȱ ǰȱǯȱŘŖŗŗǯȱȱȱ¢ȱȱ ȬȱȱȱȱȱȱDZȱ¢ȱȱȱground climate state. Climate Dynamics (Online First): 1-17. DZȱŗŖǯŗŖŖŝȦŖŖřŞŘȬŖŗŗȬŗŗŗŝȬ¢ References ȱȱȱȱȱǻǼǯȱŘŖŖŝǯȱȱęȱȱȱǯȱ ASMFC Fisheries FocusǰȱǯȱŗŜǰȱȱřǰȱǯȱȱ¢ȱŗŝǰȱŘŖŗŘǰȱȱĴDZȦȦ ǯ ǯȦǯǯ ȱȱȱȱȱǻǼǯȱŘŖŗŗǯȱȱǯȱȱ¢ȱ ŗŝǰȱŘŖŗŘǰȱȱĴDZȦȦ ǯǯȦǯǯ ȱȱȱȱȱǻǼǯȱŘŖŗŘǯȱ ȱȱȱDZȱȱ ǰȱMicropogonias undulatusǯȱȱ¢ȱŗŝǰȱŘŖŗŘǰȱȱĴDZȦȦ ǯǯȦ ǯǯ ¢ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯȱȱǰȱǯȱŘŖŖŘǯȱ¡¢Ȭȱȱȱ¢bacterium marinum infection. Archives of Internal MedicineȱŗŜŘDZȱŗŝŚŜȬŗŝśŘǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖşǯȱȱȱ¢ȱȱȱȱȱȱ ȱ ȱȱęȱ¢ǯȱMarine Ecology Progress Series řŞŘǰȱŗŜřȬŗŝŘǯ ǰȱǯȱǭȱǯȱǯȱŘŖŖŘǯȱȱDZȱȱȱȱȱȱȱ in the oil and gas industry. Washington, DC: World Resources Institute. ěǰȱǯǰȱȱǰȱĴȱǰȱȱǰȱ¢ȱǰȱȬȱǰȱ£ȱǰȱȱǰȱ ȱ ǰȱȱǰȱȱǰȱȱǰȱȱǰȱȱǰȱȱǰȱȱǰȱ ¢ȱǰȱĴȱǰȱ£ȱǰȱȱǰȱȱǰȱȱǰȱ ȱǰȱȱǰȱȱ ǰȱȱǰȱȱǰȱȱ ǰȱȱǯȱŘŖŖŜǯȱ¢ȱȱȱ ȱȱȬȬȬȱǰȱǰȱǰȱȱ¡ǰȱȱŘŖŖśǯȱśśǻŘŜǼDZŝŘŝȬŝřŗǯ ȱǯǰȱȱǯǰȱ ȱǯǰȱǭȱ¢ȱǯȱŘŖŗŖǯȱȱȱȱ¢ȱȱȱȱ ę¢ȬȱǯȱMarine Policy řŚǰȱřŝśȬřŞřǯ ǰȱ ǯȱǭȱǰȱǯȱŘŖŖşǯȱGlobal Warming and the Political Ecology of Health: Emerging Crises and Systemic Solutions. ȱǰȱDZȱȱȱǯ ǰȱ ǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖřǯȱMedical Anthropology and the World System. 2nd Edition. Westport, CT: Praeger, p. 5. ǰȱǯǯǰȱĴǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŜǯȱȱěȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱǯȱ Endangered Species Research Ř, 21-30. Barange, M, & Perry, R.I. 2009. Physical and ecological impacts of climate change relevant to ȱȱȱȱęȱȱǯȱDZȱǯȱǰȱǯȱȱǰȱǯȱǰȱ and T. Bahri (eds). ȱȱȱȱęȱȱDZȱ ȱȱȱ ęȱ ǯȱȱȱȱȱȱȱǯȱśřŖǯȱDZȱȱ ȱȱ£ȱȱȱȱǰȱŝȬŗŖŜǯ ǰȱǯȱǯǰȱǯȱǯȱĴǰȱǯȱȱǯȱǯȱǯȱŗşşŚǯȱǰȱ ǰȱȱ¢ȱȱȱ ǰȱMicropogonias undulatusǰȱȱȱȱ¢ȱǰȱ ȱȱȱȱ apparent geographic changes in population dynamics. ¢ȱ 92:1-12. ǰȱǯȱǯȱǭȱǰȱǯȱŘŖŖŗDZȱ¡ȱ¢ȱȱȱȱȱȱŘŝǯȱGeophysical ȱĴ, ŘŞǰȱřŗŝşȬřŗŞŘǯ ǰȱǯǯǰȱǯǯȱǰȱǯȱȱǰȱȱǯȱǯȱȬȱǻǼǯȱŘŖŗŗǯȱȱȱ Ȭȱȱ¢ȱǰȱ¢ȬȱŘŖŗŖǯȱȱȱȱȱǻȱ ŚŖŗŞŗŖřŝǼǯȱȱȱȱȱȱǰȱǯȱǰȱǯȱ ŗřŞȱǯȱ ĴǰȱǯȱŘŖŖŜǯȱȱǰȱ¢ǰȱȱǯȱǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯȱǭȱ ǰȱǯǯȱǯȱ Fairness in Adaptation to Climate Change. Cambridge, MA: MIT Press, 115-129. ¢ǰȱǯǯǰȱĵǰȱǯǰȱ¢ǰȱǯǰȱǰȱǯǯǯǰȱ ĵǰȱǯȱǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱȱǰȱǯǯȱŘŖŗŗǯȱ ȱȱȂȱ sixth mass extinction already arrived? Nature ŚŝŖ, 51-57. 189 190 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǯǰȱǯȱǰȱǯȱǰȱǯǯȱǰȱǯǯȱ ǰȱǯǯȱ¢ǰȱǯǯȱǰȱȱ ǯǯȱȱǯȱŘŖŖŞǯȱȱȱȱȱȱȱȱȱȱ DZȱ ȱǰȱ¢ȱȱȱȱȱ£ȱȱȱěȱȱȱȱȱęǯȱ ȱȱȱǰȱŗŜǻŚǼDZŚŚşȬŚśśǯ ¢ǰȱǯǯǰȱ¡ǰȱǯ ǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŗşşśǯȱȬǰȱȬȱȱ ȱȱȱȱ¢ȱȱ¢ǯȱScience ŘŜŝǰȱŜŝŘȬŜŝśǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖŝǯȱ¢ȱ ȱȱȱȱ ocean ecosystems in the northern California current Proceedings of the National Academy of Sciences USA ŗŖŚǰȱřŝŗşȬřŝŘŚǯ ǰȱǯǰȱǯȱ ǰȱǯǯȱǰȱǯȱǰȱȱǯǯȱ¢ǯȱŘŖŗŘǯȱȱęȱ¢ǰȱ Crassostrea gigasǰȱ ȱȱȱȱ¢ȱȱȱ¡ȱDZȱ ȱȱȬȱȱęȱǯȱ¢ȱȱ¢ȱśŝǻřǼDZȱ ŜşŞȬŝŗŖǯ ĴǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱ¢ȱ¢ȱ¢ȱȱȱȱȱ moderate climate change. Ecological Applications ŗş, 3-17. Ĵǰȱǯǰȱǯǯȱ¢ǰȱǯ ǯȱǰȱǯǯȱǰȱǯȱǰȱǯǯȱĵȱȱ ȱǯȱŘŖŖŝǯȱ ȱȱȱȱȱȱȱȱǯȱȱȱȱ ȱ¢ȱȱȱȱȱȱȱȱȱŗŖŚǻŗŜǼDZȱŜŝŘŖȬŘśǯ Baumgartner, T. R., A. Soutar and V. Ferreira-Bartrina. 1992. Reconstruction of the history of ęȱȱȱȱ¢ȱȱȱȱȱ ȱȱȱments of the Santa Barbara Basin, California. California. Calif. Coop. Oceanic Fish. Invest. ǯȱřřDZȱŘŚȬŚŖǯȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǭȱ ǰȱǯȱŘŖŗŖǯȱȱȱȱęȱDZȱ ¢ǯȱǰȱDZȱȱęȱȱȱǰȱȱtion No. 2. ǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖŚǯȱȱȱȱ¢ȱȱ ȱ ȱȱ ȱ ȱȱȱȱȱǯȱȱȱȱȱ ȱ¢ȱŗřřǰȱŘŜȬřř ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ¢ȱǯǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱ ¢ǰȱǯȱǭȱ ǰȱǯȱŘŖŖşǯȱȱȬȱȱȱȱȱǻǼȱȱ ęȱȱǻOncorhynchus spp.) ȱȱȱęȱǯȱǰȱDZȱȱęȱ Anadromous Fish Commission, Special Publication No. 1. ǰȱǯȱ ǯǰȱǯȱǯȱǰȱȱǯȱǯȱǯȱŘŖŗŗǯȱȱȱ¡ȱȱȱȱȱȱȱǯȱȱĴ 0: 1-13. doi: ŗŖǯŗŗŗŗȦǯŗŝśśȬŘŜřǯŘŖŗŗǯŖŖŗşşǯ¡ ǰȱǰȱǰȱǯǰȱȱȬǰȱǯǰȱǰȱǯǯǰȱ£Ȭǰȱǯǰȱĵǰȱǯǰȱ¢ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǯǯȱǭȱȱǰȱǯȱŘŖŗŗǯȱ¢ȱȱȱȱȱ¢ȱȱȱęǯȱNature ŚŝŜǰȱŞŖȬŞřǯ ǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖřǯȱȱěȱȱȱ recruitment in the North Sea. Nature ŚŘŜǰȱŜŜŗȬŜŜŚǯ ǰȱǯǰȱǰȱǯǯǰȱÛ£ǰȱǯǰȱ¢ǰȱǯǯǰȱǭȱ ǰȱǯȱŘŖŖŘǯȱ£ȱȱȱ Atlantic marine copepod biodiversity and climate. Science ŘşŜǰȱŗŜşŘȬŗŜşŚǯȱ ǰȱǯǯǰȱȂ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŜǯȱȬȱȱȱ contemporary ocean productivity. Nature 444, 752-755. ǰȱǯȱǭȱǰȱǯȱŘŖŖŞǯȱǰȱ¡ǰȱȱȱǯȱEvolutionary Applications ŗ, řȬŗŜǯ References ǰȱǯȱǰȱǯȱǰȱǯȱǯȱĴ¢ǰȱǯȱ ǯȱǰȱǯȱ¢ǰȱǯȱ ǰȱǯȱǯȱǰȱǯȱĴǰȱǯȱ ǯȱǰȱǯȱǯȱ ¢ȱȱǯȱǯȱŘŖŗŗǯȱȱȱȱȱȱȱ¢ȱęȱȱȱȱęȱȱȱȱǯȱǯȱŗŘȱ DZȱȱǰȱȱȱȱ ¢ȱȱǻŘŖŗŗǼȱ¢ȱȱȱęȱȱ ȱȱȱȱǯȱȱȱȱęȱ¢ǰȱǰȱ ȱ Caledonia. ǰȱǯȱǯǰȱȱǯ ǯȱǰȱǯǯȱǰȱǯȱǯȱ ¢ȱȱǯȱȱǯȱŘŖŗŗǯȱęȱǰȱęǰȱȱȱȱDZȱȱǯȱȱŗȱDZȱȱǰȱ ȱȱȱ ¢ȱȱǻŘŖŗŗǼȱ¢ȱȱȱęȱȱȱȱȱȱǯȱȱȱȱęȱ¢ǰȱǰȱ ȱǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱ ¢ȱǯǯȱŘŖŗŗǯȱ¢ȱȱȱęȱȱȱȱȱȱǯȱȱȱȱęȱ¢ǰȱǰȱ ȱǯ ǰȱǯǯǰȱ ǰȱǯȬǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱ ǯǯȱǭȱ ǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱęȱȱȱȱȱȱ ȱęǯȱProceedings of the National Academy of Sciences USA ŗŖŞǰȱŘŖŞȬŘŗřǯ ǰȱǯǯǰȱǰȱǯǰȱǯȱ ǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ§ǰȱǯǯȱ ǭȱǰȱǯȱŘŖŖŝȱȱȱȱ¡ȱȱěȱȱȱȱȱ ȱȱȱȱȱȱǯȱOecologia, ŗśŖǰȱŜŚřȬŜśŚǯ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱȱȱȱȱȱȱǯȱ Science řŘŚǰȱŘřşȬŘŚŖǯ ǰȱǯǰȱǭȱǰȱǯȱŘŖŖŚǯȱMunicipal heat wave response plans. American Journal of Public Health şŚ, 1520-1522. ǰȱǯǯǰȱǭȱǰȱǯǯȱŗşşřǯȱȱȱǻCerorhinea monocerata) nestling diet may ȱęȱȱȱǻAmmodytes hexapterus) recruitment. Canadian Journal of Fisheries and Aquatic Sciences śŖǰȱŗşŖŞȬŗşŗśǯ ǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱȱȱDZȱȱȱȱȱȱ Macoma balthicaȱǻǯǼȱěȱȱȱ ¢ȱȱȱ ȱǯȱMarine Ecology Progress Series řŞŚǰȱŗřśȬŗŚśǯ ǰȱǯǰȱǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖşǯȱȱȱȱȱDZȱȱȱ impending regime shift in time to avert it. Proceedings of the National Academy of Sciences USA ŗŖŜǰȱŞŘŜȬŞřŗǯ ěǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱ£ǰȱǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǰȱȱ ··ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯȱǭȱǰȱǯȱŘŖŖŝǯȱtions: oceanic climate change and sea level. In: ȱȱŘŖŖŝDZȱȱ¢ȱȱDZȱ Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ǯȱȱȱǯȱǻǯǼǯȱǰȱȱȱȱ ȱǰȱDZȱ ȱ¢ȱǯ ǰȱǯǯǯȱŗşşŚǯȱ¢ȱĴȱȱ¢ȱȱȱǯȱDZȱǰȱǯȱǻǼȱ Coastal Lagoon Processes.ȱǰȱȱDZȱǯȱşȬŚŖǯȱ ǰȱǯǯǰȱȱǯǯȱě¢ǯȱŘŖŗŖǯȱ£ȱ¢ȱěȱȱȱȱȱȱȱ ¡ȱȱ¢ǯȱȱŗŗşDZȱŗŜŘśȬŗŜřśǯȱ ǰȱǯǯǰȱǭȱǰȱǯȱŘŖŖŞǯȱȱ¢ȱȱȱ¢ȱȱȱȱ mammals. Ecological Applications ŗŞǰȱŝŝȬşŜǯ ǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗDZȱȱȱȱȱȱŘŖŗŖǯȱȱȱȱican Meteorological Society şŘǰȱŗȬŘŜŜǯ ȱǰȱȱǰȱŗşşŗǯȱěȱȱ ¢¡ȱȱȱȱDZȱȱ ȱȱ ȱȱȱȱȱȱȱȱ¡ǯȱȱȃȱȱȱ 191 192 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱ¡Ȅȱǻǯȱǯȱ¢ȱȱǯȱ ǯȱǰȱǯǼǰȱǯȱśŞǰȱǰȱŘŝȬřŚǯȱȱ Society Publication. ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱŘŖŖŝǯȱȱȱ£ȱȱȱȱ DZȱęȱȱȱȱȱȱȱ¢ǯȱȱRegional Impacts of Climate Change: Four Case Studies in the United StatesǯȱǰȱDZȱ ȱȱȱȱ ȱǰȱśŚȬŝŖǯ ǰȱǯǯǰȱǰȱǯǯǰȱȱ£ǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱ ǯǰȱ¢ǰȱǯȱǭȱ£ǰȱǯǯȱ ŘŖŖŞǯȱ¡¢ȱȱȱȱȱȱȱ¢¡ȱ¢ȱȱȱȱǯȱ ¢ȱȱĴȱřśǰȱŗŘŜŖŝǯ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŖşǯȱ¢ȱȱ ȱ ȱȱȱȱǯȱ¢ȱȱĴȱřŜǰȱŖŗŜŖŘǯ ǰȱǯǰȱ ǰȱǯǰȱȱǯǰȱȱǰȱǯȱŘŖŖŝǯȱThe Politics of Crisis Management: Public Leadership Under Pressure. DZȱȱ¢ȱǯȱ ¢ǰȱǯǰȱǰȱǯǰȱĴǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȬǯǰȱ ǰȱǯǰȱ Ĵǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱ ŘŖŖŜǯȱ ȱ ȱȱ ȱȱȱȱȱȱȱǵȱJournal of Climate ŗşǰȱřŚŚśȬřŚŞŘǯ ǰȱǯȱǯǰȱǯȱǯȱĴǰȱȱǯȱǰȱŘŖŖŚDZȱȱ¢ȱ¡ȱȱȱȱ ȱǯȱǯȱ¢ǯȱǯǰȱřŚǰȱřřŚȬřŚŗǯ ǰȱǯǯȱŘŖŖŞǯȱȱ DZȱȱȱȱ¢ȱȱȱȱ Warming. ȱě ŞŝǰȱŜřȬŝŝǯ ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŗşşŞǯȱ¡ȱȱtees (Trichechus manatus latirostrisǼȱȱȱŗşşŜȱ£DZȱǰȱǰȱȱhistochemical features. Toxicologic Pathology ŘŜǰȱŘŝŜȬŘŞŘǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖŘǯȱȱȱȱ the Florida manatee cold stress syndrom. Aquatic Mammals Řş, 9-17. ¢ǰȱǯȱǯǰȱ ǰȱǯȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱ¢ȱȱȱȱȱ¢ǯȱ ȱŚŜŜǰȱśşŗȬśşŜǯ ¢ǰȱǯǯǰȱ¢ǰȱǯǯǰȱ£ǰȱǯǰȱ¢ǰȱǯǰȱ¢ǰȱǯǰȱǭȱǰȱǯȱŘŖŖŞǯȱȬȱȱȱ¡Ȭ¢ȱȱȱȱȱDZȱ ȱ ȱ¢ȱ¢ȱ species respond?ȱȱśǰȱŞŚŝȬŞŜŚǯ ¢ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŜǯȱ ȱȱDZȱȱȱ¢ȱěȱȱȱ rate in native and invasive species of blue mussels (genus Mytilus). Journal of Experimental ¢ȱŘŖşǰȱŘśśŚȬŘśŜŜǯ Bradley, P.A., Fore, L.S., Fisher, W.S., & Davis, W.S. 2010. Coral reef biological criteria: using the Clean Water Act to protect a national treasure.ȱȦŜŖŖȦȬŗŖȦŖśŚǰȱ¢ȱŘŖŗŖǯȱĴǰȱDZȱ ǯǯȱȱȱ¢ǰȱĜȱȱȱȱǯ ǰȱǯȱŘŖŗŖǯȱȱȱȱȱȱęǯȱJournal of Marine Systems ŝşǰȱřŞşȬŚŖŘǯ ǰȱǯǰȱǯȱ£ǰȱǰȱǯǯǯǰȱȱǰȱǯǯ ǯȱŘŖŖşǯȱȱȱȱȱȱ ęȱȱȱǰȱȱŘŞŘǰȱȱȱȱȱȱǻǼǯ ǰȱǯǯǰȱǭȱ ǰȱǯȱŘŖŖşǯȱȱęȱȱȱȱ¢ȱȱȱȱ ȱ Ȭ¢ȱǯȱOceanography ŘŘǰȱŞŜȬşřǰȱ ǰȱǯǰȱěǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱǰȱǭȱǰȱǯȱŘŖŖŝǯȱěȱȱ Nutrient Enrichment in the Nation’s Estuaries: A Decade of Change. NOAA Coastal Ocean Program Decision Analysis Series No. 26. Silver Spring, MD: Nation Centers for Coastal Ocean Science. ǰȱǯȱǯȱŘŖŖŞǯȱȱȱȱȱȱȱǯȱȱȱȱ ȱěȱŝǻŘǼDZŚŝŝȬŚŞŚǯ References ǰȱǯǯȱŗşşŗǯȱȱȱȱ¢ǰȱOceanography 4ǰȱŝşȬŞşǯ ǰȱǯǯǰȱǭȱǰȱǯȱŗşŜŜǯȱȱȱȱȱȱȱǯȱ Journal of Geophysical Research ŝŗǰȱŗśŝśȬŜŖŘǯ ȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŜǯȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ¢ǯȱMarine Ecology Progress Series řŘŝ, 15-25. ǰȱǯǰȱǰȱǯȱǭȱ ǰȱǯȱŘŖŖŞǯȱ¢ȱȱ¡ȱȱȱȱ change. Trends in Ecology & Evolution ŘřǰȱŚśřȬŚŜŖǯ ǰȱǯȱǭȱ¢ǰȱǯȱŗşşşǯȱErysipelothrix rhusiopathiae: bacteriology, epidemiology and clinical manifestations of an occupational pathogen. Journal of Medical Microbiology ŚŞǰȱŝŞşȬŝşşǯ ǰȱǯǰȱȱǯȱǯȱŘŖŖŝǯȱȱȱę¢ȱ¢ȱȱǯȱǰȱǯȱȱȱȱęȱȱȱȱȱşśȱȱȱǻȱ ŞǯǯŘǼǰȱȱŗŘȬŗŚǰȱŘŖŖśǯȱ ǯ ȱǰȱȱǰȱȱǰȱĴȱ ǰȱȱǰȱ¢ȱǰȱȱ ȱǰȱ ȱ ǰȱȱ ǯȱŘŖŖŝǯȱȱȱȱȱȱȱȱęȱ ȱDZȱȱ ȱ¢ȱȱȱ¢ǰȱǯȱǯǯ ǰȱǯȱŗşşşǯȱȱ¢DZȱȱȱȱȱȱǯȱScience ŘŞř, ŗŚŚŖȬŗŚŚŗǯ ǰȱǯǯǰȱǯǯȱǰȱǯǯȱ¢ǰȱǯǯȱǰȱǯǯȱǰȱǯǯȱ ǰȱ ǯȱ ǰȱȱǯǯȱ ¢ǯȱŘŖŖŝǯȱȱȱȱȱȱȱȱȱȱȱǯȱȱ ¢ȱśDZȱŗŘŚǯȱ ¢ǰȱǯȱŘŖŖşǯȱȃȱȱȱȱȱěȱȱęȱȱȱ ȱ ¢ȱȱȱǯȄȱȱȱşśȱǻŗǼȱǻ¢ȱŗǼDZȱŗŜşȬŗşřǯȱDZŗŖǯŗŖŖŝȦ ŗŖśŞŚȬŖŖŞȬşśřŖȬ¡ǯ ǰȱǯǰȱ·ǰȱǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱ ȱǯȱȱ Société Pathologie Exotique ŗŖŗǰȱřŚřȬřŚŝǯ ¢ǰȱǯǯǰȱǯȱŗşşŞǯȱȱ ȱDZȱȱȱ £ȱ ȱȬȱ ȱȱȱǯȱǰȱDZȱȱ ¢ȱǯ Bureau of Ocean Energy Management (BOEM). 2007. Final Programmatic Environmental ȱȱȱȱ¢ȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱǻȱȱȱŘŖŖŝȬŖŚŜDzȱǰȱǰȱŘŖŖŝǼȱ ȱ¢ȱŘǰȱŘŖŗŘǰȱȱĴDZȦȦ¢ǯǯȦǯ ǰȱǰȱǰȱǯȱǭȱȂ ǰȱǯȱŘŖŖŞǯȱěȱȱȱȱȱȱȱȱ health. Ecological Applications. ŗŞǰȱŗŘŜȬŗřŚȱ ǰȱǯǰȱǯȱ¢ǰȱǯȱǰȱǯȱ¢ǰȱȱǯȱŘŖŗŗǯȱȱȱȱǯȱȱȱ Institute, Washington, D.C. ĴǰȱǯǰȱŘŖŗŗǯȱȱȱȱȱȱȱȱěȱȱȱȱment, Energy Policy, 39, 7719-7725. , ǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱ£ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱ Ȃǰȱǯǯǰȱęǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱ¢ǰȱǯǯȱǭȱǰȱǯǯ 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science řřŚǰȱŜśŘȬŜśśǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ¢Ȭǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǯǰȱ¢ǰȱǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱȱȱȱęȱȱȱ mussel, Mytilus edulis ǻǼȱȱȱȱ ȱ¢ȱȱ¢ȱǯȱJournal ȱ¡ȱȱ¢ȱȱ¢ȱřśŞǰȱŝŞȬŞśǯ ǰȱǯ ǯǯǰȱǰȱǯǰȱǰȱǯǰȱȱǰȱǯǰȱǰȱǯǯǯǰȱǰȱǯǯǯǰȱ ǰȱǯǯǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱ 193 194 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ¢ǰȱǯǯǰȱ ǰȱǯǰȱ¢ǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯȬǯǰȱǰȱǯǰȱǰȱ ǯǰȱǰȱǯǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱ ¤£ȱǰȱǯǰȱęǰȱǯǯǯǰȱ¢ǰȱ ǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱ Ȭǰȱǯǰȱǰȱǯǰȱ ¢ǰȱǯǰȱ¢ǰȱǯǰȱ¢ǰȱǯǯǰȱ·ǰȱǯȬǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱ¢DZȱtors of recent declines. Science řŘŞǰȱŗŗŜŚȬŗŗŜŞǯȱ ĴǰȱǯȱŗşşŘǯȱȱĚȱȱȱȱȱȱȱȱȱȱDZȱȱ Exxon-Valdez Oil Spill and the Response of Residents in the Area of Homer, Alaska. PhD dissertaǰȱȱ¢ǯ ĴǰȱǯȱǯȱȱȱǯȱŘŖŖşǯȱ¢ȱȱDZȱ¢ȱȱ ȱȱȱ¢ȱǯȱȱAnthropology and Climate Change: From Encounters to Actions. ǰȱǯǯǰȱǭȱĴǰȱǯǰǯȱȱǰȱDZȱȱȱǯȱřŘŝȬřŚŖǯ ĴǰȱǯǯȱŘŖŗŖǯȱȱDZȱ ȱȱ¢ȱȱȱȱȱ ȱȱronmental Catastrophe. Left Coast Press. ¢ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱ ǯǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱȱ the Pribilof Islands to ocean climate. Deep-Sea Research Part II śśǰȱŗŞśŜȬŗŞŜŝǯ ¢ǰȱǯȱŘŖŗŗǯȱȱȱȱ ȱȱȱęȱȱȱȱȱ history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanog¢ȱȱȱ¢DZȱȱȱ ŚşǰȱŗȬŚŘǯ ¢ǰȱǯǰȱǯǯȱǰȱǯǯȱ ǰȱǯȱǰȱǯȱ¢ǰȱǯȱ ¢ǰȱǯǯȱ ¢ǰȱȱǯǯȱǯȱŘŖŗŖǯȱ£ȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȬȱȱ ȱȱęǯȱȱ¢ȱŗśŝDZȱ ŘŖŜŗȬŘŖŜşǯ ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǭȱĴǰȱǯǯȱŘŖŗŗǯȱ Ȭȱȱȱȱ¢ȱ¢ȱȱȱȱ ǯȱGlobal Change ¢ ŗŝǰȱŘśŗřȬ؜،ǯ ¢ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǭȱ £ǰȱǯǯȱŘŖŖŝǯȱȱȱ¡ȱȱȱ ȱȱ ǯȱPLoS ONE Ř, e295. ǰȱǯǰȱǭȱĴȱǰȱǯǯȱǻŘŖŖśǼǯȱȱȱȱȱ¢ȱȱȱȱ dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research ŗŗŖǰȱŖşŖŚǰȱ ŗŘȱǯȱDZȱŗŖǯŗŖŘşȦŘŖŖŚŖŖŘŜŝŗǯ ǰȱǯǰȱǭȱĴǰȱǯǯȱŘŖŖřǯȱ¢DZȱȱȱȱȱ ǯȱNature, ŚŘśǰȱřŜśǯ ¢ǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ¡ǰȱ ǯȱǭȱǰȱǯȱŗşşşǯȱěȱȱȱȱȱȱȱȱǰȱ In ȱȱȱȱȱȱȱȱȱȱȱȱ, Weller, ǯȱǭȱǰȱǯǯǰȱǯȱǰȱDZȱȱȱȱȱȱȱ¢ȱ ǰȱȱ¢ȱȱȱǯ ǰȱǯǯǰȱǯǯȱǰȱǯȱ¢ǰȱǯǯȱǰȱǯǯȱǰȱǯǯȱǰȱǯǯȱ ěǰȱȱǯǯȱǯȱŘŖŖŞǯȱȱȱȱLeptospira bacteria in pinniped ȱȱȱȱęȱȱȱȱȱȱȱ£ȱȱ ȱȱȱǯȱȱȱȱ¢ȱŚŜǻśǼDZȱŗŝŘŞȬŗŝřřǯ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯȱǯǰȱ ǰȱǯǯǯǰȱǰȱǯǰȱĵǰȱǯȱǭȱ¡ǰȱǯȱŘŖŖŝǯȱThe Age of Consequences: The Foreign Policy and National Security Implications of Global Climate Change. Washington, DC: Center for Straȱǭȱȱȱȱȱȱȱ ȱȱ¢ǯ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱȱȱȱǯȱScience řŘŖ, ŗŚśŜȬśŝǯ References ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱ¢ǰȱǯǯǰȱě¢ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ Ȃǰȱǯǯȱǭȱ££ǰȱǯȱŘŖŗŗǯȱȱȱȱȱȱ¢ȱȱ¢ǯȱ ȱȱȱ¢ şŞ, 572-592. ǰȱǯǯȱŗşşŜǯȱĴǰȱǰȱȱȱȱȱȱ¢ǯȱȱtion ŝŞǰȱşŝȬŗŖŜǯ ǰȱǯǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ·ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱ£¤ǰȱ ǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱ ǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱ ǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖŞǯȱȬȱȱȬ ȱȱȱȱ¡ȱȱȱȱȱȱȱǯȱScience řŘŗǰȱśŜŖȬśŜřǯȱ ǰȱ ǯǯǰȱ£ȬǰȱǯǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱtive timing alters population connectivity in marine metapopulations. ȱ¢ ŘŖǰŗşŘŜȬŗşřŗǯ Carter, D.W. and D. Letson. 2009. Structural Vector Error Correction Modeling of Integrated ę¢ȱǯȱMarine Resource EconomicsȱŘŚǻŗǼDZŗşȬŚŗǯ £ǰȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱ¢ȱȱȱǯȱAnnual Review of Marine Science Ř, ŗŚśȬŗŝřǯ ȱȱȱ¢ȱǯȱȱȱ¢ǯȱŘŖŖşǯȱǯȱŘDZŖşȬȬŖŖŜŝŖȬȱ (W.D. Wash). ȱȱȱȱ¢ȱǯȱŘŖŗŘǯȱȱȱDZȱ ȱȱȱȱǯȱ¢ȱŘŖŗŘȱǯȱȱȱ ȱDZȱĴDZȦȦ ǯ ǯ ȦȦȬȬǯȱ ȱȱȱȱȱȱǻǼǯȱŗşşŞǯȱȱȱVibrio parahaemolyticus ȱȱ ȱȱ ȱ¢Ȯęȱ ǰȱŗşşŝǯȱMorbidity and Mortality Weekly Report ŚŝǰȱŚśŝȬŚŜŘǯ Centers for Disease Control and Prevention (CDC). 2005 Vibrioȱȱȱ ȱȱ ȯȱǰȱȬȱŘŖŖśǯȱMorbidity and Mortality Weekly. Report śŚǰȱşŘŞȬşřŗ Centers for Disease Control and Prevention (CDC). 2005 Vibrioȱȱȱ ȱ ȯȱǰȱȬȱŘŖŖśǯȱMorbidity and Mortality Weekly. Report śŚDZşŘŞȬşřŗ ȱȱȱȱȱȱǻǼǯȱŘŖŖŜǯȱ¢ȱȱȱ ȱȱȬȬȬȱǰȱǰȱǰȱȱ¡ǰȱȱŘŖŖśǯȱMorbidity and Mortality Weekly Report śś, 727-731. Centers for Disease Control and Prevention (CDC). 2007. Preliminary FoodNet data on the inciȱȱȱ ȱȱĴȱ¢ȱȱȯŗŖȱǰȱȱ ǰȱŘŖŖŜǯȱMorbidity and Mortality Weekly ReportȱśŜDZřřŜȬřřşǯ ȱȱȱȱȱȱǻǼǯȱŘŖŖŝǯȱȱęȱȱȱ ȱȱȯȱȱǰȱŘŖŖŜǯȱMorbidity and Mortality Weekly Report śŜǻřŘǼDZŞŗŝȬŞŗşǯ Centers for Disease Control and Prevention (CDC). 2009. Preliminary FoodNet data on the inciȱȱȱ ȱȱĴȱ¢ȱȱȯŗŖȱǰȱȱ States, 2009. Morbidity and Mortality Weekly ReportȱśşDZŚŗŞȬŚŘŘǯ Centers for Disease Control and Prevention (CDC). 2010. Vital Signs: Incidence and Trends of ȱ ȱȱĴȱ¢ȱȱȱȮȱȱȱ 195 196 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱ ǰȱŗŖȱǯǯȱǰȱŗşşŜȬŘŖŗŖǯȱMorbidity and Mortality Weekly Report ŜŖDZŝŚşȬŝśśǯ Centers for Disease Control and Prevention (CDC). 2011. COVIS Annual Summary, 2009. Atlanta, DZȱǯǯȱȱȱ ȱȱ ȱǯȱǯř ȱȱȱȱȱȱǻǼǯȱŘŖŗŗǯȱȱȱ ȱȱ ȱȱȱȱȱȱ ȱȱ ȯȱǰȱŘŖŖŝȬ ŘŖŖŞǯȱMorbidity and Mortality Weekly Review Surveillance Summary ŜŖ, 1-32. ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱ ǯǰȱǰȱǯǯǰȱǰȱǯǯȱŘŖŖŞǯȱ Emergence of anoxia in the California current large marine ecosystem. Science řŗş, 920. ȱǰȱǯǯǰȱǯǯȱ ǰȱǯȱȱǰȱǯǯȱǰȱȱǯǯȱ¢ǯȱŘŖŖŜǯȱȂȱ ȱȱǯȱ¡ǰȱDZȱ¡ȱ¢ȱǯ ǰȱǯȱǯȱȬȬȱ¢ȱȱ¢ȱȱȱȬȱęȱǰȱǯŜŖřȬŜŖŞȱDZȱResearch and Small-Scale Fisheriesǯȱǯǯȱǰȱǯȱȱȱǯȱ Weber (editors), ORSTOM, Paris France (1991). ǰȱǯȱǯȱȬȬȱę¢ȱDZȱȱ¢ȱȱȱment, Canadian Journal of Fisheries and Aquatic SciencesȱŚŜDZŗřŗřȬŗřŘŘȱǻŗşŞşǼǯ Charles, A. T. Sustainability assessment and bio-socio-economic analysis: Tools for integrated coastal development, p.115-125 in: Philippine Coastal Resources Under StressǯȱǯǯȱȬ Û£ȱȱǯȱ ȱǻǼǰȱȱȱȱ ǰȱ ¡ǰȱǰȱ ȱȱȱǰȱ£ȱ¢ǰȱȱǻŗşşśǼǯ ǰȱǯǰȱǯȱǰȱ ǯȱ¢ȱȱǯȱǰȱŘŖŖşǰȱȱȱȱȱȱȱ ȱDZȱȱȱ¢ȱȱǰȱ ¡ǰȱȱDZȱȱǯȱ ĴDZȦȦ ǯǯȦȦęȦęȏŘŖŖŞǯȱǻȱŗŝȱȱŘŖŗŖǼ ǰȱǯǰȱǰȱ ǯȱǭȱǰȱǯȱŗşşřǯȱ ȱȱ¢ȱȱȱ ȱȱȱȱȱȱǰȱȱ ȱȱPagodroma nivea: a 27 year study. Oecologia şŚǰȱŘŝŞȬŘŞŚǯ £ǰȱǯǯǰȱ·ǰȱǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱ¢ȱȱȱȱȱ climate variability and change. Annual Review of Marine Science řǰȱŘŘŝȬŘŜŖǯ £ǰȱǯǯǰȱ¢ǰȱǯǰȱȬǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖřǯȱȱȱȱȱȱ DZȱȱȱȱȱęȱǯȱScience Řşş, 217-221. ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱȱ¢ȱȱȱȱȱȱ the birth rates of the harp seal in the White Sea. Inȱȱȱęȱȱȱȱȱ Mammals of the Holarctic V Conference, Odessa, Ukraine, ŗŚȬŗŞȱǰȱŗŖŖȬŗŖŚǯ ǰȱǯǯǯǰȱǰȱǯǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱǰȱǯȱǭȱ¢ǰȱǯȱŘŖŖşǯȱ ȱȱȱ¢ȱȱȱȱȱǯȱFish and Fisheries ŗŖ, 235-251. ǰȱǯǯǯǰȱǰȱǯǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱǰȱǰȱǰȱǯȱǭȱ¢ǰȱǯȱ ŘŖŗŖǯȱȬȱȱȱ¡ȱęȱȱȱȱȱȱȱ under climate change. ȱȱ¢ ŗŜǰȱŘŚȬřśǯ ǰȱǯ ǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯȬǯǰȱǰȱǯǰȱÛȱǰȱǯǰȱǰȱǯǰȱ·£ǰȱǯǯǰȱ§§ǰȱǯǰȱǰȱ ǯǰȱǰȱǯǰȱĴǰȱǯǰȱ¢ǰȱǯǰȱǭȱǰȱǯǯȱŘŖŖŝǯȱȱȱǯȱȱ ȱȱŘŖŖŝDZȱȱ¢ȱȱǯȱȱȱȱȱȱȱȱȱsessment Report of the Intergovernmental Panel on Climate Change. S. Soloman et al. (eds.), Camǰȱȱȱȱ ȱǰȱǰȱǯDZȱȱ¢ȱǰȱŞŚŝȬşŚŖǯ ȱǰȱǯȱŘŖŖŚǯȱȱ¢ȱȱȱȱȱȱȱȱȱ Coastal Waters. San Diego, CA. References ǰȱǯǯǰȱǯǯȱǰȱǯǯǯȱǰȱǯǯȱ ǰȱǯȱǰȱǯǯȱǰȱǯȱǰȱǯȱ ǰȱȱǯȱǯȱŘŖŗŗǯȱ¢ȱȱȱȱȱ¢ȱȱȱȱ ȱȱȱȱęǯȱGlobal Environmental Change, In press. ǰȱǯǰȱǯȱ ǰȱǯȱǰȱǯȱǰȱȱǯȱǯȱŗşşşǯȱȱȱȱ ȱȱ ȱȱęȱȱǻHippoglossus stenolepisǼǯȱȱȱȱȱȱȱǰȱśŜǰȱŘŚŘȬŘśŘǯ ǰȱǯǯȱȱ ǰȱǯǯȱŘŖŖŘǯȱěȱȱȱȱȱ£ȱȱȱȱ ȱȱ ęȱǯȱȱȱȱȱȱǰȱŘŘǰȱŞśŘȬŞŜŘǯ ¢ǰȱǯȱǭȱǰȱǯȱŘŖŖŞǯȱęȱȁȱȂDZȱ¢ȱȱȱȬ Stevens Fisheries Conservation and Management Act. Human Ecology Review ŗśǰȱŗŚřȬŗŜŖǯ ¢ǰȱǯȱǯǰȱǯȱȱȱȱȱǯȱĴǯȱŘŖŗŖǯȱęȱȱȱȱȱ ȱȱȱȱ¢ȱȱȱȱǯǯȱŗŘȱǯȱDZȱȱȱȱ Fifteenth Biennial Conference of the International Institute of Fisheries Economics & Trade, ¢ȱŗřȬŗŜǰȱŘŖŗŖǰȱǰȱDZȱȱȱȱȱȱȱ¢DZȱ ȱǰȱȱǯȱȱ¢ȱȱǯȱǯȱȱȱȱȱȱǭȱǰȱǰȱǰȱǰȱŘŖŖŞǯȱȱǯȱȱŖȬşŝŜřŚřŘȬŜȬŜ Climate Focus 2011 Blue Carbon: Policy Option Assessment. Report Prepared for the Linden ȱȱȱ¢ȱȱǰȱȱǯȱĴDZȦȦ ǯǯȦ ȦęȦȏȏǯȱ ȱȱ£ȱǻǼǯȱŘŖŖŝǯȱȱȱȱȱȱȱȱȱ ȱȱȱDZȱęȱȱȱȱȱȱȱȱǯȱǰȱDZȱȱȱ£ǯ ǰȱǯǯȱǭȱǰȱǯǯȱŗşşŞǯȱȱȱȱȱȱ¢ȱȱ¢ǯȱScience ŘŝşǰȱśśśȬśśŞǯ ǰȱǯȱǯǰȱǯȱǯȱ¢ǰȱǯȱǰȱǯȱȱȱǰȱǯȱǯȱǰȱǯȱ ǰȱȱǯȱǯȱ ŘŖŗŖǯȱǯȱ¢ȱęȱȱȱǯǯȱȱǯȱȱȱ ĴDZȦȦ ǯǯǯȦȦȦ¢ȏęȦǯǯ ǰȱǯǯȱǭȱǰȱǯȱȱȱ ǯȱȱȱȱęȱȱ in Fishing Communities: A Context for Social Impact Assessment. Invited paper for special issue of Coastal Management Journal. ǰȱǯǯǰȱ ǰȱǯǯǰȱǭȱǰȱǯǯǯȱŘŖŖśǯȱȱȱȱȱ seals (Mirounga angustirostris) stranded along the California coast. Journal of Wildlife Diseases ŚŗǰȱŚŘŜȬŚřŖǯ Collier, D. 2002. Cutaneous infections from coastal and marine bacteria. Dermatological Therapy ŗś, 1-9. ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱĴǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǯȱǯǰȱǰȱǯǯǰȱ¢ǰȱ ǯǯǰȱ¢ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖśǯȱȱȱ¢ȱȱȱȬȱȱȱ plague. Ecohealth Ř, 1-11. ǰȱǯǰȱǰȱǯȬǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱǰȱǯȬǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱĴǰȱǯȱȱȱȱȱ ȱȱ ȱȱęȱȱȱȱÛǯȱNature Geoscience ř, 391-397. ǰȱǯǰȱǭȱǰȱǯȱŘŖŖŚǯȱ¢ȱȱȱŗŖŖŖȱȱȱȱȱȱ CO2 in a green alga. Nature ŚřŗǰȱśŜŜȬśŜşǯ ǰȱǯǯȱŘŖŖşǯȱȱDZȱȱȱȱȱ¢ǯȱȱAnthropology and Climate Change: From Encounters to ActionsȱǰȱǯȱǭȱĴǰȱǯȱǻǯǼǯȱȱǰȱDZȱ ȱȱǰȱŗŞŜȬŗşŜǯ ǰȱǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱȱȱȱȱȱȱ AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research, ŗŗř, C02S07. 197 198 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯȱǯǰȱǯȱǯȱǰȱǯȱǰȱȱǯȱȱǻŘŖŖŞǼǰȱȱȱȱȱȱ ȱȱǰȱ¢ǯȱǯȱĴǯǰȱřśǰȱŖŗŝŖřǰȱDZŗŖǯŗŖŘşȦŘŖŖŝŖřŗşŝŘǯ ĴȱȱȱȱȱǯȱŘŖŗŖǯȱęȱȱȱ ¢¡ȱȱ ǯǯȱȱǯȱ¢ȱȱȱȱ ȱȱǰȱ ¢¡ǰȱȱ ȱ ȱȱȱȱĴȱȱȱȱȱ¢ǯȱǰȱ DC. ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱȱěȱȱȱ2 and temperature on non¢ȱDZȱȱȱȱȱȱȱȱȱǯ Proceedings of ȱ¢ȱ¢ȱȱȱ ŘŝŝǰȱŗŚŖşȬŗŚŗśǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŗşşŞǯȱȱȱ ȱȱȬ ȱȱȱȱ ȱȱȱPerkinsus marinusȱǻǼȱȱ£otics in oysters. Estuarine, Coastal and Shelf Science 46ǰȱśŞŝȬśşŝǯ ¢ǰȱǯǯȱǭȱ¢ǰȱǯǯȱŘŖŖşǯȱȱȱęȂȱȱȱȱ ȱęǯȱȱȱĴ 4ǰȱŖŘŚŖŖŝǯ ¢ǰȱǯǯǰȱȬ ǰȱ ǯǯȱǭȱ¢ǰȱǯǯȱŘŖŖşǯȱȱęȂȱȱȱȱȱ marine ecosystem services. Oceanography ŘŘǰȱŗŝŘȬŗŞŖǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŖŜǯȱȱȱȬȱȱȱȱȱȱȱěȱęȱ ȱ (Odobenus rosmarus divergens) recruitment. Aquatic Mammals řŘǰȱşŞȬŗŖŘǯ ǰȱǯǯȱǭȱǰȱǯǯǰȱŗşşŗǯȱȬȱ¢ȱȱȱ¢ȱ¡ǯȱScience ŘśŚ, şşŘȬşşŜǯ ǰȱǯǯǰȱȱȁǰȱǯǰȱǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱęȱȱ massive Poritesȱȱ ȱȱȱȱȱȱȱȱǯȱGlobal Change ¢ ŗŚǰȱśŘşȬśřŞǯȱ ǰȱǯȱŘŖŖŞǯȱȱȱȱȱȱȱęȯȱȱȱ South Indian Lagoon. Global Environmental Change ŗŞǰȱŚŝşȬŞşǯ ǰȱǯȱŘŖŖşǯȱȱȱĚȱ ȱęDZȱȱȱȱ ȱȱ ǯȱȱǰȱǯȱǯǰȱ£ǰȱǯȱȱȂǰȱǯȱǻǼȱǻŘŖŖşȱȱǼȱȱȱ ȱDZȱǰȱǰȱǯȱȱ¢ȱDZȱǯ Council on Environmental Quality (CEQ). 2010. Memorandum from on Draft NEPA Guidance ȱȱȱȱěȱȱȱȱȱȱȱǰȱȱ ¢ȱ ǯȱ¢ǰȱǰȱȱ ȱȱȱȱȱǯȱǯȱŗŞǰȱŘŖŗŖǯȱ ¢ǰȱǯǰȱǯȱǰȱǯȱǰȱȱǯȱǯȱŘŖŖŞǯȱȱȱǰȱdance and biomass on the southeastern Bering Sea shelf during summer: the potential role ȱ ȱȱ¢ȱȱȱȱ£ȱ¢ȱȱĚȱȱ ȱȱȱęǯȱȱȱȱȱ¢ȱȱȬ ȱȱȱ¢ȱǻǼǰȱȱŘřȱȬȱŘśǰȱŘŖŖŞǰȱĴDZȱŘŜǯȱǻȱȱ ǯǯǼǯ ǰȱǯǰȱǯȱ ǰȱǯȱǰȱȱǯȱ ǯȱŗşşřǯȱȱǰȱǰȱȱȱęȱȱȱȱȮȱȱȱ ȱȱǯǯȱȮȱȱęȱ ǯȱȱȱ ǰȱǯ ǰȱǯǯȱŘŖŖşǯȱȱȱȱȱȱȱĴȱDZȱȱȱȱȱ Ȭ ¢ȱǯȱNatural Resources and Environment ŘŚǰȱŗŚȬŗŞǯ ǰȱǯǯȱŘŖŗŖǯȱ¢ȱȱȱȮȱȱȱDZȱęȱȱȱȱ ȱȱ ǯȱHarvard Environmental Law Review řŚ, 9-75. ǰȱǯǯǰȱǰȱǯȱǭȱ ǰȱǯǯȱŘŖŖŞǯȱȱȱȱěȱȱȱ human stressors in marine systems. ¢ȱĴ ŗŗǰȱŗřŖŚȬŗřŗśǯ References ǰȱȱǯǰȱȱȱĴǰȱǯȱŘŖŖşǯȱAnthropology and Climate Change: From Encounters to Actions. ȱǰȱDZȱȱȱǯ Ĵǰȱǯǰȱ¡ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȱŘŖŖşǯȱȱȱȱ ȱȱȱ ȱęȱȱǯȱClimate Dynamics řřǰȱśŜśȬśŞşǯ ¢ǰȱǯȱŘŖŖŝǯȱȱȱȱ ȱǯȱNature ŚŚşǰȱŘŜŝǯ ǰȱǯǯǰȱĴǰȱǯǰȱȬ¢ǰȱǯǰȱ £ǰȱǯǰȱǭȱ¢ǰȱǯȱŘŖŗŗǯȱ¢ȱȱ ȱȱ Ȭ ȱDZȱȱȱȱȱęǯȱCoral Reefs řŗ, ŘřşȬŘŚśǯ ǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱǰȱǯǯǰȱȱ ǰȱǯǰȱŘŖŖşǯȱȱȱȱ Typology Issues Paper Tidal Wetlands Restoration (2009). Report prepared for California ȱȱ¢ǯȱĴDZȦȦ ǯǯȦ ȬȦȦŘŖŖşȦŖřȦ ȬȬȏȬ ǯȱ ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱě¢ǰȱǯȱǭȱǰȱǯȱŘŖŗŗǯȱMitigating Climate Change through Restoration and Management of Coastal Wetlands and Near-shore Marine Ecosystems: Challenges and Opportunities. ȱȱȱŗŘŗǰȱǰȱDZȱȱǰǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱȱǰȱǯǯǰȱĜǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱ ěǰȱǯǯȱŘŖŖŝǯȱęȱ¢ȱȱȱȱEmiliania huxleyi ȱȱȱDZȱȱȱŘŖŖŗȱȱŘŖŖŜȱȱȱȱǯȱMarine Ecology Progress Series řŚŞǰȱŚŝȬśŚǯ ǰȱǯ ǯȱŗşşŜǯȱ ȱȱȱȱȱȱęȱǯ Oldendorf/Luhe, Germany: Ecology Institute. Ĵǰȱǯǯǰȱǯȱǰȱǯȱ¢ǰȱǯȱǰȱǯȱǰȱǯȱǰȱȱǯȱǯȱŘŖŖŞǯȱȱȬȱ model for understanding community resilience to natural disasters. Global Environmental ChangeȱŗŞDZśşŞȬŜŖŜǯ £ǰȱǯǰȱǰȱǯȱǭȱǯȱ ǰȱŘŖŖřǯȱȱȱȱȱȱȱȱȱability. Geophysical Monograph 134, American Geophysical UnionǰȱŗŚŝȬŗŝŘǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯȱȱǰȱ ǯȱŗşŝŘǯȱVibrio parahaemolyticus gastroenteritis in Maryland. I. Clinical and epidemiologic aspects. American Journal of Epidemiology şŜDZŚŗŚȬŚŘŜǯ ěǰȱǯǯȱŘŖŖŚǯȱȱȱȱȱȱDZȱȱȱȱ ecological studies. Annual Review of Physiology 66ǰȱŗŞřȬŘŖŝǯ ǰȱǯȱŘŖŖŗǯȱȱÛǰȱ¡ǰȱȱęȱěȱȱ¢ȱ¢ǰȱǯȱJournal of Environmental Economics and Management, ŚŘǰȱřřŜȬřśşǯ ȱǰȱȱǰȱ£ěȱǰȱ¢ȱǰȱȱǰȱȱǯȱǻŘŖŖşǼȱȱȱȱȱ ȱȱȱȱDZȱȱȱȱȱ¢ǰȱ¢ǰȱȱȱȱǯȱȱȱŜǻŚǼDZȱŗŖŖŖŖśŞǯȱDZŗŖǯŗřŝŗȦǯǯŗŖŖŖŖśŞ ǰȱǯǰȱȱǰȱǯȱŘŖŖŖǯȱȱ ȱȱȱVibrio Infections for Clinicians. Infectious Medicine ŗŝǻŗŖǼDZŜŜśȬŜŞśǯ ǰȱǯǰȱ¢ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱȱǰȱǯǰȱ ǰȱǯǰȱ ¢ǰȱǯǰȱǰȱǯǰȱǰȱǯȱȱǰȱǯȱŘŖŖŖǯȱȱȱȱ ȱVibrio parahaemo¢ȱ¢ȱȱ ȱ¢DZȱȱȱ¢ǯȱJAMAȱŘŞŚǻŗŘǼDZŗśŚŗȬŗśŚśǯ ǰȱǯȱŘŖŖşǯȱȱȱȱȱȱ£ȱȱȱȱȱ ¡ȱȱŗŞŜŖǯȱNature Geoscience ŘǰȱŜśşȬŜŜŘ ǰȱǯȱŗşşŗǯȱȱDZȱȱ£ȱȱȱȱȱȱȱȱ of the Rapacious Fisher. Maritime Anthropological Studies (MAST)ȱŚǻŗǼDZȱŗřȬřŗǯ ¢ǰȱǯǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱǰȱ ǯȱǰȱǯȱǰȱǯȱ ǰȱǯȱǰȱǯȱǰȱǯȱ ¢ǰȱǯȱǰȱǯȱǰȱȱǯȱȱǻŘŖŖŝǼǯȱ 199 200 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱȱDZȱȱȱ ȱȱȱǯȱȱřŗśDZȱ ŗŜŝşȬŗŜŞŚǯ ¢ǰȱǯǯȱŗşŞśǯȱ¢ȱȱȱǯȱAnnual Review of Ecology and Systematics ŗŜ, ŘŗśȬŘŚśǯ ¢ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯȱǭȱǰȱǯǯǯȱŗşşşǯȱȱȱȱȱȱȱ demography: the role of oceanographic climate. Ecological Monographs Ŝş, 219-250. ȱǰȱǯǯǰȱǰȱǯǯǰȱěǰȱǯǯǰȱ ǰȱǯ ǯȱǭȱ£ǰȱǯǯȱŘŖŗŗǯȱȱȱȬ ȱȱȱȱ ȱȱǯȱDiversity and Distributions ŗŝ, ŗŗşŞȬŗŘŖşǯ ȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖşǯȱȱȱȱDZȱȱǰȱȱȱ ǯȱȱȱȱȱȱȱśřŝǰȱǰȱ¢DZȱȱȱȱ£ȱȱȱȱǰȱǯȱŗřŝȬŘŗśǯ ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖŜǯȱ ¢¡ȱȱȱȱȱ ȱĴȱ¢ǰȱǰȱȱȱŘŖŖŗȱȱŘŖŖŘǯȱNortheastern NaturalistȱŗřǰȱŗŝřȬŗşŞǯ ǰȱǯǰȱǰȱǯȱǯǰȱǰȱǯǰȱãǰȱ ǯȬǯȱǭȱǰȱǯȱŘŖŗŗǯȱȱȱȱ ȱȱęȱȱȱ¢ȱȱęDZȱȱ ȱȱ recommendations for future research. ICES Journal of Marine Science ŜŞ, 1019-1029. ¢ǰȱǯǯǰȱ ǰȱǯǯ ǯǰȱǰȱǯǯȱǭȱ ¢ǰȱǯǯǯȱŘŖŖşǯȱȱȱȱȱ¡ȱ ecological events. Ecological Monographs ŝşǰȱřşŝȬŚŘŗǯ ǰȱǯȱǭȱǰȱ ǯǰȱŘŖŖŞǯȱȱȱȱȱȱȱȱȱȱȱȱspheric circulation forcing, 1979-2007. ¢ȱȱĴ řśǰȱŖŘśŖŚǯ Dessler, A.E. 2011. Cloud variations and the Earth’s energy budget. ¢ȱȱĴ řŞ, L19701. ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱ ǰȱȱȱȱǰȱȬȱȱ ȱǰȱǰȱǯȱȱȱ¢ȱȱȱǰȱŞȬŗȬŘřǯȱĴDZȦȦ ǯȦȦȦŝ¡Ś¡Ŗ¡ ȱ ȱ£ǰȱǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖśǯȱȱ ȱȱȱȱ Current System: Dynamics and ecosystem implications Journal of Physical Oceanography řś, řřŜȬřŜŘǯ ȱ£ǰȱǯǯǰȱǯǯȱǰȱǯǯȱǰȱǯǯȱǰȱȱǯǯȱǰȱŘŖŖşDZȱȱannual variability of the Florida Current: Wind forcing and the North Atlantic oscillation. Journal of Physical OceanographyǰȱřşǻřǼDZŝŘŗȬŝřŜǯ £ȱǯǯȱǭȱȱǯǯȱŘŖŖşǯȱȱ¢¡ȱǯȱDZȱȱǰȱȱǰȱȱ ȱǻǯǼǰȱȱ¢¢ǰȱ ¢¡ǯȱǯȱŘŝǯȱȱǰȱǰȱǯȱǯŗȬŘřǯ £ǰȱǯǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱ£ȱȱȱȱȱ¢ǯȱ Science řŘŗǰȱşŘŜȬşŘşǯ £ǰȱǯǯǰȱǭȱǰȱǯȱŗşşśǯȱȱȱ¢¡DZȱȱ ȱȱȱȱěȱȱȱ behavioural responses of benthic macrofauna. ¢ȱȱȱ¢DZȱȱȱ Review, řřǰȱŘŚśȬřŖřǯ £Ȭǰȱǯǰȱ¢ǰȱǯǯǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱ ȬǰȱǯȱŘŖŗŘǯȱȱ ȱȱęȱȱ ȱȱȱ¢ȱȱȱȱȱǯȱ Journal of Phycology ŚŞ, 32-39. £Ȭǰȱǯǰȱ£ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱ¢ǰȱǯǯȱŘŖŗŗǯȱ ȱ2 enhances the ȱȱȱ ȱȱǯȱ¢ȱĴ ŗŚǰȱŗśŜȬŗŜŘǯ £Ȭǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱěǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱ ǯǯǰȱǰȱǯ ǯȱǭȱ ȬǰȱǯȱŘŖŖşǯȱȱȱȱȱȱȱDZȱ ȱǰȱȱ ȱȱȱ¢ǯȱPLoS ONE 4, e5239. References ǰȱǯǯǰȱǰȱǯǯǰǭȱ ǰȱǯǯȱŘŖŗŗǯȱȱěȱȱȱȱȱȱ composition, succession and phenology: a case study. ȱȱ¢ǯŗŝǰȱŘřŜŖȬŘřŜşǯ ǰȱǯǯǰȱǯȱǰȱǯȱǰȱǯǯȱ ǰȱǯȱ¢ǰȱȱǯȱŘŖŖŞǯȱȱ¢ȱȱ ȱȱȱȱȱȱǯȱȱȱřDZȱŗśŞŚǯ ǯȱŘŖŖŝǯȱ ȱȱȱȱȱȱ¡ȱ ȱȱȱ ȱ ęęȱȱęȱȱȱǻǼǯȱDZȱȱ¢ǰȱȱǰȱȱ Vatsos, Stein Mortensen. Oslo: VESO Publisher. £ǰȱǯǰȱǭȱǰȱǯ ǯȱŘŖŖřǯȱȱȱȱ¢ȱȱǯȱAnnual Review of Environment and Resources ŘŞǰȱŗřŝȬŗŜŝǯȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯȱǭȱǰȱǯȱŗşşşǯȱȱȱȱȱȱ ȱ£ȱ¢ȱǯȱEmerging Infectious Disease śǰȱřŜŝȬřŝŞǯ ǰȱǯȱǯǰȱǯȱǯȱȱȱǯȱǯȱǯȱŗşŞŜǯȱȱ ȱȱȱ¢DZȱǰȱ ȱȱǯȱǰȱDZȱ¢ȱȱĴȱǯ ȱǯǯǰȱěȱǯǯǰȱ¢ȱǯǰȱȱǯǰȱȱǯǰȱȱǯȱǻŘŖŗŗǼȱ ȱȱȱȱȬȱȱȱȱǯȱȱȱŚDZȱŘşřȬŘşŝǯȱ ¢ȱǯǯǰȱ ȱǰȱȱȱȱǯȱǻŘŖŖŝǼǯȱȱȱȱȱȱ ȱȱȱȱȱęȱȱȱȱȱ¢ǯȱǰȱŗŖŚǰȱ ŗŚśŞŖȬśǯ ¢ǰȱǯǯȱŘŖŗŖǯȱȱ ȱȱȱȱȱȱȬȱ¢ǯȱ ȱřŘŞDZŗśŗŘȬŗśŗŜǯȱ ¢ǰȱǯǯǰȱ¢ǰȱǯǯǰȱ¢ǰȱǯǯȱǭȱ¢ǰȱǯǯȱŘŖŖşǯȱȱęDZȱȱȱ2 problem. Annual Review of Marine Science ŗǰȱŗŜşȬŗşŘǯ ¢ǰȱǯǯǰȱǰȱǯǰȱě¢ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱ ǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯȱ & Talley, L.D. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4, 11-37. ȱǰȱ¢ȱȱȱȱĴȱȱȱŘŖŖşȱȱȮȱ ȱȱȱȱ ȱȱȱǯȱȱDZȱȱȱǯȱǯȱŘŘȱřŖŝşȬşŝ ¢ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŗŗǯȱ ǯȱ Dynamics of Disaster: Lessons on Risk, Response and Recoveryǯȱ ¢ǰȱǯǯǰȱǭȱǰȱǯǯȱǻǯǼȱDZȱǰȱŘŖřȬŘŖŝǯȱ ǰȱǯǰȱǯȱ ǰȱȱǯȱȱǻŘŖŗŗǼȱȱȱȱ ȱȱȱȱȱ Ȭ Ȭȱȱȱȱǯȱȱȱȱǰȱȱ ǰȱŜŚǰȱǯȱŘŗŖȬŘŗŚǯ ǰȱǯǯǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱ ǰȱȱǯȱŘŖŖřǯȱȱȱȱ ȱ¢ȱȱȱ¢ȱȱ ȱȱȱȱǯȱǯȱ ŘŗŗȬŘřřȱDZȱǯǯȱ ǰȱǯȱǰȱǯȱĴǰȱȱǯȱǰȱǯȱȱȱȱ ȱȱęȱȱȱǯȱȱ¢ȱǰȱ Washington, DC. ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱȱȱȱȱȱ coral reefs. Marine Ecology Progress Series ŚŗřǰȱŘŖŗȬŘŗŜǯ ǰȱǯǯǰȱ ǰȱǯǯǰȱĴǰȱǯȱǭȱǰȱǯǯȱŘŖŖŝǯȱȱȱȱȱȱ ȱ ȱȱȱȱȱ¢ǯȱClimate Research řř, ŘŝŗȬŘŞřǯȱ Durrenberger, E. P. 1997. Fisheries Management Models: Assumptions and Realities or, Why Shrimpers in Mississippi Are Not Firms. Human OrganizationȱśŜǻŘǼDZŗśŞȬŗŜŜǯ ǰȱ ǯȱǭȱǰȱǯǯȱŘŖŖŜǯȱȱȱ¢ȱȱȬȱ¢ǯȱAnnual Review of Environment and Resources řŗǰȱřŜśȬřşŚǯ 201 202 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǯǰȱǰȱǯǯȱǭȱ ¢ǰȱǯǯȱŗşŞśǯȱȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱǯȱȱ¢ ŞŚǰȱŘŞŝȬŘşŚǯ Ecosystem Assessment Program (EAP). 2009. Ecosystem assessment report for the Northeast U.S. Continental Shelf Large Marine Ecosystem.ȱȱ ǰȱDZȱǯǯȱȱȱǰȱ Northeast Fisheries Science Center Reference Document 09-11. Ecosystem Assessment Program (EAP). 2012. Ecosystem Status Report for the Northeast ǯǯȱȱȱȱȱ¢ǯȱȱ ǰȱDZȱǯǯȱȱȱ Commerce, Northeast Fisheries Science Center, in press. ǰȱǯǰȱǭȱǰȱǯǯȱŘŖŖŚǯȱȱȱȱȱȱȱȱ¢ȱ and trophic mismatch. Nature ŚřŖǰȱŞŞŗȬŞŞŚǯ Ehler, C. & Douvere, F. 2009. Marine spatial planning: A step-by-step approach toward ecosystem-based management.ȱȱȱȱȱǯȱśřǰȱȱȱǯȱŜǯȱǰȱDZȱernmental Oceanographic Commission and Man and the Biosphere Programme. ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱĴǰȱǯǰȱǭȱǰȱǯǯȱŘŖŖŝǯȱȱȱ ȱȱȱȱȱȱȱ ȱ¢ȱ¢ȱȱȱ ȱ ȱǯȱAmerican Journal of Tropical Medicine and Hygiene ŝŝǰȱşşşȬŗŖŖŚǯ Ĵǰȱǯȱǯǰȱǰȱǯȱǯǰȱǰȱǯȱǯǰȱǰȱǯȱǯǰȱĵ ¢ǰȱǯȱǯǰȱ¢ǰȱǯȱǯǰȱȱ ǰȱǯȱŘŖŖśǯȱęȱȱǻȱ¡Ǽȱǰȱǰȱȱȱ ȱȱȱęȱ ǯȱǯȱǯȱǯȱȱǯȱǯȱǯȱ ŚŜDZŗŘŘǯ ǰȱǯǯǰȱěǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱ ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱĴǰȱǯǯǰȱǭȱ ǰȱǯǯȱŘŖŖŘǯȱȱȱ ȱȱȱȱ¢ȱȱȱ ȱȱȱȱ ȱȱǰȱŗşŜŖȬŗşşŝǯȱAmerican Journal of Tropical Medicine and Hygiene 66ǰȱŗŞŜȬŗşŜǯ ȱ ȱǯȱŘŖŖśǯȱ¢ȱȱȱȱȱȱȱȱ¢DZȱȱ and Conclusions. National City, CA. ǰȱǯȱǭȱǰȱǯǯȱŘŖŖŚǯȱȱȱȱȱȱȱȱPerna perna ȱȱDZȱěȱȱǰȱȱȱȱ£ǯȱMarine Ecology Progress Series ŘŜŝ, ŗŝřȬŗŞśǯ ǰȱǯȱǯǰȱǯȱǯȱǰȱȱǯǯȱȱǯȱŘŖŖŝǯȱȃ¢ȱȱȱȱȬ ȱ¢ȱȱȱȱ¢ȱȱȱȱ ȱȱȱŘŖȱ¢ȱ ǯȄȱȱȱ¢ȱŗřȱǻŗŗǼDZȱŘŚŘśȬŘŚřŞǯȱDZŗŖǯŗŗŗŗȦǯŗřŜśȬŘŚŞŜǯŘŖŖŝǯŖŗŚśŖǯ¡ǯ ǰȱǯǯǰȱǯȱǰȱǯȱǰȱǯȱ ¢ǰȱǯȱǰȱȱǯȱŘŖŗŗǯȱȱȱ ȱ ȱȱȱ£ȱȱȱȱ¡ȱǯȱȱȱ ȱŗDZȱŗŜśȬŗŜşǯ ¢ǰȱǯǯȱŘŖŖŞǯȱȱęȱȱȱȬ2 ocean. Science řŘŖ, 1020-1022. ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱęȱȱȱDZȱȱ ǯȱOceanography ŘŘǰȱŗŜŖȬŗŝŗǯ ¢ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱȱęȱȱȱ fauna and ecosystem processes. ICES Journal of Marine Science ŜśǰȱŚŗŚȬŚřŘǯ ǰȱǯȱǯǰȱǯȱǯȱȱȱǯȱǯȱĴǯȱŗşŞşǯȱĴȱȱȱȱȱȱ ȱȱǯȱFisheriesȱŗŚDZŚǰȱŗŖȬŗŝǯ ǰȱǯǯȱȱǯȱǯȱŘŖŗŗǯȱȱȱȱęȱȱȱǰȱŘŖŖşǯȱȱ Department of Fish and Game Division of Subsistence, Technical Paper No. 357, Anchorage. ȱȱ¢ȱȱȱȱ ȱȱȱȱȱǰȱ Ĵǯȱ References ǰȱǯǯǰȱǯȱ ǰȱǯȱǰȱǯǯȱǰȱǯǯȱǰȱǯǯȱ ǰȱǯȱǰȱǯȱ Ȭ ǰȱǯȱǰȱȱǯǯȱǯȱŘŖŗŗǰȱǯȱȱȱȱęȱ ŘŖŖŞȱȱǯȱȱȱȱȱȱȱȱȱǰȱȱ ȱǯȱřśşǰȱǯȱȱȱ¢ȱȱȱȱ ȱȱ ȱȱȱǰȱĴǯ ǯȱŘŖŗŖǯȱȱȱŘŖŗŖǯȱȱȱȱȱȱȱǯȱśŖŖȦŗǰȱ Rome, Italy: 120 p. Ȧ ǯȱŘŖŗŗǯȱȱȱȱȱȦ ȱ¡ȱȱȱȱȱȱęȱ ȱȱǯȱǰȱȱȱȱ£ȱȱȱȱDzȱ ǰȱȱ ȱ£ǰȱśŖȱǯ ǰȱǯȱŗşşśǯȱȱȱȱȱȱǯȱEmerging Infectious Disease ŘǻŚǼDZȱŘśşȬŘŜşǯ ǰȱǯǰȱǰȱǯǰȱ£ǰȱǯǯǰȱǰȱǯǯǯǰȱĵǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱ ǯǰȱǰȱǯǰȱǯǯǰȱĴǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱ ĵǰȱǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱěǰȱǯȱŘŖŗŖǯȱȱ ȱȱȱ¢ȱȱȱȱ ǯȱPLoS ONE śǰȱŗŗşŗŚǯ ǰȱǯȱŘŖŖŞǯȱClimate-related needs assessment synthesis for coastal management. Charleston, S.C.: National Oceanic and Atmospheric Administration, Coastal Services Center. ££ǰȱǯǰȱȱǯǯȱǯȱŘŖŖşǯȱȃȱȱȱȱěDZȱȱ¢ȱȱȱ ǯȄȱȱȱřŘDZȱŗśŘȬŗŝŝǯ ȱǯȱŘŖŖŞǯȱDepartment of the Interior: endangered and threatened wildlife and plants; determination of threatened status for the polar bear (ȱ) throughout its range. 73 Fed. ǯȱŘŞŘŗŘǰȱ¢ȱŗśǰȱŘŖŖŞǯ Federal Register. 2010a. Environmental Protection Agency: Clean Water Act Section 303(d): notice of call ȱȱȱȱřŖřǻǼȱȱȱȱęǯ 75 Fed. Reg. 13537, Mar. 22, 2010. Federal Register. 2010b. National Oceanic and Atmospheric Administration: endangered and threatened ȱȱDzȱȱȱȱȱȱȱȱȱȱȱĴȱǯ ŝśȱǯȱǯȱŜśǰŘřşǰȱǯȱŘŘǰȱŘŖŗŖǯ Federal Register. 2010c. National Oceanic and Atmospheric Administration: endangered and threatened DzȱȱȱşŖȬ¢ȱęȱȱȱȱȱȱŞřȱȱȱȱȱȱȱȱ under the Endangered Species Act (ESA).ȱŝśȱǯȱǯȱŜǰŜŗŜǰȱǯȱŗŖǰȱŘŖŗŖǯ Federal Register. 2011. Department of the Interior: endangered and threatened wildlife and plants; ŗŘȬȱęȱȱȱȱȱȱȱęȱ ȱȱȱȱǯȱŝŜȱǯȱǯȱ ŝŜřŚǰȱǯȱŗŖǰȱŘŖŗŗǯ ǰȱǯǯȱǭȱĴǰȱǯǯȱŗşşŚǯȱȱȱȱȱęȱǯȱFisheries ŗşǰȱŜȬŗřǯ ¢ǰȱǯȱǯǰȱ¢ǰȱǯǯȱǭȱ¢ǰȱǯǯȱŘŖŖşǯȱȱęDZȱȱȱȱȱ ȱȱȱ ȬŘȱǯȱOceanography, ŘŘǰȱřŜȬŚŝǯ ¢ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱĴǰȱǯȬǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱ¢ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯȱǭȱ¢ǰȱǯȱŘŖŗŖǯȱȱȱȱ ȱȱ ȱęǯȱȱProceedings of OceanObs ’ 09: Sustained Ocean Observations and Information for Society (Vol. 2), Venice, Italy, 21 - 25 September 2009ǯȱ ǰȱǯǰȱ ǰȱǯǯȱǭȱǰȱ D. (eds.). ȱȱȬřŖŜǯȱDZŗŖǯśŘŝŖȦŖşǯ ¢ǰȱǯǯǰȱǰȱǯǯǰȱ £Ȭ¢ǰȱǯǯǰȱǰȱǯȱǭȱ ǰȱǯȱŘŖŖŞǯȱȱȱ ȱȱȱȃęȄȱ ȱȱȱȱǯȱScience řŘŖǰŗŚşŖȬŗŚşŘǯȱ ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱ¢ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŚǯȱȱ of anthropogenic CO2 on the CaCO3 system in the oceans. Science řŖśǰȱřŜŘȬřŜŜǯ 203 204 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǯǰȱǰȱǯȱǯȱǯȱȱǰȱǯȱŘŖŖşǯȱȱ¢ȱȱȱȱ ȱDZȱȱȱȱȱȱȱ¢ǰȱŗşşŚȬŘŖŖřǯȱNatural Resource Modeling ŘŘǻŗǼDZŗŖśȬŗřŜǯ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȬǯǰȱǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŖŞǯȱȱ ěȱȱȱ2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology ŚřǰȱŞŝȱȬȱşŞǯ ǰȱǯ ǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖśǯȱȱȱȱȱȱǻPhoca hispida) ȱȱ ȱ ȱ¢ǯȱMarine Mammal Science Řŗ, 121-135. ¢ǰȱ ǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱęȱěȱȱ¢ȱȱȱȱSemibalanus balanoides at its southern range edge? Ecology şŗǰȱŘşřŗȬŘşŚŖǯ ǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱ ¢ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖŝǯȱ¡ȱ¡ȱȱĴȱȱǻTursiops truncatusǼȱȱ ȱKarenia brevis blooms in Sarasota Bay, Florida. ȱ¢ ŗśŘǻŚǼǰȱŞŘŝȬŞřŚǯ ǰȱǯȱȱ¢ǰȱǯȱŘŖŖŚǯȱȱȱDZȱȱ ȱȱȱȱȱȬ determination and cultural heritage in a national and international context. Environmental Law Reporter News and AnalysisǰȱřŚǰȱŗŖŝŜřȬŗŖŝŞŝǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱ ȱ¢DZȱȱȱ the persistence of the invasive mussel, Perna viridis ȱȱȱ£ȱȱȱȱ ȱǯȱȱȱ¡ȱȱ¢ȱȱ¢ȱŚŖŖǰȱŘśŖȬŘśŜǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŝǯȱ ȱȱ ȱȱȱȱ ȱȱȱȱ ȱȱȱȱǯȱȱ¢ řŖǰȱŗřşśȬŗŚŖśǯ Fischer, F. 2000. Citizens, experts, and the environment: The politics of local knowledge. Durham, NC: ȱ¢ȱǯ Fletcher, C. 2010. ȁȂȱȱǯȱęȱǰȱŘŖŗŖȱ ȱȱȱ. lulu, DZȱȱȱȱȱȱȱ¢ȱǻǼǯ ǰȱǯǯǰȱǰȱǯǯǰȱĴǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱĴǰȱǯȬǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱ ¢ǰȱǯǯǰȱǰȱ ǯǯǰȱęǰȱǯǯǰȱ ǰȱǯ ǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱĴǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱȱ ǰȱǯǯȱǭȱǰȱǯ ǯȱŘŖŖśǯȱ¡DZȱȱȱȱȱȱties. Nature ŚřśǰȱŝśśȬŝśŜǯ ȱȱ¢ǯȱŘŖŗŗǯȱȂȱȱȱȱ ȱ¢ȱȱ ȱȱǯȱȱȱȱȱŗŞǰȱŘŖŗŗǯȱȱ¢ȱşǰȱŘŖŗŘȱȱ ĴDZȦȦ ǯǯȦȦȦŖŚŗŗȦŖŚŗŗŗşǯǯ ǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȬǰȱ ȬȱȱȱȱȬȱęȱȱȱȱȱȱ Mexico. ȱȱ¢ ŗŜǰȱŚŞȬśşǯȱ ¢ǰȱǯȱǯǰȱ£ǰȱǯǰȱ ¢ǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱ impacts on Atlantic cod (Gadus morhuaǼȱěȱȱȱǯȱMitigation and Adaptation Strategies for Global Change ŗřǰȱŚśřȬŚŜŜǯ ¢ǰȱǯǯǰȱǰȱǯǯǰȱĴǰȱǯ ǯǰȱǰȱǯǯǰȱ ǰȱǯǯȱǭȱǰȱǯȱŘŖŖŝǯȱacteristics of a green turtle (Chelonia mydasǼȱȱȱ ȱȱȱ during a hypothermic stunning event. Gulf of Mexico Science ŘśǰȱŗřŗȬŗŚřǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱěǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱ ǰȱǯǯȱ ŘŖŖŚǯȱȱǰȱǰȱȱ¢ȱȱ¢ȱǯȱAnnual Review of Ecology, Evolution, and Systematics řśǰȱśśŝȬśŞŗǯ References ȱǯȱǯȱǯǯȱŘŖŖŝǯȱȱ ȂȱȱŗşŞŖȬŘŖŖśǯȱFAO For. Pap. 153, Food Agric. ǯȱǯǯǰ ȱǯȱǯȱǯǯȱŘŖŗŖǯȱ¢ȱȱȱǯȱFAO Yearb., Food Agric. Org. ǯǯǰȱ ȱȱȱ£ȱȱȱȱȱǭȱȱ ȱ£ȱ ǻ ǼǯȱŘŖŗŗǯȱȱȱȱȱȦ ȱ¡ȱȱȱȱȱȱęȱȱȱ ConsumptionǯȱDZȱȱȱȱ£ȱȱȱȱDzȱDZȱ ȱ ȱ£ǯ ǰȱǯǯȱŘŖŖşǯȱ¢ȱȱȱȱ¢ȱȱȱ¢ȱȱȱȱȱȱ DZȱȱȱ¢ȱȱǰȱǯȱRegional Environmental Change şDZŞřȬŗŖŖǯ ǰȱǯǯǰȱǯȱǰȱǯȱǰȱǯȱǰȱȱǯȱǯȱŘŖŗŖǯȱȱȱ¢ȱȱ for Canada’s Inuit population: The importance of and opportunities for adaptation. Global Environmental Change 20(1):177-191. ǰȱǯǯȱŗşşŜǯȱȱ¡ȱ¢ȱȱ¢ȱȱPerkinsus marinus into the northeastern ȱDZȱȱȱȱǵȱȱȱęȱ ŗśǰȱŚśȬśŜǯ ǰȱǯȱȱ ǯȱ¢ǯȱŘŖŖŞǯȱȱȱȱȱDZȱȱ¢ȱȱ ȱȱ ęȱǯȱJournal of Occupational and Organizational Psychology ŞŗǻŘǼDZřŗşȬřŚŗǯ ǰȱǯȱǯǰȱȱǯȱǯȱ ǯȱŘŖŖŝǯȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱǯȱContinental Shelf Research 27: ŘřŗřȬŘřŘŞǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯȱŘŖŖŗǯȱȱȱ ȱȱȱȱȱ the carbon cycle. ¢ȱȱĴ, ŘŞǰȱŗśŚřȬŗśŚŜǯ ǰȱǯǰȱ¢ȱȱȱǰȱȱȱȱǯȱŗşşŜǯȱ¢ȱȱȱĴȱȱǰȱ¢ȱȱ¢ǯȱĴȱȱDZȱ ǯǯȱ ȱȱǯȱ¢ȱŘŘǯȱ ǰȱǯȱǯǰȱȱ¢ǰȱȱǯȱŘŖŗŖǯȱȱȱȱȱȱ ȱ ȱǻǼȱȱȱȱ ȱǰȱŗşŞŝȬŘŖŖŜǯȱȱȱȱȱȱ ȱŗŗǻřǼDZȱŘşřȬŘşşǯȱȱȱ¢ȱȱȱȱ ȱȱ ȱȱȱǰȱĴǯ ěǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŝǯȱConfronting Climate Change in the U.S. Northeast: Science, Impacts, and Solutions. Synthesis report of the Northeast Climate Impacts Assessment (NECIA).ȱǰȱDZȱȱȱȱȱǻǼǯȱ ǰȱǯȬǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱÛȬ ¢ǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŖŞǯȱȱ ȱȱ2, N2ȱę¡ǰȱȱ Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnology and Oceanography śřǰȱŘŚŝŘȬŘŚŞŚǯ ǰȱǯȬǯǰȱǰȱǯǯǰȱǰȱǯǯ ǭȱ ǰȱǯǯȱŘŖŗŖǯȱěȱȱȱ2 and phosȱ¢ȱȱ¡ȱȱȱ¢¢ȱȱȱȱȱĚȱ ȱęǯȱȱȱ¢ȱśşǰȱśśȬŜśǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱ ¢ǰȱǯȱŘŖŖŞǯȱȱȱȱǯȱAmerican Journal of Preventive Medicine řśǰȱŚřŜȬŚśŖǯ ǰȱǯȱǯǰȱ¢ǰȱǯȱǭȱǰȱǯȱǯȱŘŖŖřǯȱȱȱȱȱȱȱ ǯȱǯȱǯȱŗřǰȱřŘDZŚŜ ǰȱǯǯȱŗşşŗǯȱęȱȱȂȱDZȱȱȱȱ ȱȱȱȱ ęǯȱSociety and Natural Resources 4, 101-121. 205 206 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ¢ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǯǰȱǰȱ ǯǯǰȱĵǰȱǯǯȱǭȱĴǰȱǯǯȱŘŖŖŞǯȱȱȱȱȱ¢DZȱȱ Trends, Questions, and Potential Solutions. Science řŘŖǰȱŞŞşȬŞşŘǯ ǰȱǯǰȱ ǰȱǯǯǰȱ §ǰȱǯȬǯȱǭȱ ǰȱǯǯȱȱǯȱȱęȱȱȱ ¢ȱȱȱȱDZȱȱ ȱȱȱ ȱ2ǰȱ ǰȱȱȱ radiation. Marine Ecology Progress Series. ȬǰȱǯȱȱǯȱǯȱŘŖŗŗǯȱȱȱŘŖŗŗȱȱȱǯȱȱȱ ȱȱşȬŗŗȱȱŘŖŗŗȱȱȱȱȱȱȱǯȱĴDZȦȦ ǯǯǯ ȦȦȦȦŘŖŗŗȏǯ ÇȬǰȱǯȱǯȱŘŖŖŝǯȱȂȱ ȱȱȱȱDZȱȱ ȱęȱȱȱȱ ȱȱȱȱǯȱAmerican AnthropologistȱŗŖşǻřǼDZśŘşȬśřŜǯ Ȭ¢ǰȱǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱȱȱ Ȭȱȱ ȱ ěȱȱǯȱJournal of Geophysical Research ŗŗśǰȱŚŖŗŗǯ ǰȱǯȱŗşŞşǯȱȱȱȱȱǯȱȱ¢ȱŚǰȱŘŖŗŘȱȱĴDZȦȦ ǯ ǯȦȦȏȦȏȦȏĚȏ ǯǯȱȱ ȱǰȱȱȱȱȱȱȱȱȱȱǰȱȱ ȱ¢DZȱȱǰȱǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖřǯȱȬȱȬ ȱ declines in Caribbean corals. Science řŖŗǰȱşśŞȬşŜŖǯ Ȭǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱǰȱǯȱǯǰȱǰȱǯȱ ǭȱĵǰȱǯȱŘŖŗŗǯȱŘŖŗŗDZȱȱ ȱȱȱęȱ ȱǻOdobenus rosmarus divergens). ǰȱDZȱǯǯȱȱȱȱǰȱȱȱǯ Gasalla, M. A. and A.C.S. Diegues. 2011. “Ethno-oceanography” as an Interdisciplinary Means to ȱȱ¢ȱǰȱǯȱŗŘŖȬŗřŜǯȱȱ¢ȱǰȱȱ¢ǰȱȱ L. Cochrane, and Philippe Cury, eds. World Fisheries: A Social-Ecological Analysisǯȱ ǰȱ ȱȱ¡ǰȱǯǯDZȱ¢Ȭ ǯ ǰȱǯǯǰȱ¢ǰȱǯǰȱȱǰȱ ǯǰȱǰȱǯǰȱǰȱǯǰȱěǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱ ǯǰȱǰȱǯǰȱǰȱǯǰȱ¡ǰȱǯǯǰȱ ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱ ¢ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱ ǯǰȱǰȱǯǰȱě¢ǰȱǯǰȱǰȱǯȱǭȱĴǰȱǯȱŘŖŖŞǯȱ¡ȱȱȱȱ during dramatic sea ice retreat. Eos, ŞşǻřǼǰȱŘŗȬŘŞǯ ǰȱǯǯǰȱȱǯȱǯȱŘŖŖŞǯȱ£ȱǻAlca tordaǼȱ ȱȱ¢ȱȱȱȱ DZȱ£ȱȱȱȱǵȱThe Auk ŗŘśǰȱşřşȬşŚŘǯ ǰȱǯǯǰȱǰȱ ǯǯǰȱ¢ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱȱȱǰȱȱ ȱ¢ǰȱȱȱȱȱȱȱȱDZȱȱȱȱsive mismatching. The Condor ŗŗŗ, 111-119. ǰȱǯȱǯȱȱǯȱǯȱ¢ǯȱŗşşŖǯȱȱȱȱȱȱ¡ȱ ȱ¢ȱeries: Implications for Management. Human OrganizationȱŚşǻŗǼDZȱŗŚȬŘśǯ ǰȱǯȱǯǰȱǯȱǯȱ ǰȱǯȱǰȱǯȱ ǰȱǯȱ ǰȱǯȱǯȱ¢ǯȱǯȱǯȱ ¢ǰȱǯȱǯȱ ǰȱǯȱ ǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱǯȱǰȱǯȱǯȱ¢ǰȱǯȱǰȱ ǯȱǯȱ£ǰȱǯȱǰȱǯȱȱȱȱǯȱŘŖŖŝǯȱ¡ȱȱ£ȱȱȱ ȱȱȱDZȱȱ ǯȱȱǰȱřŞDZȱśśŗȬśŝşǯ Ĵǰȱǯǯȱǭȱ ǰȱǯȱǻǯǼȱŘŖŗŗǯȱȱęǯȱ¡ǰȱǯǯDZȱ¡ȱ¢ȱǯȱ ¢ǰȱǯǰȱǯǯȱĵǰȱǯǯȱǰȱǯȱǰȱǯǯȱǰȱȱǯǯȱĝǯȱŘŖŖŝǯȱȱȱ DZȱȱȱȱ ȱĚȱȱȱ¢ȱǯȱȱȱȱ ȱȱȱ ¢ȱŝŜDZȱŞŞŘȬŞŞśǯ References £ǰȱǯǰȱĴǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯ ǯǰȱǭȱǰȱǯǯȱŘŖŗŖǯȱěȱȱȱęȱȱȱ¢ȱȱȱȱȱȱȱǻMytilus edulis). ŝǰȱŘŖśŗȬŘŖŜŖǯ £ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱĴǰȱǯȬǯǰȱǰȱǯǯȱǭȱ ǰȱǯ ǯǯȱŘŖŖŝǯȱȱ of elevated CO2ȱȱęȱęǯȱ¢ȱȱĴ řŚǰȱŝŜŖřǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱ ǯǯǰȱĴǰȱǯǰȱǰȱ ǯǯǰȱǰȱǯȱǭȱ¢ǰȱǯǯȱŘŖŖŜǯȱȁȂȱȱȱDZȱȱȱȱȱ ȱȱǰȱȱǰȱȱǰȱȱȱȱ ǰȱǰȱǰȱ and Clyde River, Nunavut, Canada. Ambio řś, 203-211. ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŗŖǯȱ ȱ ȱ ȱěȱȱȱȱȱȱ Spartina patens and its ecological role? Oecologia ŗŜŚǰȱŚŝşȬŚŞŝǯ Gerlach, S.C., P.A. Loring, and A.M. Turner. 2011. Food Systems, Climate Change, and Commu¢ȱǯȱȱȱ¢ȱŘŖŘŖǰȱǯȱ ȱȱȱǯǯȱǯȱǰȱDZȱ¢ȱ ȱȱǯ ǰȱǯǰȱ¡ǰȱǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱȱȱ ȱȱŘŖŖŝȱ record ice extent minimum. ¢ǯȱȱĴǯ řś, L22502. ǰȱǯǰȱǰȱǯǰȱ£ǰȱǰȱǰȱǯǰȱǰȱǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȱŘŖŗŖǯȱȱ ȱȱȱȱȱȱȱ ȱȱȱȱȱǯȱ ȱ¢ȱȱ¢ ŘŖǻŗǼǰȱŗśŚȬŗśşǯ èǰȱ ǯȱǭȱǰȱ ǯǯȱŗşşŝǯȱǰȱǰȱȱȱȱȱȱȱȱ ȱȱJournal of Marine Science śŚǰȱŗŖŖşȬŗŖŗŚǯ ǰȱǯǯǰȱǰȱǯǯǰȱĵǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǭȱ¢ǰȱǯȱŘŖŖŖǯȱȱȱȱȱ ȱ ¢ȱ¢ȱ ȱ¢ȱȱDZȱȬ¡ȱȱȱŗşşřȱǯȱ Emerging Infectious Diseases 6ǰȱŘřŞȬŘŚŝǯ Gleeson, M.W., & Strong, A.E. 1995. Applying MCSST to coral reef bleaching. Advances in Space Research ŗŜǰȱŗśŗȬŗśŚǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŜǯȱ£ȱȱȱȱȱȱǻHomarus americanus) ȱĴȱȱ DZȱȱȱǰȱ¢ǰȱȱȱtion. ȱȱȱ¢ ŘŜǰȱŜřşȬŜŚśǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱĴǰȱǯǯǰȱ ¢ǰȱǯǰȱǰȱǯǰȱ¢£ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǭȱęǰȱǯȱŘŖŖŚǯȱȱȱȱȱȱ ȱȱ ȱ ȱ¢ȱǯȱJournal of Geophysical Research ŗŖş, C12S02. ǰȱǯǯǰȱ ¢ǰȱǯǯǰȱ ǰȱǯǯǰȱǭȱǰȱǯǯȱŗşşŜǯȱ ȱ¢ȱ ȱȱ ȱěȱ ȱ¢ǰȱEOS, ŝŝǰȱŘřřȬŘřŜǯȱ ǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖşǯȱA new era for conservation: review of climate change adaptation literature. Washington, DC: National Wildlife Federation. ǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱǻǼǯȱŘŖŗŗǯȱȱȱȱ£DZȱȱȱȱ climate change vulnerability assessment. National Wildlife Federation, Washington, DC. ĴDZȦȦ ǯ ǯȦ ȬȬ£ȦȬȦȦȦŘŖŗŗȦȬ Ȭ £ǯ¡ȱ ȱȱȱȱȱȱȱǰȱȱǯȱǰȱ¢ȱǯȱǰȱȱ ȱǯȱǰȱǻǯǼǯȱȱ¢ȱǰȱŘŖŖşǯ ǰȱǯǰȱě¢ǰȱǯǯǰȱŘŖŖřǯȱȬȱȱȱȱȱȱȱ ȱȱȱDZȱȱȱȱ¢ȱȱȱȱȱǯȱȱȱȱ¢ȱŜDZȱřŚşȬřşŗǯ 207 208 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯȱȱǰȱǯȱŗşşřǯȱȱ¢ȱȱȱȱȱȱDZȱȱȱŗŗȱ ȱȱ ǯȱClinical Infectious DiseaseȱŗŜDZȱŜşȬŝŚǯ ȱǰȱ ĵȱǰȱ£ȱǰȱȱǰȱȱȱǯȱȱǯȱA biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006. ȱȱȱ¢. ǰȱǯǯȱŘŖŖśǯȱȱȱȱȱȱ DZȱȱȱȱtion (density)cdatabase for 1700-2000. Population and Environment ŘŜǰȱřŚřȬřŜŝǯ ǰȱǯǰȱǯǯǯȱ£ǰȱǯǯȱǰȱǯȱǰȱǯǯȱǰȱȱǯȱŘŖŖŞǯȱȱ¢atology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianusǼDZȱȱȱȱȱȱȱǯȱȱȱȱ¢ȱ ¢ȱȱŘŝśǻŗŜřŘǼDZȱŘŜŝȬŘŝŜǯ ǰȱǯǰȱǯǯǯȱ ¢ǰȱȱǯȱǯȱŘŖŖşǯȱȱȱȱȱ ȱȱ ȱȱȱȱ¢ȱǯȱȱȱȱȱ¢ȱȱȱȱ ŗŖŜDZȱşřŗŜȬşřŘŗǯ ǰȱǯǰȱ ¢ǰȱǯǯǯȱǭȱǰȱǯȱŘŖŖşǯȱȱȱȱȱ ȱȱ ȱȱȱȱ¢ȱǯȱProceedings of the National Academy of Sciences USA ŗŖŜ, şřŗŜȬşřŘŗǯ ǰȱǯǯǰȱ ǰȱǯǯǰȱ¢ǰȱǯȱǭȱ¢ǰȱǯǯȱŘŖŖŞǯȱȱȱ¢ȱ ȱȱȱȱȱȱŗŝŞŗǯȱNature Geoscience ŗǰȱŞŚŚȬŞŚŞǯ ǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱȱȱ¢£ȱȱ population dynamics over continental scales. Proceedings of the National Academy of Sciences USA ŗŖŝǰȱŞŘŞŗȬŞŘŞŜǯ ǰȱǯǯȱŘŖŗŖǯȱȱȱȱȱȱȱȱęǯȱMarine Policy řŚ, ŜŖŜȬŜŗśǯ ǰȱǯ ǯȱŘŖŖŚǯȱěȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱȱ ǯȱEcosystems ŝǰȱřŚŗȬřśŝǯ ǰȱǯ ǯǰȱ ǰȱǯǯȱǭȱǰȱǯ ǯȱŘŖŖŞǯȱ¢ȱȱ¢ȱȱȱȱ ȱǯȱȱFood webs and the dynamics of marine benthic ecosystems. McClanahan, T.R. & ǰȱǯǯȱǻǯǼǰȱ¡ǰȱǯDZȱ¡ȱ¢ȱǰȱŗŖřȬŗřŚǯ ǰȱǯ ǯǰȱ¤£ǰȱǯǯȱǭȱǰȱǯ ǯȱŘŖŖŝǯȱȱ¢ȱȱȱȱȱMacrocystis: from ecotypes to ecosystems. ¢ȱȱȱ¢DZȱȱȱ ȱŚś, řşȬŞŞǯ ǰȱǯǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǯǰȱ¡ǰȱǯǯȱǭȱǰȱǯȱŘŖŖŜǯȱ Dynamic fragility of oceanic coral reef ecosystems. Proceedings of the National Academy of Sciences USA ŗŖřǰȱŞŚŘśȬŞŚŘşǯȱ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱ¡ǰȱǯǯǰȱǰȱǯǯǰȱ ¢ǰȱǯǰȱǰȱǯȱǭȱǰȱ ǯǯȱŘŖŖŚǯȱ Ȭȱȱ¢¡ȱȱ¢ȱȱȱ ȱȱȱȱęǯȱNature ŚŘşǰȱŝŚşȬŝśŚǯ ǰȱǯȱǯǰȱǯȱǯȱǰȱǯȱǯȱǰȱǯȱǯȱ¢ǰȱǯȱǯȱǰȱǯȱǯȱǰȱǯȱǯȱ ¢ǰȱǯȱ ǯȱ ǰȱǯȱǯȱǰȱȱǯȱǯȱĴǯȱŘŖŖŜǯȱȱȱ¢ȱȱȱȱ ȱȱǯȱȱřŗŗȱǻśŝŜŜǼȱǻȱŗŖǼDZȱŗŚŜŗȬŗŚŜŚǯȱDZŗŖǯŗŗŘŜȦǯŗŗŘŗřŜśǯ ǰȱǯ ǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱȱȱ on the ecology of the North Atlantic. Ecology ŞşǰȱŘŚȬřŞǯ ǰȱǯǯǰȱǰȱǯǯǰȱ ¢ǰȱǯǯȱǯȱŘŖŖşǯȱȱȱȱȱȱȱ forecasting midsummer hypoxia in the Gulf of Mexico. Ecological Applications ŗşǰȱŗŗŜŗȬŗŗŝśǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȱŘŖŖŗǯȱThe potential impacts of climate change on health impacts of extreme weather events in the United States. Environmental Health Perspectives ŗŖşǰŗŞśȬŗŞşǯȱ References ǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱȱȱȱDZȱ the road ahead. Canadian Medical Association Journal ŗŝŞ, 715-722. ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱ Ĵǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱ ěǰȱǯǯȱŘŖŗŗǯȱ The State of Marine and Coastal Adaptation in North America: A Synthesis of Emerging Ideas. Bainbridge Island, WA: EcoAdapt. ¢ȱȱȱȱȱȱŘŖŖŞȱȱȱȱȱȱȱȱ2 ȱǯȱǯȱŘŗȱśŞȬŝŗ ¢ǰȱǯȱǯǰȱǯȱǯȱ¡ǰȱȱǯȱǻŘŖŖśǼǯȱȃȱȱȱȱȱȱȱȱ thermohaline circulation in response to increasing atmospheric CO2 concentration.” ¢ǯȱǯȱĴǯȱřŘ(12): L12703. Grémillet, D., & Boulinier, T. 2009. Spatial ecology and conservation of seabirds facing global ȱDZȱȱ ǯȱMarine Ecology Progress Series řşŗ, 121-137. ǰȱǯǰȱǯȱǰȱȱǯȱǻŘŖŗŖǼǯȱȃȱȱȱȱȱȱȱtures 200 to 2100.” Climate Dynamics řŚǻŚǼDZȱŚŜŗȬŚŝŘǯ ǰȱǯǯȱŘŖŖşǯȱǯȱȱȱȱȱ¢ȱȱȱŘřŚȱ ǻŚǼDZȱŚŝŘȬŚŝŞǯ ǰȱǯǯǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŗşşŜǯȱspirosis in California sea lions (Zalophus californianus) stranded along the central California ǰȱŗşŞŗȬŗşşŚǯȱJournal of Wildlife Diseases řŘǰȱśŝŘȬśŞŖǯ ǰȱǯǰȱǰȱǯ ǯǰȱǰȱǯǯȱǭȱǰȱǯǯǯȱŗşŚŞǯȱȱȱ¢ȱ ȱȱȱȱȱ¢ȱȱȱȱ ȱȱȱǰȱ ȱŗşŚŜȱȱȱŗşŚŝǯȱEcological Monographs ŗŞǰȱřŖşȬřŘŚǯ ǰȱǯȱȱǯȱǯȱŗşşŗǯȱȬȱ ȱ¢ȱȱ¢ȱęȱDZȱȱȱ ȬȱǯȱȱǰȱŗŗǰȱŘŞřȬřŖŜǯ ¢ȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŝǯȱ¢ȱȱȱȱȱȱ¡ȱ¢ȱȱ hypoxia: An analysis using box models. Estuarine, Coastal and Shelf Science ŝŚ, 239-253. ǰȱǯȱǯǰȱǯȱǰȱǯȱǯȱǰȱǯȱȱȱǯȱȂǯȱŘŖŗŗǯȱȱDZȱ ȱȱȱȱȱǯȱȱȱǰȱǰȱ Malaysia. ěǰȱǯǯȱŗşşřǯȱȱ ȱȱȱȱȱȱȱȱȱǯȱ Phycologia řŘ, 79-99. ěǰȱǯǯȱŘŖŗŖǯȱȱȱǰȱ¢ȱ¢ȱǰȱȱ harmful algal blooms: a formidable predictive challenge. Journal of Phycology 46, 220-235. ȬǰȱǯǯǰȱȬǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ¢ǰȱ ǯǯǰȱǰȱǯȱǭȱǰȱǯȬǯǯȱŘŖŖŞǯȱȱȱ¡ȱȱ ȱ¢ȱěȱ ȱȱęǯȱNature ŚśŚǰȱşŜȬşşǯȱ ǰȱǯǯǰȱǯȱǰȱǯȱ ¢ǰȱǯǯȱǰȱǯǯȱǰȱȱǯȱȱ ǯȱȱȱȱ ¡DZȱ¢ȱȱȱȱȱȱȱȱ¢ǯȱǯ ǰȱǯǯǰȱǯǯȱǰȱǯǯȱǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯǯȱǰȱǯȱǰȱ ǯȱǰȱȱǯǯǯȱŘŖŖşǯȱȱȱȱȱȱȱȱ ȱ¢ǯȱȱĴȱŘDZȱŗřŞȬŗŚŞǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱǰȱǯǯȱǭȱ Walbridge, S. 2009a. Global priority areas for incorporating land-sea connections in marine conservation. ȱĴ ŘǰȱŗŞşȬŗşŜǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱȱȱȱȱȱ ecosystem-based management seascape. Proceedings of the National Academy of Sciences USA ŗŖŝǰȱŗŞřŗŘȬŗŞřŗŝǯ 209 210 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŖŞǯȱȱȱȱ ȱȱ¢Ȭȱȱȱȱ£ǯȱOcean & Coastal Management śŗ, 203-211. ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱȂǰȱǯǰȱǰȱǯǰȱ ¢ǰȱǯǯǰȱǰȱǯǰȱ¡ǰȱ ǯǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱ ǯǯǰȱǰȱǯǯǯǰȱ ¢ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱȱ impact on marine ecosystems. Science řŗşǰȱşŚŞȬşśŘǯ ǰȱǯǯǰȱ ǰȱǯǯȱȱǰȱǯǯǰȱŘŖŖřǯȱȂȱȬȬȱDZȱ ȱȱȱȱǯȱǰȱśŜǻřǼǰȱǯŘŝŗȬŘŞŘǯ ǰȱǯǯǰȱǯȱǰȱȱǯȱ¢ǯȱŘŖŖşǯȱȃ¢¢ȱȱȱȱȱȱȱ ȱǯȄȱȱŜŘȱǻŗǼDZȱŞřȬşśǯ ǰȱǯȱŘŖŖŝǯȱȱȱȱDZȱȱěȱȱȱȱȱǰȱȱȱǯȱŘŖDZȱŗśŝȬŗŜŘǯ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǭȱǰȱǯ ǯǯȱŘŖŖŝǯȱ¡¢ȱȱȱȱ Baltic Sea. BALANCE Interim Report No. 17 ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖŝǯȱȱȱȱ trace gases. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences řŜśǰȱŗşŘśȬŗşśŚǯ ǰȱǯǰȱ ěǰȱǯǰȱ ǰȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȬȱDZȱ guidance and case studies. ȱ¢ ŘŚǰȱŜřȬŜşǯ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱ ǰȱǯǯȱŘŖŖŝǯȱȱȱȱȱȱ2ȱȱ¢ȱ community structure in the Bering Sea. Marine Ecology Progress Series řśŘǰȱşȬŗŜǯ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŝǯȱȱȱ ȱȱȱęȱȱȱȱ ȱȱȱȱDZȱ¡ȱȱȱȱȱȱǻMicropogonias undulatus). Fisheries Oceanography ŗŜǰȱřŗȬŚśǯ ǰȱǯǯǰȱǭȱ ǰȱǯǯȱŗşşŝǯȱ£ǰȱ ǰȱǰȱȱȱȱȱȱȱ of Pomatomus saltatrix (Pisces: Pomatomidae). Ecology ŝŞǰȱŘŚŗśȬŘŚřŗǯ ǰȱǯǯǰȱ¡ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯ ǯȱǭȱĴǰȱǯǯȱŘŖŗŖǯȱȱȱ ¢ȱȱȱȱę¢ȱȱȱȱȱȬȱǯȱEcological Applications ŘŖǰȱŚśŘȬŚŜŚǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŖǯȱȱȱȱȱęȱȱȱȱŗşŝŝȱȱ ŗşŞşǯȱProgress in Oceanography ŚŝǰȱŗŖřȬŗŚśǯ ¢ǰȱǯǯǯȱŘŖŖřǯȱȱȱȱ¢ȱȱȱȱȱȱȱȱ Ȭsional stress gradient. Ecology ŞŚǰȱŗŚŝŝȬŗŚŞŞǯȱ ¢ǰȱǯǯǯȱŘŖŖŞǯȱȱ¢ǰȱȱǰȱȱȬȱȱ ȱȱ¢ȱǯȱMarine Ecology Progress Series řŝŗǰȱřŝȬŚŜǯ ¢ǰȱǯǯǯȱŘŖŗŗǯȱȱǰȱ¢ȱǰȱȱ¢ȱǯȱScience řřŚ, ŗŗŘŚȬŗŗŘŝǯ ¢ǰȱǯǯǯǰȱǭȱǰȱǯǯȱŘŖŖşǯȱȱȱȱȱȱȱ sudden distributional shifts during periods of gradual climate change. Proceedings of the National Academy of Sciences USA ŗŖŜǰȱŗŗŗŝŘȬŗŗŗŝŜǯ ¢ǰȱǯǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǯǰȱǰȱǯǯǰȱ£ǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖŜǯȱȱȱȱȱȱȱȱ marine systems. ¢ȱĴȱşǰȱŘŘŞȬŘŚŗǯ ǰȱǯǯȱŘŖŖŞǯȱȱȱȱȱȱǯȱȱȱŗŞDZȱ ŘřȬŚŖǯ References ȱǯǯǰȱǯȱǼǯȱȱȱȱȬȱřŖŜǯ ǰȱǯǯǰȱǯȱǰȱǯȱȬǰȱǯȱ£ǰȱȱǯȱ¢ǯȱŘŖŖŝǯȱȱ¢ȱ ȱȂȱ Ȭȱȱǰȱȱȱ¢ȱěȱȱȱȱȱ improvement. ¢ȱȱǻȱȱȱ ȱ¢ȱǼ, ǻŘŖŖŝȬŜǼǰȱŗȬŗŗǯ ǰȱǯǯǰȱǰȱǯǰȱȬǰȱǯǰȱ£ǰȱǯȱǭȱ¢ǰȱǯȱŘŖŖŝǯȱȱ¢ȱ ȱȂȱ Ȭȱȱǰȱȱȱ¢ȱěȱȱȱȱȱ improvement. ¢ȱȱǻȱȱȱ ȱ¢ȱǼ, ǻŘŖŖŝȬŜǼǰȱŗȬŗŗǯ ǰȱǯǰȱǭȱǰȱǯǯȱŗşŞśǯȱȱ¢ǰȱȱȱ£ǰȱȱȱȱ¢ȱ structure. Ecology 66ǰȱŗŗŜŖȬŗŗŜşǯ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱ ǯǯǰȱǰȱǯǯǰȱǰȱǯǯǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱ ǯǯȱŗşşşǯȱȱȱȱȬȱȱȱȱȱǯȱScience ŘŞś, 1505-1510. ǰȱǯǰȱ£ǰȱǯǰȱĴǰȱǯǯǰȱ ǰȱǯȱǭȱǰȱǯȱŘŖŖşǯȱȱȱȱ ȱDZȱ ȱȱȱȱĴȱȱǵȱEcology şŖ, 912-920. ǰȱǯǯǰȱĴǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŗŘǯȱhouse gas (CO2ǰȱ Śǰȱ 2ŖǼȱĚ¡ȱȱȱȱĚȱȱȱȱȱ ȱȱȱǯȱAgriculture, Ecosystems and Environment ŗśŖǰȱŗȬŗŞǯ ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǭȱ¢ǰȱǯ ǯȱŘŖŖŜǯȱ¢¢ȱȱ ¢ȱȱȱȱȱȱȱȱǯȱȱ¢ ŗŜ, 990-995. ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯ ǯȱǭȱ¢ǰȱǯǯȱŘŖŖŝǯȱȱȱȱ impacts of climate change on a marine turtle population. ȱȱ¢ȱŗř, 923-932. ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯ ǯȱǭȱ¢ǰȱǯǯȱŘŖŖşǯȱȱȱȱȱ turtles. Endangered Species Research ŝǰȱŗřŝȬŗśŚǯ ¢ǰȱǯȱǯǰȱȱěǰȱǯȱŘŖŗŘǯȱ¢ȱȱĴȱȱȱȱěȱȱ ȱȱȱǯȱȱȱȱȱǰȱȱǯ ¢ǰȱǯȱǯǰȱȱěǰȱǯȱŘŖŗŘǯȱȱȱȱȱȱȱȱȱȱȱ ę¢DZȱȱȱȱȱǯȱȱ ǯ ¢ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖśǯȱȱȱȱȱǯȱTrends in Ecology and Evolution ŘŖǰȱřřŝȬřŚŚǯ ȬèǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱĴǰȱǯǯȱŘŖŗŗǯȱȱ ȱȱ ȱȱ ȱ ǯȱ¢ȱĴ Ş, 270-273. ĵǰȱǯǰȱǰȱǯǰȱǰȱǯȱȱǰȱǯȱŘŖŖŖǯȱȱȱSalmonella in Fish and Seafood. Journal of Food Protection ŜřǻśǼDZśŝşȬśşŘǯ £ȱǯȱŘŖŖŞǯȱȱȱȱȱěȱȱȱȱȱ ȱȱ¢ǯ ǰȱDZȱȱ £ȱǯ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱ ǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱ ǯǯǰȱǰȱ ǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱ DZȱȱęȱǯȱHarmful Algae Ş, 3-13. ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŜǰȱȱȱȱȱ¢ȱ¢ȱȱȱ Journal of Climate ŗş, śŜŞŜȬśŜşş. ǰȱǯǯȱȱǯǯȱǯȱŘŖŖşǯȱ¢ȱȱȱȱȱȱȱDZȱȱ ȱȱŘŘȱ¢ȱȱǯȱȱȱŗŚŘDZŗŚȬřŘǯ ǰȱǯǯǰȱ¢ǰȱǯǯǰȱ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱȱȱ climate change for invasive species. ȱ¢ ŘŘǰȱśřŚȬśŚřǯ 211 212 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ¢ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŚǯȱȱȱȱ¢ȱȱȱ¢¡ȱȱnental margins. Deep Sea Research Part I: Oceanographic Research Papers śŗǰȱŗŗśşȬŗŗŜŞǯ ǰȱǯǯǰȱěǰȱǯǯǰȱǭȱǰȱǯǯǰȱŘŖŗŖǯȱȱȱȱȱ¢Ȭ¢ȱȱ ȱȱ¢ǯȱ¢ȱȱĴȱřŝǰȱŗŞŝŖŗǯ ǰȱǯȱŘŖŖşǯȱȱȱȱDZȱ ȱȱ ȱȱ¢¢ȱȱȱȱȱȱ climate change? ȱȱȱ¡ȱ¢ ŘŗŘǰȱŝśřȬŝŜŖǯ ǰȱǯǰȱǰȱǯǯǰȱĴǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǰȱ ¢ǰȱǯǯǯǰȱȂǰȱ ǯǯǰȱ ǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖŜǯȱȱĴȱȱȱȱȱ ȱ¢ȱȱ£DZȱȱȱȱǯȱEcological Monographs ŝŜǰȱŚŜŗȬŚŝşǯ ǰȱǯǰȱ£ ǰȱǯǰȱǰȱǯȱǭȱ ǰȱǯǯȱŘŖŖŜǯȱȱȱȱȱȱ ȱ ȱ DZȱȱȱȱȱ¢ȱȱ¢ȱȱȱǯȱ Annual Review of Ecology, Evolution, and Systematics řŝǰȱřŝřȬŚŖŚǯ ǰȱǯǯȱǭȱǰȱǯȱŘŖŗŘǯȱȱȱȱȱȱȱěȱȱȱȱęȱȱ ȱȱȱDZȱȱȱȱȱȱȱȱȱ complex environment. Fisheries Research ŗŗŚǰȱŘȬŗŞǯ ǰȱǯǯ ǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱ ǰȱǯǯȱŘŖŖşǯȱȱ border: an analysis of the geographic boundary of an intertidal species. Marine Ecology Progress Series řŝş, 135-150. ǰȱǯǰȱȱǯǰȱŘŖŖŖǯȱContaminants in Alaska: Is America’s Arctic at Risk?ȱǯǯȱȱȱȱ Interior, Department of Environmental Conservation. ǰȱǯȱǯȱǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱ¢ǰȱǯȱŘŖŖŝǯȱȱȱȱȱ empirical model of sardine-climate regime shifts. Marine Policy řŗǰȱŝŗȬŞŖǯ ǰȱǯǯǰȱǯȱ ȱȱǯȱǯȱŘŖŖŜǯȱȱȱȱ¢ȱȱȱ¢ȱ ȱ ȱȱęȱȱę¢ǯȱȱ ȱǰȱȱǰȱ ȱǰȱǯȱȱ ȱȱȱȱȱȱȂȱDZȱ¡ȱȱȱȱǯȱǰȱ DZȱ ȱDzȱǯȱŗŘŜȬŗśŖǯ ǰȱǯǯǰȱĵǰȱǯǯǰȱ ǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŖŞǯȱȱȱȱ ȱęDZȱȱȱȱȱ ȱ ǯȱ¢ȱȱĴ řśǰȱŗşŜŖŗǯ ĴǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱȬǰȱǯǰȱ ¢ǰȱǯǰȱ Ȭǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱěǰȱǯǰȱ£ǰȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱȱ ¢ȱȱȱȱȱęȱȱȱȱȱȱȱȱȱȦ ȱȱDZȱȱȱȱȱęȱȱěȱǯȱǰȱ DZȱȱęȱ¢ȱȱǯ ĴǰȱǯǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱȬǰȱǯȱ ¢ǰȱǯȱ Ȭǰȱǯȱ ǰȱǯȱǰȱǯȱ ǰȱǯȱěǰȱǯȱ£ȱȱǯȱȱǻŘŖŗŖǼǯȱȱȱȱ ¢ȱȱȱȱȱęȱȱȱȱȱȱȱȱȱ ȦȱȱDZȱȱȱȱȱęȱȱěȱǯȱĴǰȱ Washington. ǰȱǯǯȱǭȱǰȱǯ ǯȱŘŖŖşǯȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱǻOrcinus orca) over the past century. Ecological Applications ŗşǰȱŗřŜśȬŗřŝś ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖřǯȱ¡¢ȱȱęȱability. Proceedings of the National Academy of Sciences USA ŗŖŖǰȱŜśŜŚȬŜśŜŞǯ ǰȱǯǰȱǯȱǰȱǯȱ £ǰȱǯȱǰȱǯȱ¡Ȭǯȱȱȱȱęȱȱȱ ȱŘŖŗŖȱȱǯǯȱȱȱŘŖŗŗǯȱȱȱȱȬȬȱ ȬȬŚŜşǰȱǯǯȱȱȱǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱ ǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱ References ȱȱ ȱȱȱȱȱȱȱȱ ȱȱ ȱȬȬȬȱȱǰȱŘŖŖŝȬȬŘŖŖŞǯȱMorbidity and Mortality Weekly Report ŜŖ, 1-32. ǰȱǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖŘǯȱȱȱěȱȱȱ ȱȱȱȱȱDZȱǰȱȱǰȱȱȱǯȱEstuaries ŘśǰȱŞŗşȬŞřŝǯ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱ ǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȱ¥ǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖŜǯȱȱ¢DZȱȱȱȱȱȱȱ ȱȱ ȱǯȱȱ¢ȱȱ¢ ŗś, 1-7. ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŘǯȱȱDZȱȱȱȱȱ¢ological evolution.ȱ ȱDZȱ¡ȱ¢ȱǯȱ ȬǰȱǯǰȱȱǯǯȱǯȱŘŖŗŖǯȱȱȱȱȱȱȱȱ ’s marine ecosystems. Science řŘŞDZȱŗśŘřȬŗśŘŞǯ Ȭǰȱǯǰȱ¢ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱęǰȱǯǰȱ£ǰȱǯǰȱ ǰȱ ǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱȬǰȱǯǰȱ ǰȱǯǰȱ¢ǰȱǯ ǯǰȱǰȱǯȱǭȱ ĵǰȱǯǯȱŘŖŖŝǯȱȱȱȱȱ ȱȱȱȱęǯȱScience řŗŞǰȱŗŝřŝȬŗŝŚŘǯ Ȭǰȱǯǰȱ£ǰȱǯǯȱǭȱǰȱǯȱŘŖŗŗǯȱȱȱȱȱǯȱScience řřŚǰȱŗŚşŚȬŗŚşśǯ ěǰȱǯǯǰȱǭȱȬǰȱǯȱŘŖŖŘǯȱCatastrophe and Culture: The Anthropology of Disaster. Santa Fe, NM: School of American Research Advanced Seminar Series. ǰȱǯǯǰȱĵǰȱǯǯǰȱ£ǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŗŗǯȱ ¢¡ȱ¢ȱDZȱȱ ęȱȱȱȱǯȱDeep-Sea Research Part I-Oceanographic Research Papers śŞ, ŗŘŗŘȬŗŘŘŜǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŝǯȱȬȱȱȱȱ¢DZȱǰȱ ȱȱ¢ȬěǯȱMarine Ecology Progress Series řřŘǰȱŘŚŚȬŘśşǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱȱȱ DZȱ¢ȱȱȱȱ a rapidly changing environment. Annual Review of Physiology ŝŘǰȱŗŝŘȬŗŚśǯ ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯȱǭȱ ǰȱǯǯȱ ŘŖŗŖǯȱȱěȱȱȱęȱȱ¢ȱȱȱȱ¢DZȱȱism to ecosystem perspective. Annual Review of Ecology, Evolution, and Systematics ŚŗǰȱŗŘŝȬŗŚŝǯ ǰȱǯǯȱIn pressǯȱ¢ȱȱȱȱȱȱȱȱ ȱȱ ȱȱȱ ǯȱCurrent Opinion in Environment Sustainability. ǰȱǯǯǰȱĴǰȱǯǯȱǭȱǰȱǯǯȱǯȱŗşşŝǯȱȱȱȱȱȱȱȱ ęȱȱ ȱȱȱǯȱEcological Applications ŝ, 1299-1310. ǰȱǯǯǰȱȱȱǰȱǯǰȱǭȱǰȱǯȱŘŖŗŖǯȱȱ¢ȱȱȱȱȱĴȱ ȱ ȱȱȱ ȱȱęȱę¢ǯȱǰȱǯǯDZȱǯǯȱȱȱ Commerce. ǰȱǯǯǰȱĵǰȱǯǯǰȱ¢ǰȱǯǰȱǭȱǰȱǯǯǰȱŘŖŖŗǯȱȱȱȱȅȱȱȱȱȱ variability of the North Atlantic Thermohaline Circulation. Journal of Climate ŗŚǰȱŜśŜȬŜŝśǯ ǰȱǯȱǯȱȱǯȱǯȱĴǯȱŗşşŘǯȱȱȱDZȱȱ¢¢ȱȱǯȱNorth American Journal of Fisheries ManagementȱŗŘǻŗǼDZŘŞȬřřǯȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱ ǯȱǭȱǰȱǯȱŘŖŗŗǯȱȱȱěȱȱęȱȱ ęDZȱȱǰȱȱ¢ȱǰȱȱȱȱ strategies. ICES Journal of Marine Science ŜŞǰȱşŞřȬŗřŝřǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱȂǰȱǯǯǰȱǰȱ ǯǯǰȱǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖşǯȱȱ ȱȱȱęȱȱęȱ responses to future climate change. ICES Journal of Marine Science 66ǰȱŗśŞŚȬŗśşŚǯ 213 214 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ãǰȱǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱ Ĵǰȱǯǰȱǯǯǰȱ¢ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŗŘǯȱȱ ȱȱȱȱęǯȱScience řřśǰȱŗŖśŞȬŗŖŜřǯ ěǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŜȱȱȱȱȱ¢ȱȱȱȱ of changes in ocean and climate conditions in the northern California current ecosystem. Limnology and Oceanography śŗǰȱŘŖŚŘȬŘŖśŗǯ ǰȱǯȱǭȱǰȱǯȱŘŖŗŗǯȱȱȱ ȱȱVibrioȱęDZȱȱȱ ȱȱȱȱȱȱȱȬȱǯȱInternational Journal of Infectious Diseases ŗśǰȱŗśŝȬŗŜŜǯȱ ǰȱǯȱȱǯȱǯȱŘŖŗŘǯȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱǯȱęȱȱȱȱǯȱ ȱȱȱȬŗŘȬǯ ǰȱǯǰȱǯȱǯȱǰȱȱǯȱǯȱŘŖŗŗǯȱȱȱȱȱȱȱ ȱȱ ȱȱę¢ǯȱęȱȱǯȱǯȱǯǰȱǯȱǯȱǯȱǯǰȱǰȱ ǰȱ ȱşŜŞŘŘȬŘřşŜǯȱęȱȱǯȱǯȱǯȱǯȱǯȱ ȬŗŗȬŖŗǰȱśŖȱǯȱƸȱǯ ¢ȱǰȱǯȱŘŖŖŞǯȱȱȱ¢ȱȱȱȱȱȱȱ. ȱȱǯȱȱřǰȱŘŖŖŞȱ ǰȱǯ ǯǰȱǯǯȱǰȱǯǯȱ ĴǰȱȱǯȱǯȱŘŖŖŞǯȱȱ¢ȱ ȱȱęȱ ȱȱȱ¢ȱȱȱęǯȱCanadian Journal of Fisheries and Aquatic Sciences 6ǰȱşŚŝȬşŜŗǯ ǰȱǯǰȱǯȱǰȱ ǯȱǰȱ ǯȱǰȱǯȱǰȱǯȱǰȱȱǯȱǯȱŘŖŖŚǯȱVibrio ęȱȱ ǯȱ ȱȱȱŗŖǻŞǼǯ ĴDZȦȦ ǯǯȦ¢ȦȦŚȬŚȦęȬȦȱ ĴDZȦȦ ǯĢ¢¡ǯȦ ĴDZȦȦ ǯǯȦȦ ȦȦȦȏȱȏȱ ȦǵśŘŚȦȬȬȬȬȬȬȱ ĴDZȦȦ ǯ ǯȦ ȬȬ£ȦȬȦȦȦŘŖŖşȦ ȬȬȬ Conservation.aspx ǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǰȱǭȱǰȱǯȱŘŖŗŗǯȱěȱȱȱȱȱȱȱȱȱ sheet on the meridional overturning circulation and global climate in the future. Deep Sea Research Part II: Topical Studies in Oceanography śŞǰȱŗşŗŚȬŗşŘŜǯ ǰȱǯǯǰȱǰȱǯǯǯǰȱǰȱǯǯǯǰȱ¢ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱȱȱ challenge of sustaining coral reef resilience. Trends in Ecology and Evolution ŘśǰȱřřȬŜŚŘǯ ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱ Ȭǰȱǯǰȱǰȱǯȱ ¢ǰȱǯǰȱĴǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖŝǯȱȱǰȱ¢ǰȱ and the resilience of coral reefs to climate change. ȱ¢ȱŗŝǰȱřŜŖȬřŜśǯ ǰȱǯǰȱĴǰȱǯȱȱęǰȱǯȱŘŖŖŗǯȱFoodborne Disease HandbookǯȱȱǯȱȱŚDZȱ ȱȱȱ¡ǯȱ ȱDZȱȱǰȱǯ ǰȱǯȱǭȱǰȱǯǯȱŗşşşǯȱ¢ȱȱȱ¢ȱȱȱȱǯȱ Nature ŚŖŘǰȱŚŖŝȬŚŗŖǯ ǰȱǯǰȱȱǰȱǯǯǰȱǰȱǯȱǯȱǭȱǰȱǯȱŘŖŖŜǯȱȱ¡ȱȱlations and chaos in the oceanic deep chlorophyll maximum. Nature Śřş, 322-325. ǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŚǯȱȱȱȱȱȱęȱȱ ȱȱĚȱȱȱ¢ǯȱTransactions of the American Fisheries Society ŗřř, ŗřŖŚȬŗřŘŞǯ References ǰȱǯǯȱǯǰȱ¢ǰȱǯǯǰȱǯȱǯǯǰȱ¢ǰȱǯǯǰȱ ĵǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯ ǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱȱȱ DZȱȱ¢ȱȱ ȱȱȱȱȱȱȱȱȱ ¢ǯȱ ICES Journal of Marine Science ŜŞǰȱŗŘřŖȬŗŘŚřǯ ǰȱǯǰȱǯȱǰȱǯȱǰȱȱǯȱǯȱŘŖŖŞǯȱȱȱȱȱȱ ȱȱȱȱȱǯȱŘŖŖŞȱȱȱȱǯȱĴDZȦȦǯȦȦŘŖŖŞȦŘŖŖŞȏȏȏŗǯŚǯǯ ǰȱǯȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱȱ¢DZȱȱȱȱȱȱȱ Oscillation. Journal of Marine Systems ŝşǰȱŘřŗȬŘŚŚǯ ǰȱǯǯȱŘŖŗŗǯȱ¢DZȱȱȱȱǯȱNature ŚŝŜǰȱŚŗȬŚŘǯ ǰȱǯǯǰȱǰȱǯȬǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱ Mulholland, M.R. 2007. CO2 control of Trichodesmium N2ȱę¡ǰȱ¢ǰȱ ȱ rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnology and Oceanography śŘǰȱŗŘşřȬŗřŖŚǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖşǯȱȱ¢ȱȱȱȱȱȱ CO2-enriched ocean. Oceanography ŘŘǰŗŘŞȬŗŚśǯ ¢ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖřǯȱȱ ȱȱȱȱȱȱȱ ȱȱ¢ȱǻŗşŞŝȬşŞǼDZȱȱȱȱȱǯȱDeep Sea Research II śŖǰȱŘśřŝȬŘśŜśǯ ǰȱǯǰȱŘŖŗŗǯȱȱȱȱȱ ¢ȱȱȱȱ ȱǯȱȱ by the Canadian Globe and Mailȱ¢ȱŘŝǰȱŘŖŗŗȱȱȱȱĴDZȦȦǯǯȦȦ Ȧ¢ȦȦŘŖŗŗŖŗŘŝȦŖŗŘŝǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŜǯȱȱȱȱȱȱȱȱȱȱ Caribbean reef. Marine Ecology Progress Series řŗş, 117-127. Iles, A. C., T. C. Gouhier, et al. (2012). “Climate-driven trends and ecological implications of eventȱ ȱȱȱȱȱ¢ǯȄȱȱȱ¢ȱŗŞǻŘǼDZȱŝŞřȬŝşŜǯ ȱǯȱŘŖŖśǯȱ¢ȱȱȱȱȱȱȱȱęȱ ȱȱ¢ȱǯȱȱȱȱȂȱ ȱȱȱ ǯȱȱǰȱDZȱȱȱĚȱȱȱȱȱȱȱȱȱȱȱȬ ȱDZȱȱȱȱǯȱȱȱȱ ȱȱśŚDZȱŜŖŞȬŜŗŚǯ ǰȱǯȱǭȱȬ ǰȱ ǯȱŘŖŖŝǯȱ¢ȱȱȱȱDZȱȱěȱȱ ȱȱ ȱ ȱȱȱȱǯȱȱȱŘŞDZȱ¢ȱȱȱ Management in the United States: Methodology for Research Issue. ŘŞǰȱŜşȬŞŜǯȱ ǰȱǯǰȱǭȱ ǰȱǯǯǰȱŘŖŗŗǯȱȱ¢ȱȱȱȱȱ£DZȱȱ¢ȱȱȱȱȱęǵȱ¢ȱȱĴȱřŞ, L12502. ȱȱǰȱŘŖŖŜǯȱȱȱĴDZȦȦ ǯǯȦDžȦȦȦƖŘŖȦȱ ŘŖŖŜȦȬȬȬęȬȬȦŗŗŝŜŘȏǯ¡ Intergovernmental Panel on Climate Change (IPCC). 2007a. Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Changeǰȱ¢ǰȱǯǯȱȱǯȱǻǼǯȱǰȱǯDZȱ ȱ¢ȱǯ Intergovernmental Panel on Climate Change (IPCC). 2007b. Climate Change 2007: The Physical ȱǯȱȱȱȱȱȱȱȱȱȱȱȱȱ Intergovernmental Panel on Climate Change, Solomon, S., D. Qin, M. Manning, Z. Chen, ǯȱǰȱǯǯȱ¢ǰȱǯȱȱȱ ǯǯȱȱǻǯǼȱȱ¢ȱǰȱ ǰȱȱȱȱ ȱǰȱǰȱǯ 215 216 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE Intergovernmental Panel on Climatic Change (IPCC) 33rd Session Abu Dhabi, 10-13 May 2011. ȱȱȱȱȱȱȱȱȱǯȱĴDZȦȦ ǯǯȦ ȦřřȦŖŝȏřřȏęȏǯ ȱȱȱȱȱǻǼǯȱǻŘŖŗŗǼǯȱȱȱȱȱȱ ȱęȱȱȱ¢ȱȱ¢ǯȱȱ¢ǰȱ ǰȱ ǰȱŗŝȬŗşȱ¢ȱŘŖŗŗǯȱŗŝŚȱǯ ǰȱǯǯǰȱȱǯǯȱǯȱŘŖŖşǯȱȱȱȱĴȱǵȱ¢ȱȱĴȱřŜ, ŗŞŜŖşǯ ǰȱǰȱ£ęǰȱǯ ǯǯǰȱǭȱ ǰȱǯȱŘŖŖşǯȱ¢ȱȱȱȱȱȱ DZȱȱȱ¢ȱȱȱǰȱǯȱMitigation and Adaptation Strategies for Global Change ŗŚ, 339-55. ǰȱǰȱǰȱǯȱŘŖŖŝǯȱ ȱȱȱȱȱȱȱȱ2 abateǯȱȱȱ¢ȱȱŘşǻŗǼȱŗȬŗŜǯ ǰȱȱȱȱǯȱȱȱ¢ȱ¡ȱȱȱ¢ȱȱ¢ȱ¡ǰȱ DzȱŘŖŖşȱřŚǻśǼDZŘŘŞȬŘřŗǯ ǰȱǯȱȱǯȱǯȱŘŖŖŜǯȱ ȱȱȱȱȱ ȱȱȱȱȱȱ ȱȱȱǯȱȱȱȱŘŖŖŜȱȱȱȱ ¢ǯȱȬȬȬŗŚǯ ȱǰȱȱǰȱ ȱǰȱȱǯȱŗşşşǯȱȱ£ȱȱȱȱȱȱ ȱȱȱȾȱȂDZȱȱȱȱ¢ǰȱȱǰȱȱȱǯȱȱȱŗŘǻŘȬřǼDZŗŘşȬřŜDz ǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǯǯǰȱǭȱǰȱǯǯȱŗşşşǯȱȱ£ȱȱȱȱȱ ȱȱȱȱȾȱȂDZȱȱȱȱ¢ǰȱȱǰȱȱ adaptation options. Climate Research ŗŘǰȱŗŘşȬřŜDz ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱ ȱǰȱǯǰȱ £ǰȱǯȱǭȱ ǰȱ ǯȱŘŖŖŝǯȱȱȱȱĴȱ and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations. Oecologia ŗśŚǰȱŘřȬřŚǯ ǰȱȱȱȱǯȱȱȱȱȱ¢ȱȱȱȱęȱ ǰȱȱDzȱŘŖŖŝȱŘŞǻŗǼDZśŝȬŜŞǯ ǰȱǯȱǯȱŘŖŖŚǯȱȱȱȱȱȱȱȱȱ¢DZȱȱȱ ȱ£ȱǯȱǯǯȱǯȱȱȱ¢ǰȱ¢ȱȱǯ ǰȱǯǰȱǯȱǯȱǰȱȱǯȱǻŘŖŗŖǼǯȱȃ ȱ ȱȱȱȱȱȱȱȱȱ ȱȱ¢ȱŘŗŖŖǵȄȱ¢ǯȱǯȱĴǯȱřŝ(7): L07703. ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǯȱŘŖŖŞǯȱȱȱȱȱȱ started over 200 years ago? ¢ǯȱȱĴȱřśǰȱŞȬŗŗ ǰȱǯǰȱǭȱǰȱǯȱŘŖŖşǯȱěȱěȱȱȱ¢ȱȱȱ¢ȱȱȱ trophic and multitrophic communities. The American Naturalist ŗŝŚǰȱŜśŗȬŜśşǯȱ ǰȱǯǯǯȱŘŖŖŘǯȱ ȱȱȱȱȱȱȱȱ ȱ Bay Estuary (Tampa Bay), Florida. In: Understanding the role of macroalgae in shallow estuaries. ǰȱDZȱ¢ȱȱȱȱȱȱǰȱŘŜȬŘŞǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱęȱȱȱȱȱDZȱȱ ȱȱ vulnerability and future options. Reviews in Fisheries Science ŗŞǰȱŗŖŜȬŗŘŚǯ ǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱ¢ǰȱǯǰȱǰȱǯǰȱĴȱǯǯȱǭȱ£ǰȱǯȱŘŖŖŞǯȱ Global trends in emerging infectious diseases. Nature ŚśŗǻŝŗŞŗǼǰȱşşŖȬşşřǯ ǰȱǯȱǯǰȱȱǯȱǯȱǯȱŘŖŖşǯȱȱęDZȱDisease and Pathogenisis. Infection and Immunity 77(5):1723-1733. References ǰȱǯǯǰȱ£ ǰȱǯȱǭȱ¢ǰȱǯǯȱŘŖŖşǯȱȱȱȱȱ¢DZȱ Mytilus edulisȱǻǯǼȱȱȱȱȱȱȱȱȱȱȱȱǯȱȱ ŘŗŝǰȱŝřȬŞśǯ ǰȱǯǯǰȱǰȱǯǯǰȱŘŖŗŖǯȱȱȱȱȱȱ¢ȱȱȱȱȱ ȱȱęǯȱThe Journal of the Acoustical Society of America ŗŘŞǰȱŗŚŚȬŗŚşǯ ȼǰȱǯǰȱǰȱǯǯȱǰȱǰȱǯǰȱǭȱ ǰȱǯǯȱŘŖŖŝǯȱȱȂȱ¢¡DZȱȱ¡ȱ 50 years? Estuaries and Coasts řŖǰȱŝşŗȬŞŖŗǯ ǰȱǯ ǯȱȱǯǯȱ ǯȱŘŖŖŝǯȱȱȱȱȬȱȱȱȱȱȱ Coastal Coho Salmon (Oncorhynchus Kisutch) Fishery in Washington State. Natural Resource ModelingȱŘŖǻŘǼDZřŘŗȬřŚşǯ £ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯȬǯǰȱĵǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱ ǯǯȱǭȱǰȱǯȱŘŖŗŖǯȱ ȱ¢ȱȱȱȱȱȱȱȱŘŜǯśǚǯȱJournal of Climate ŘřǰȱśŜŝŞȬśŜşŞǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱǻǯǼȱŘŖŖşǯȱGlobal Climate Change Impacts in the United States. ȱǰȱDZȱȱ¢ȱǯ ǰȱǯǰȱǰȱǯǰȱěǰȱǯȱŘŖŖŘǯȱȱȱȱȬȱěȱȱȱȱ¡¢ȱę¢ȱȱȱȱȱȱȱȱȱȱȬȱȱ ǯȱ¢ȱȱȱ¢DZȱȱȱ ŚŖǰȱŚŘŝȬŚŞşǯ ¢ǰȱǯǯǰȱǯȱ ǰȱǯȱ£ǰȱǯȱ ǰȱȱǯȱŘŖŗŖǯȱȱȱ ȱĴȱȱAlle alle across the Greenland Sea: implications of present and future Arctic ȱǯȱȱ¢ȱȱȱŚŗśDZȱŘŞŘȬŘşřǯ ǰȱǯǰȱĴǰȱǯǯǰȱ¢ǰȱǯǰȱĴǰȱǯȱǭȱǰȱǯȱŘŖŗŗǯȱȱȱȱ Ĵȱȱȱȱȱ¢ǯȱPLoS ONE 6ǰȱŗşŜśřǯ ĵǰȱǯǯǰȱǯǯȱ£ǰȱǯȱ ǰȱǯǯȱǰȱȱǯǯȱĝǯȱŘŖŗŗǯȱȱȱ ǰȱ ǰȱŗşşşȬŘŖŖŞǯȱȱȱȱŗŝDZȱŘŘŗȬŘŘŜǯ ¢ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱ ȱȱȱȱ ȱǻOdobenus rosmarus) - response to the climate changes. In: ȱȱęȱȱȱȱȱ Mammals of the Holarctic V ConferenceǰȱǰȱǰȱŘŚŞȬŘśŗǯ ǰȱǯǯǰȱȱǯǯȱǯȱŘŖŖřǯȱȱȱȱȱȱ£ȱ¢ȱ ȱěȱȱȱȱǰȱŗşşŞȬŘŖŖŖǯȱȱȱ¢ȱśŝDZȱřŚŗȬřŜŗǯ ¢ǰȱǯǯǰȱǰȱǯȱǭȱ ǰȱǯȱǯǰȱŗşşşDZȱȱȱȱȱȱȱȱȱȱ Gulf Stream region. Journal of Geophysical Research. Řş, 313-327. Kelly, M.W., Sanford, E. & Grosberg, R.K. 2012. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. ȱȱȱ¢ȱ¢ȱȱŘŝş, řŚşȬřśŜǯ ¢ǰȱǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱ ǰȱ ǯǯȱŘŖŗŗǯȱȱȱȱȱȱęȱ ȱ¡ȱ ǯȱScience řřŘ, ŗŖřŜȬřŝǯ ǰȱǯǯȱŘŖŖŘǯȱȱ ȱȱȱȱȱǯȱScience ŘşŝǰȱŗŚşŖȬŗŚşŘǯȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱȱȱ ȱȱ ȱȱȱȱ ¢Ȭęȱ¢ǯȱClimate Change ŗŖŖǰȱŝśŝȬŝŜŞǯ ǰȱǯǯǯǰȱǰȱǯǯǰȱǰȱǯ ǯǰȱ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŜǯȱȱȱȱ leptospirosis in seals (Phoca vitulina) in captivity. Veterinary Quarterly řŞ, 33-39. ǰȱǯǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱ ǰȱȱǯȱǯȱŘŖŖŜǯȱDecision Support for Coral Reef Fisheries Management: Community Input as a Means of Informing Policy in American SamoaǯȱȱȱȱĴȱȱȱȱȱȱȱȱȱ 217 218 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE degree of Master’s in Environmental Science and Management for the Donald Bren School of ȱǯȱ¢ȱȱǰȱȱǯ ǰȱǯǯǰȱǯǯȱǰȱǯȱǯȱŘŖŖşǯȱȱȱȱǯǯȱȱȱȱǯȱ ȱȱȱǯȱĴDZȦȦ ǯǯȦǯ ǰȱǯǯǰȱǰȱǯǯǰȱ ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǯǰȱǰȱǯǯǰȱȱ £ǰȱǯǰȱǰȱǯǯȱǭȱ¢ǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱȱȱ ecosystem. ICES Journal of Marine Science ŜŞǰȱŗŗşşȬŗŘŗŜ King, M., and L. Lambeth. 2000. Fisheries Management by Communities: A Manual on ȱȱȱȱȱȱ¢ȱęȱȱǯȱȱȱȱęȱ¢ǰȱǰȱ ȱǯ ǰȱǯǰȱȱǯȱȂǯȱŗşşşǯȱȱ ȱ ȱȱǰȱ¢Ȭ ȱȱęȱȱ ȱǯȱȱȱȱȱȱȱ ȱȱ ȱǯȱŗŗǰȱȱŗşşşǯȱŘȬŜǯȱŜş ǰȱ ǯȱŘŖŖŞǯȱȱDZȱȱȱǯȱȱȱȱȱěȱ ŝǰȱŚŞśȬśŖřǯ ĴǰȱǰȱȱȬ ¢ǰȱȱǰȱȱǰȱȱǰȱȱǰȱȱǰȱȱǰȱ ȱ¢ǯȱŘŖŗŖȱȱȱȱȱȱȱȱȱȱǻęǼȱ ¢ȱǻ¢ȱŘŖŗŖȱȬȱȱŘŖŗŗǼǯȱȱȱǰȱȱȱȱȱȱǯȱŗŗȬŗşDzȱ şŝȱDzȱŘŖŗŗǯȱȱDZȱȱȱȱǰȱŗŜŜȱȱǰȱȱ ǰȱ ȱŖŘśŚřȬŗŖŘŜǰȱȱȱȱȱȱǀĴDZȦȦ ǯǯǯȦȦȦŗŗŗşȦǁȱ ǽȱ¢ȱŜǰȱŘŖŗŘǾ ĴǰȱǯǰȱȱȱǰȱǯȱǭȱǰȱǯȱŘŖŖŝǯȱȱȱȱȱȱȱȱ ȱȱęȱę¢ǯȱMarine Policy řŗ, 192-200. ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱěǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǰȱ£ǰȱǯǰȱǰȱǯǯȱ ǭȱ·ǰȱǯȱŘŖŖŞǯȱȱȱȱ ȱ¢ȱȱȱȱ viability in the design of marine protected areas. ȱ¢ ŘŘǰȱŜşŗȬŝŖŖǯ ¢ǰȱǯǯȱǭȱǰȱǯȱŘŖŖŜǯȱȱȱȱȱ ȱ¢ǯȱDZȱCoral Reefs and Climate Change: Science and Management. AGU Monograph Series, Coastal and Estuarine Studies, ǯȱ¢ȱȱǯȱǻǯǼȱǰȱDZȱȱ¢ȱǰȱǯȱŜŗǰȱǯȱŝřȬŗŗŖǯȱ ǰȱǯȱǯȱŗşŞŝǯȱȬȱȱȱȱȱȱȱę¢ǯȱȱ ȬŖşŞřǯȱȱȱȱǰȱ¢ȱȱǯȱŗŗŜȱǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱ Srivastava, A.K., & Sugi, M., 2010. Tropical cyclones and climate change. Nature Geoscience ř, ŗśŝȬŗŜřǯ ǰȱǯǯǰȱ ¢ǰȱǯǯǯȱǭȱȂǰȱǯǯȱŘŖŗŗǯȱ¢ȱ¢ȱȱȱ ȱ DZȱ ȱĚȱȱȱȱęȱǯȱJournal of Experimental Marine ¢ȱȱ¢ȱŚŖŖǰȱŘŗŞȬŘŘŜǯ ¢ǰȱǯǰȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱȱȱȱȱ ǯȱEnvironmental Law Reporter News and Analysis řŞ, 10203-10213. ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱȱŘŖŗřǯȱȱȱȱ Timing, Decreasing Phenotypic Variation, and Biocomplexity in Multiple Salmonid Species. ȱȱŞǰȱśřŞŖŝȱǰȱǯǯǰȱȱǯȱ¢ǯȱŘŖŖŞǯȱȱȱȱȱȱ ȱ ȱȱȱȱȱȱȱȱȱǯȱȱȱşŘDZȱŗŗŝȬŗśŖǯ ǰȱǯǯǰȱǯȱ¢ǰȱǯǯȱǰȱȱǯǯȱǯȱŘŖŗŖǯȱȱȱȱȬȱ ȱȱȱȱǯȱȱ¢ȱŚŗǻŗǼDZȱŗŞŗȬŗşŚǯ ǰȱǯǯǰȱ¢ǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱȱȱȬȱtions on Arctic marine mammals. ȱ¢ ŚŗǻŗǼDZȱŗŞŗȬŗşŚǯ References ǰȱǯǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱȱȱ ȱȱǰȱ ¢ȱǰȱȱȱȱęȱȱ¢ȱ¢ǯȱICES Journal of Marine Science 66, 2272-2277. ǰȱǯȱŘŖŖŝǯȱ¢ȱȱȱěȱȱȱ¢ǯȱEpidemiology ŗŞǻŜǼDZȱ ŜśŞȬŜŜřǯ ǰȱǯǰȱ£ǰȱǯǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ¢ǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱ 2002. Clinicopathologic features of suspected brevetoxicosis in double-crested cormorants (Phalacrocorax auritus) along the Florida Gulf Coast. Journal of Zoo and Wildlife Medicine řř, ŞȬŗśǯ ǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱ£ǰȱ ǯǯǯȱŘŖŖśǯȱȱȱȱȱȱȱȱȱ ȱ¢ȱȱ ȱ¢¢ȱȱȱȱĴǯȱAmerican Journal of Veterinary Research 66, ŘŞşȬŘşşǯ ǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱ¢ǰȱǯȱŘŖŗŗǯȱȱ¢ȱȱ North Atlantic cod and match-mismatch dynamics. PLoS One 6ǰȱŗŝŚśŜǯ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȬ¢ȱȱȱ¢ȱȱěȱȱȱęȱȱȱǯȱ¢ȱĴ ŗřǰȱŗŚŗşȬŗŚřŚǯ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱĵǰȱǯǯȱŘŖŗŗǯȱȱ¢ȱȱ ȱ ȱȱȱ¢ȱȱȱęǯȱProceedings of the National Academy of Sciences USA ŗŖŞǰȱŗŚśŗśȬŗŚśŘŖǯȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǭȱȱ ǰȱǯǰȱǻǼǯȱŘŖŗŖǯȱSIKU: Knowing Our Ice. Documenting Inuit Sea Ice Knowledge and Useǯȱ ȱǰȱDZȱǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱèǰȱǯǰȱ¢ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǭȱǰȱǯȱŘŖŖşǯȱȱȱȱȱȱȱȱ thermohaline circulation. Climatic Change şŜǰȱŚŞşȬśřŝǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱ ǯǯǰȱ£ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǯȱǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯ ǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱȱ ȱȱȱ¡ǯȱDZȱ Weather and Climate Extremes in a Changing Climate: Regions of Focus: North America, Hawaii, ǰȱȱǯǯȱęȱ. Synthesis and Assessment Product 3.3. T.R. Karl et al. (eds). ǰȱǯǯDZȱǯǯȱȱȱȱǰȱřśȬŞŖǯ Kuo, E.S.L., & Sanford, E. 2009. Geographic variation in the upper thermal limits of an intertidal snail: implications for climate envelope models. Marine Ecology Progress Series řŞŞǰȱŗřŝȬŗŚŜǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱȱȱ ȱĚȱȱȱȱȱ¢ǯȱJournal of Climate ŘřǰȱśŜŗŖȬśŜŘŞǯ ǰȱǯȱǯȱŘŖŗŗǯȱęȱ¢ȱȱȱȱDZȱȱȱȱ ȱǯȱȱ ȱŚŗDZȱŘřřǯ ǰȱǯȱǭȱǰȱǯȱŘŖŗŗǯȱȱȱȱȱȱǯȱPhysics Today, 64,ȱřŜǯ ǰȱǯǯȱǻǯǼȱŘŖŗŗǯȱCanadian Arctic Sovereignty and Security: Historical Perspectives. Calgary Papers in Military and Strategic Studies. Calgary: Centre for Military and Strategic ȱȱ¢ȱȱ¢ȱǯȱ ě¢ǰȱǯǯȱŘŖŖşǯȱȱ¢ȱȱȱȱȱȱǯȱEcology şŖǰȱŞŞŞȬşŖŖǯ ǰȱǯȱǯǰȱȱǰȱ¢ȱǯȱ ¢ǰȱ`¢ȱǰȱȱȱ Ȭèǰȱȱ ȱ ǯȱǯȱŘŖŖŞǯȱȃ¢ȱȱ¢ȱȱȱȱȱȱ Ȭȱ ȱǯȄȱȱȱŗŞȱǻŘǼȱǻȱŗǼDZȱşŝȬŗŘśǯ ǰȱǯǰȱǯȱǯȱǯȱȱȱǯȱǯȱǯȱŘŖŗŗǯȱȬȱȱȱȱȱȱ ȱȱǯȱMitig Adapt Strat Glob ChangeȱŗŜǻǼDZŞŗşȬŞŚŚǯ 219 220 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǰȱ ǰȱǯǰȱȱǯǯǰȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱ Ȭ ȱȱ ȱȱDZȱ ȱȱ ȱȱǯȱJournal of Sustainable Tourism ŗŞ, ŚŖşȬŚŘŝǯ ǰȱǯ ǯǰȱ ǰȱǯǯȱǭȱǰȱǯȱŘŖŖşǯȱKarenia brevis red tides, brevetoxins in the food ǰȱȱȱȱȱDZȱȱǯȱHarmful Algae ŞǰȱśşŞȬŜŖŝǯ ǰȱǯǯǰȱǰȱǯǯǰȱĴǰȱǯǯǰȱĴǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖśǯȱȱ blooms on southeast Florida coral reefs I. Nutrient stoichiometry of the invasive green alga Codium isthmocladumȱȱȱ ȱȱȱȱǯȱHarmful Algae 4, 1092-1105. ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱĚȱȱ¢ȱȱ ¢ȱȱȱȱǯȱMarine Ecology Progress Series ŚŘŘǰȱŚŗȬŚşǯ ǰȱǯȱŗşŞŗǯȱȱȱȱȱȱȱȱȱęȱȱȱȱǯȱǯȱ ŝşȬŞŝȱDZȱǯȱǰȱǯȱȱęȱDZȱ¢ǰȱ¢ǰȱȱȱȱęǯȱ ȱȱȱǰȱĴǰȱǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ¢ǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŗŗǯȱȬ ȱȱȱȱȱȱȱȱȱęȱDZȱȱȱȱȱ ȱȱęȱǯȱȱ¢ȱȱ¢ ŘŖǰȱśŞȬŝŘǯȱ ǰȱǯǯǰȱǯǯȱ¢ǰȱǯǯȱǰȱȱǯȱǯȱŘŖŗŖǯȱȱǰȱĚǰȱȱ ȱDZȱȱȱęǵȱȱȱȱ¢ȱ¢ȱȱȱȱ ȱ ¢ȱŗŖŚDZȱŜřŗȬŜřŞǯ ǰȱǯȱǯǰȱǯȱ ǯȱǰȱǯȱ¢ǰȱǯȱǯȱ ǰȱȱ££ǰȱȱǰȱȱ ǰȱȱǯȱ 2010. “Resource management in a changing and uncertain climate.” Frontiers in Ecology and ȱȱŞȱǻŗǼȱǻ¢ǼDZȱřśȬŚřǯȱDZŗŖǯŗŞşŖȦŖŝŖŗŚŜǯ ¡ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱĴǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱ ǰȱ ǯǰȱǰȱǯǰȱ ǰȱǯǰȱ ǰȱǯǰȱęǰȱǯǰȱĵǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱ ŘŖŗřǯȱ¢ȬŘȱȱȱȱȱȱȱȱǰȱ¢ȱȱ ĴȱDZȱŗŖǯŗŖŖŘȦǯśŖŗşřǯȱ£ǰȱǯǯȱŘŖŖşǯȱȱ ȱȱȱȱ change: restraining the present to liberate the future. Cornell Law Review şŚ, 1153-1232. ȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯȱȱǯȱǻŘŖŖşǼȱȱȱȱȱȱȱȱȱ ¡ǯȱȱǰȱŘǰȱŞřŗȬŜǯ ȱǰȱ ǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱĵǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǭȱǰȱǯȱǻŘŖŖŝǼǯȱ ȱ ȱȱȱǯȱȱǯȱǰȱǯȱǰȱǯȱ ǰȱǯȱǰȱǯȱǰȱǯǯȱ¢ǰȱǯȱǰȱǭȱ ǯǯȱǰȱȱȱŘŖŖŝDZȱ ȱ¢ȱȱǯȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱǻǯȱşśȬŗŘŝǼǯȱȱȱȱ ȱǰȱǰȱDZȱȱ¢ȱ ǰȱǯǰȱȱǯȱǯȱŗşşŞǯȱ¡ȱȱȱ¢ȱ ȱȱ¢ȱ of Poverty. American Journal of Physical Anthropology 101(1): 1-3. ȱǯǯǰȱ £ȱǯǯǯȱŘŖŖŝȱȱȱĴȱȱ¡¢ȱȱȱȱǰȱ ȱǯȱǯȱǯȱȱǰȱŝŜDZŗŞŝȬŘŖŖǯ ¢ǰȱǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱĴǰȱǯȱ ǰȱȱǯȱǯȱŘŖŗŖǯȱ ¢ȱȱȱęȱ¢ȱȱȱȱȱȱŘȱȱǯ ȱȱ¢ȱŞŜǻŗȬŘǼDZȱřŖŘȬřŗśǯ ¢ǰȱǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱĴǰȱǯǰȱ ǰȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱ ¢ȱȱȱęȱ¢ȱȱȱȱȱȱŘȱȱ. Progress in Oceanography ŞŜ, 302-315. References ¢ǰȱǯǰȱǰȱǯȱǭȱ ǰȱǯȱŘŖŖřǯȱȱȬȱ¢ȱȱȱtions from a coupled ocean-biogeochemical populations dynamics model. Fisheries Oceanography ŗŘǰȱŚŞřȬŚşŚǯȱ ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱ¢ȱȱȱȱ blue mussel Mytilus edulisȱȱěȱȱȱȱȱȱȱȱȱǯȱ ȱ¢ȱȱ¢¢ȱȱȱŗśŜǰȱśŚŗȬśśŗǯ ĴǰȱǯǯȱŘŖŖŗǯȱǯȱȱ¢ȱ ȱŗŚǻŘǼDZȱŘşŜȬřŘŜǯ ǰȱǯǰȱȱǯȱǯȱŘŖŖşǯȱȱȱȱȱęȱ¢ǯȱǯǯȱǯȱǯǰȱ ȱǯȱǯǰȱȬȬȱȬȬŗşǰȱŝŚȱǯ ǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱȱǰȱǯǰȱScience. 287, 2225-2229 (2000). ǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱ ǯǯǰȱǭȱǰȱǯǯȱŘŖŖşǯȱ ȱȱȱȱŗşśśȬŘŖŖŞȱȱȱȱ¢ȱȱȱǯȱ ¢ȱȱĴ řŜǰȱŖŝŜŖŞǯȱDZŗŖǯŗŖŘşȦŘŖŖŞŖřŝŗśś ¢ǰȱǯȱǯǰȱǰȱǯǰȱŘŖŗŗDZȱȱȱǽȱȃȱȱȱȱȱŘŖŗŖȄǾǯȱǯȱǯȱǯȱǯ, şŘȱǻŜǼǰȱŝŝȬŗŖŞǯ ǰȱǯǰȱȱǯȱǯȱŘŖŗŖǯȱȱȱȱȱȱDZȱȱȱ ¢ȱȱȱĚȱȱȱȱȱȱ¢ȱȱ£ǯȱ ȱ¢ȱȱȱŚŖśDZŗŖŗȬŗŗŗǯ ǰȱǯǰȱ ǰȱǯǰȱ¢ǰȱǯǯȱǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱȱȱ ŘŖŖŜȱAlexandrium fundyense bloom in the Gulf of Maine: In situ observations and numerical modeling. Continental Shelf Research ŘşǰȱŘŖŜşȬŘŖŞŘǯ ¢ǰȱǯȱǯǰȱǯȱǰȱǯȱ ǰȱǯȱǰȱȱ ǯȱȱŘŖŖşȱȱȱȱȱȱŘŖŖŝȱ ȱȱǯȱȱȱȱŘŘDZŗŜśȬŗŝŜǯ ¢ǰȱǯǯȱǭȱǰȱǯȱŘŖŖśǯȱȱȱȱȱȱǰȱŗşŞŞȬŘŖŖřDZȱȱ ȱȱȱ tipping point? Journal of Climate ŗŞǰȱŚŞŝşȬŚŞşŚǯ ǰȱǯȱǯǰȱǯȱǯȱǰȱǯȱǯȱǰȱȱǯȱǯȱ ¢ǯȱŘŖŖşǯȱęȱȱȱ ȱȱȱȱȬȱȱȱǯȱProceedings of the National Academy USA ŗŖŜǰȱŘŘřŚŗȬŘŘřŚśǯȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǰȱŘŖŗŖǯȱȱȱǯǯȱȱȱDZȱȱȱ system model exploring marine ecosystem dynamics in a living marine resource management context. Progress in Oceanography ŞŝǰȱŘŗŚȬŘřŚǯ ǰȱǯǯǰȱ¢ǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŗŗǯȱȱȱȱęȱȱȱȱȱ ęȱȱ¡ǯȱFish and Fisheries ŗŘǰȱŚŜŗȬŚŜşǯ ǰȱǰȱȱǰȱǯŗşşŝǯȱȱȱȱȱȱȱȱȱȱȱȱȱ America. ȱęȱȱȱŗŜǻŘǼDZŜŘŖȬŜŚŖǯ ǰȱǯȱŘŖŗŗǯȱȱȱȱDZȱ ȱȱęȱȱěȱȱȱ Vibrios. Presented at the American Association for the Advancement of Science Annual ǰȱŗŝȬŘŗȱ¢ȱŘŖŗŗǰȱȱǯǯȱȱ¢ȱŜǰȱŘŖŗŘȱȱĴDZȦȦǯ ¡ǯȦȦŘŖŗŗȦ ȦřŚşŝǯǯ ǰȱǯǰȱ ǰȱǯȱǭȱ ǰȱǯȱŘŖŖŘǯȱěȱȱȱȱȱȱDZȱȱȱ model. Clinical Microbiology Reviews ŗś, 757-770. ¢Ȭǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǯȱǰȱǯǰȱǰȱǯǯȱ & Gulland, F.M. 2007. Cyclical changes in seroprevalence of leptospirosis in California sea lions: endemic and epidemic disease in one host species? ȱȱ ŝǰȱŗŘśȬŗřŜǯ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱ¢ȱȱȱȱ and native blue mussels (genus Mytilus). Molecular Ecology ŘŖ, 517-529. 221 222 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱȱǻȱMytilus) on the California coast: the role of physiology in a biological invasion. Journal of Experimental Marine ¢ȱȱ¢ ŚŖŖǰȱŗŜŝȬŗŝŚǯ ǰȱǯǯǰȱȱǯǯȱǯȱŘŖŗŗǯȱȱȱȱȱȱǻȱMytilus) on ȱȱDZȱȱȱȱ¢¢ȱȱȱȱǯȱȱȱ¡ȱ ȱ¢ȱȱ¢ȱŚŖŖDZȱŗŜŝȬŗŝŚǯ ǰȱǯȱŘŖŖŗǯȱȱ¢ȱȱȱȱȱȱȱȱǻParalithodes camtschaticusǼDZȱȱȱȱ¢ȱȱȱǰȱȱȱǰȱȱ¢ȱȱǯȱǯǯȱǯȱ¢ȱȱǰȱĴǰȱǯȱŚřŜȱǯ ǰȱǯǰȱȱǰȱǯǯǰȱǰȱǯȱǭȱĴǰȱǯǯȱŘŖŗŖǯȱěȱȱȱȱȱ ȱȱȱęȱȱȱǯȱ ŝǰȱŘŚŝȬŘśśǯ ǰȱǯǯȱȱǯȱǯȱĴǯȱŗşŞŝǯȱ¢ȱȱȱȱȱěȱ ȱ ȱȱȱȱǯȱNorth American Journal of Fisheries Management ŝǻŚǼDZŚŞŘȬŚŞŝǯ ǰȱǯȱȱǯȱǯȱŗşşşǯȱȱěȱȱȱȱȱȱȱȱȱȱȱȱǯȱȱǯȱȱȱǯǯȱȱǯȱThe Impact of Climate Change on the United States EconomyǰȱǯȱŘŞşȬřŗŚǯȱ ȱDZȱȱ¢ȱ Press. £ǰȱǯǯǰȱǰȱǯǰȱ ĴǰȱǯǯȱǭȱǰȱǯȱŘŖŖŞǯȱęȱȱȱȱ ȱ ȱǯȱǰȱǯǯDZȱ¢ȱȱȱȱ ȱȱǰȱ ¢¡ǰȱȱ ȱ ȱȱȱȱĴȱȱȱȱȱ¢ǯ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱǰȱǰȱȱȱȱȱDZȱȱȱ health approach to food security. Environmental Science and Policy ŗŘǰȱŚŜŜȬŚŝŞǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱ¢ȱȱȱȱȱȱDZȱȱ ȱȱȱȱȱȱȱǵȱSustainability ŘǰȱŘşŜśȬŘşŞŝǯȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱ¢ǰȱǯǯȱŘŖŗŗǯȱ¢ȱȱȱȱ ¢ȱȱ hinder: Governance for successful livelihoods in a changing climate. Arctic 64ǰȱŝřȬŞŞǯ Love, D., Robman, S. Nef, R. and Nachman, K. 2011. Veterinary drug residues in seafood ȱ¢ȱȱȱǰȱȱǰȱǰȱȱȱȱŘŖŖŖȱȱŘŖŖşǯȱEnvironmental Science and TechnologyȱŚśǻŗŝǼDZŝŘřŖȬŝŘŚŖǯ ǰȱǯȱŘŖŖŞǯȱȃȱȱȱȱȬȱȱȄǯȱȱǯȱȱǻǯǼǰȱȃȱȱ ȱȱȱȱȱ¢ȱȱȱȱęȱȱȱȱęȄȱǻǯȱŗŜřȬŘŖśǼǯȱ ȱęȱȱȱ£ȱǻǼǰȱ¢ǰȱǯǯȱȱǯȱǯȱǯȱřśǯ ǰȱǯȱǭȱǯǯȱǯȱŘŖŗŖǯȱȱȱDZȱȱȱȱȂȱȱ points. Oceanography Řř, 115-129. ǰȱǯȱǭȱǰȱǯȱŘŖŖŞǯȱClimate Change and Extreme Heat Events. American Journal of Preventive Medicine řśǰȱŚŘşȬŚřśǯ Ĵȱǯǰȱǯǯǰȱǰȱǯǯǰȱ¢ȬǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŘǯȱȬ ȱȱȱȱ ǰȱȬȱȱ¢ǯȱContinental Shelf Research ŘŘ, ŗŜŜşȬŗŜŞŗǯ ǰȱǯǰȱǭȱǰȱǯǰȱŘŖŖŝǯȱȱȱȱǯȱJournal of Physical Oceanography řŝǰȱŘśśŖȬŘśŜŘǯ ǰȱǯǰȱȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȬǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱ £ǰȱǯǰȱǰȱ ǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱŘŖŖŞǯȱ Ȭȱȱ¡ȱ ȱȱŜśŖǰŖŖŖȬŞŖŖǰŖŖŖǽǾ¢ȱȱǯȱȱŚśřǰȱřŝşȬřŞŘǯ Lynch, A., and R. Brunner. 2007. “Context and climate change: an integrated assessment for ǰȱǯȄȱȱȱŞŘDZȱşřȬŗŗŗǯ References ǰȱǯȱǯǰȱ ǰȱǯȱǭȱ¢ǰȱǯȱŘŖŖśǯȱȱȱȱȱȱȱȱȱȱ ȱȱ ¢ȱȱȱȱȱȱǯȱScience of the Total Environment řŚŘǰȱśȬŞŜǯ ¢ǰȱǯǯǰȱǰȱǯǯǰȱĴǰȱǯǯȱǭȱĴǰȱǯǯȱŘŖŖŞǯȱěȱȱ¢ȱ¢¡ȱ on inactivation and elimination of Vibrio campbellii in the eastern oyster, Crassostrea virginica. Applied and Environmental Microbiology ŝŚǰȱŜŖŝŝȬŜŖŞŚǯ ǰȱǯȱǯǰȱǯȱǯȱǯȱǰȱǯȱǯȱǰȱǯȱǯȱ¢ǰȱǯȱǯȱǰȱǯȱǰȱǯȱǯȱǯȱ ǰȱǯȱǯȱǰȱȱǯȱǯȱǯȱŘŖŗŖǯȱȱȱȱȱęDZȱ adapting to predicted global change. Philosophical Transactions of the Royal Society B: ȱǰȱřŜśǻŗśśŞǼǰȱǯřŝśřȱȬřŝŜřǯ Mahon, R. 2002. ȱȱęȱȱęȱȱȱȱȱȱȱȱȱȱ CARICOM region: issue paper-draft. Mainstreaming adaptation to climate change (MACC) of the Caribbean Center for Climate Change (CCCC)ǰȱǰȱǯǯDZȱ£ȱȱȱǰȱ ǰȱǯ ǯȱŗşŝřǯȱ DZȱȱ¢ȱȱ¢ȱȱ ǯȱScience ŗŞŘǰȱşŝśȬşŞŗǯ ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŗşşŝǯȱȱęȱȱ ȱȱ ȱȱȱȱǯȱȱȱȱȱȱ Society ŝŞǰȱŗŖŜşȬŗŖŝşǯȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯȱŗşşşǯȱȱȱȱȱȱ ȱȱȱǯǯȱȱȱ¢ǯȱDZȱThe Impact of Climate Change on the United States EconomyǰȱǯȱȱǭȱǯǯȱȱǻǯǼǯȱ ȱǰȱǯǯDZȱȱ ¢ȱǰȱŘřŝȬŘŜŚǯ ǰȱǯǯȱȱ ǯȱĴǯȱŘŖŖŜǯȱȱȱȂȱȱȱȱǯȱȱȱ Reef Marine Park Authority, Townsville, Australia. ǰȱǯǰȱǭȱĴǰȱǯǯȱŘŖŖşǯȱȱȱȱȱȱȱȱęȱ and elevated temperature. ȱȱ¢ ŗśǰȱŘŖŞşȬŘŗŖŖǯ ǰȱǯǰȱǯȱǰȱȱǯȱǯȱŘŖŖŞǯȱȱǰȱǰȱȱ¢ȱ¢ǯȱ DZȱȱȱȱȱȱǰȱ¢ȱȱȱǯȱ ĴDZȦȦ ǯǯȦȦȦȏ¢ȏęǯ Ç£ǰȱǯǯǰȱ¤ǰȱǯȱǭȱǰȱǯȱŘŖŖřǯȱ¢ȱȱȱ¢ȱȱȱȱ ȱLessonia nigrescensȱǻ¢ǼȱŘŖȱ¢ȱȱȱÛȱŗşŞŘȦŞřǯȱJournal of Phycology řşǰȱśŖŚȬśŖŞǯ £Ȭ£ǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱȱȱ ȱȱȱVibrio parahaemolyticus and ȱęȱillnesses. Food Research International ŚřǰȱŗŝŞŖȬŗŝşŖǯ ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ¢ǰȱǯǰȱǰȱǯȱǭȱ¢ǰȱǯǰȱŘŖŖŝǯȱȱ¢ǰȱ thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophysical ȱĴ, řŚǰȱŘŚśŖŗǯ Ĵȱȱȱ ȱȱȱĴȱȱ ¢ȱȱȱȱȱ ȱęǯȱŗŞşśǯȱ ¢ȱȱȱȱȱȱęȱȱȱȱȱȱ ȱȱ. DZȱȱȱĴȱȱǯǰȱȱǯȱȱȱĴDZȦȦ ǯǯȦ details/historyofemblemo00mass. ǰȱǯǯǰȱǭȱ ǰȱǯǯȱŘŖŖŝǯȱěȱȱȱȱȱȱȱȱȱ ȱ ȱ¢ȱǰȱPterygophora californica and Eisenia arborea, at multiple life-stages. ȱ¢ ŗśŗǰȱŗşŚŗȬŗşŚşǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱ ¢ǰȱǯȱȱǰȱǯȱŘŖŖŞǯȱtion of epidemic cholera due to Vibrio cholerae O1 in children younger than 10 years using climate data in Bangladesh. Epidemiology and InfectionȱŗřŜDZŝřȬŝşǯ 223 224 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯȱŘŖŖŖǯȱȱęȱȱȱȱęDZȱȬȱęȱȱȱȱȱȱȱ ę¢ȱȱȱ ¢ǯȱHuman OrganizationȱśşǰȱřŝȬŚŝǯ ¢ǰȱǯȱǯǰȱȱǯȱ£ǰȱȱǯȱ¢ǰȱȱǯȱǰȱȱ¢ȱǰȱǯȱŘŖŖŗǯȱ Climate Change 2001: Impacts, Adaptation and Vulnerability. Intergovernmental Panel on ȱǯȱDZȱȱ¢ȱDzȱǰȱ¢ǯȱŘŖŖŜǯȱVulnerability and Human Rightǯȱ¢ȱǰȱDZȱȱȱǯ ¢ǰȱǯǰȱǯȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱǰȱȱǯȱĝǯȱŘŖŖŜǯȱȬȱȱ ¢ȱęDZȱȱȱȱȱǰȱȱȱȱǯȱ ȱ ǰȱǯǯDZȱȱȱ ȱ¢ǰȱȱȱȱ¢ǯȱȱ ęȱȱȱĴDZȦȦǯǯȦDžęȦȬęǯǯ ¢ǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱ ȱȱȱȱȱȱęȱȱ a coupled system: the Atlantic surfclam case. ICES Journal of Marine Science ŜŞǰŗřśŚǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŚǯȱȱ¢ȱ¢ȱȱ¢ȱ ocean-color satellites Deep-Sea Research II śŗǰȱŘŞŗȬřŖŗǯ ǰȱǯǰȱǯȱǰȱǯȱȱȱǯȱ ǯȱŘŖŗŖǯȱȬȱȱȱȬȱȱ ȬȱȱȱęȱȱǻSardinops sagaxǼǯȱǯȱǯȱǯȱǯȱǯȱ ŜŝDZȱŗŝŞŘȬŗŝşŖǯ ǰȱǯǯǰȱǯȱǰȱȱǯȱ£ȬǯȱŘŖŖŗǯȱȱ ȱȱȱȱȱȱ DZȱȱ ȱȱȱȱǯȱȱȱŗşDZȱŚŖŖȬŚŗŝǯ ǰȱǯȱŘŖŖŝǯȱȂȱȱȱȱȱ ȱěȱȱȱǯȱȱ DZȱȱ ȱǰȱ¢ȱŚȬśǰȱǰȱǯ McGeehin, M., & Mirabelli M. 2001. The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environmental Health Perspectives ŗŖş, ŗşŗȬŗşŞǯ ǰȱǯȱŘŖŗŖǯȱȱȱȱȱȱȱȱȱȱęȱDZȱȱȱȱȱęǯȱProgress in Oceanography ŞŜǰȱŗŞŝȬŗşŗǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱȱǭȱǰȱǯȱŘŖŖśǯȱȱȱ Vibrioȱ¢ȱȱȱ ȱȱ¢ǯȱNew England Journal of Medicine řśřǰŗŚŜřȬŗŚŝŖǯ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱãǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯ ǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱDZȱ ȱȱȱ ȱȱȱȱȱȱȱȱȱȱ2. Frontiers in Ecology and the Environment şǰȱśśŘȬśŜŖǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱ¢ǰȱǯȱŘŖŖşǯȱȱȱȱȱ ȱȱ address the impacts of climate change. Frontiers in Ecology and the Environment ŝǰȱřŜŘȬřŝŖǯ ǰȱǯǰȱǯǯȱ ǰȱǯǯȱǰȱǯǯȱǰȱǯȱǰȱȱǯȱȱ ǯȱȱ ȱ ȱȱȱȱȱȱȱȱǯȱȱĴǯ ǰȱǯǰȱ ǯȱȬǰȱǯȱǰȱǯȱǰȱǯǯȱǰȱǯǯȱ ǰȱȱǯȱ ǰȱǯȱŘŖŖřǯȱȱȱȱ ȱ DZȱȱȱǯȱDZȱ ȱ ȱ£ǯ McNeeley, S. 2009. ȱȱȱDZȱ¢ȱȱȱȱȱǯ PhD ǰȱ¢ȱȱȱǯ ǰȱǯǯǰȱǭȱǯǯȱǯȱŘŖŖŞǯȱȱȱęDZȱȱȱȱȱŚśŖȬȱspheric CO2. Proceedings of the National Academy of Sciences USA ŗŖśǰȱŗŞŞŜŖȬŗŞŞŜŚǯ ǰȱǯǰȱǯȱǰȱȱǯȱ¢ǯȱŘŖŖşǯȱȃ ȱȱȱȱȱ ȱȱȱȬȱȱȱȱDZȱȱȱȱȱ ȱ¢ȱǯȄȱȱȱȱ¢ȱŝȱǻŗǼDZȱśŝȬŜşǯ References ǰȱǯǰȱ ǯȱǰȱȱǯȱǰȱŘŖŖŜDZȱȱȱȱȱÛȱȱ ȱȱȱ ȱǯȱȱ¢ǰȱŘŜǰȱśŚşǿśŜŜǰȱDZŗŖǯŗŖŖŝȦŖŖřŞŘȬŖŖśȬŖŖşŞȬŖǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱ¢ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱ Ĵǰȱǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǯǰȱĴǰȱǯǯǰȱǰȱǯǯǰȱǭȱǰȱǯȬǯȱ ŘŖŖŝǯȱȱȱǯȱȱȱȱŘŖŖŝDZȱȱ¢ȱȱǯȱtion of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeȱǯȱȱȱǯȱǻǼǯȱǰȱǯǯȱȱ ȱǰȱǰȱǯDZȱȱ ¢ȱǰȱśŞşȬŜŜŘǯ ǰȱ ǯǰȱǰȱǯǰȱǭȱǰȱǯȱǻŘŖŖŜǼȱȱȱȱȱȱȱ ¢ȱȱȱȱŘŗȱ¢ǯȱ¢ȱȱĴǰȱřřǰȱŚȱǯ ǰȱǯǰȱǯǯȱ¢ǰȱǯȱǰȱǯǯȱǰȱǯǯȱǰȱǯȱǰȱȱǯǯȱǯȱŘŖŖŚǯȱ ȱǰȱǯȱȱȱȱŗŖDZȱŚŖŜȬŚŗŘǯȱ ǰȱǯȱȱǯȱ ǯȱŗşşşǯȱȱȱȱȱȱȱȱǯȱ ȱǯȱȱȱǯǯȱȱǯȱThe Impact of Climate Change on the United States EconomyǰȱǯȱŘŜŝȬŘŞŞǯȱ ȱDZȱȱ¢ȱǯ ǰȱǯǯǰȱǰȱǯǰȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱ¢ȱȱ¢ȱȱ and community dominant to climate change. ¢ȱĴ ŗŗǰȱŗśŗȬŗŜŘǯ ǰȱǰȱ¢ǰȱǯǰȱǰȱǯǯǰȱ£ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŚǯȱ ȱ¢ȱȱȱȱȱȱDZȱȱȱȱĚȱȱ trophic interactions in generating Emiliania huxleyi blooms 1997-2000. Deep Sea Research Part I: Oceanographic Research Papers śŗǰȱŗŞŖřȬŗŞŘŜǯ Merino, G., M. Barange, and C. Mullon. 2010. Climate variability and change scenarios for a ȱ¢DZȱȱȱȱęǰȱęȱȱęȱȱȱ£ȱ ǯȱJournal of Marine SystemsȱŞŗDZŗşŜȬŘŖśǯ ¢ęǰȱǯȱǯDZȱȱȱȱȱ2ȱȱȱȱȱǰȱǯȱǰȱ ŗşǰȱŚŖŖşȬŚŖŘŝǰȱŘŖŖŜǯȱŘŗŝş £ǰȱǯǰȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱ ȱȱȱȱȱ changing climate. ȱȱ¡ȱȱ¢ȱȱ¢ ŚŖŖǰȱşŖȬşŞǯ ǰȱǯǯǰȱĴǰȱǯǯȱǭȱĴǰȱǯǯȱŘŖŖŖǯȱȱěȱȱ¢ȱ¢¡ȱȱȱ ȱȱȱȱ ȱVibrio parahaemolyticus. ȱȱęȱȱŗş, 301-311. ǰȱǯǰȱ¢ǰȱǯǰȱȬĴǰȱǯǰȱĵǰȱǯǰȱ¢ǰȱǯǰȱ£ǰȱǯȱǭȱǰȱǯǰȱŘŖŗŖǯȱ ȱęDZȱȱȱȱȱȱǵȱQuaternary Science Reviews Řş, 1779-1790. ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǯǰȱĴǰȱǯȱǭȱǰȱ ǯȱŘŖŖşǯȱȱȱ ȱȱȱȱŘŖŖśȱȱŜŖȱȱȱȱȱ ȱȱȱȱȱǯǯȱȱǯȱCoral Reefs ŘŞ, 925-937. ǰȱǯǯǰȱǭȱǰȱǯǯȱŗşşŘǯȱȱȱȱȱ ȱȱȱěǯȱJournal of Geophysical Research şŝǰȱŘŝśŝȬŘŝŜŚǯ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖřǯȱȱȱDZȱȱ ȱȱȱȱȱȱȱęȱǯȱMarine Resource Economics ŗşǰȱřŜŝȬřşřǯ ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǰȱ ęǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱ¢Ȭǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱ ŘŖŗŖǯȱȱ£Ȭȱ£ȱȱȱ DZȱȬ¢ȱȱ ȱȱĴȱǻEnhydra lutris nereis) due to Sarcocystis neurona infection. Veterinary Parasitology ŗŝŘǰȱŗŞřȬŗşŚǯ 225 226 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱĚȱȱȱȱȱȬȱȱ £ȱDZȱȱ ȱȱȱȱǯȱEnvironmental Health Perspectives ŗŗŞǰȱŗśŖŝȬŗśŗŚǯ ǰȱǯǰȱǯȱ ǰȱǯȱǰȱǯȱǰȱȱǯȱǯȱŘŖŖŞǯȱȱȱȱ DZȱ¡ȱȱȬȱȱȬȱȱ£Ȭȱȱȱȱȱ ȱȱȱ ȱȱȱȱȱȱȱȱȱȱ ǯȱȱ ȱ¢ȱȱȱȱDZȱǰȱ¢ǯȱǰȱ¢ȱȱ ȱȱȱǰȱŚŗǯȱǰȱDZȱȱȱǯȱȱ¢ȱŜǰȱ ŘŖŗŘȱȱĴDZȦȦǯȦȦŘŖŖŞȦŘŖŖŞȏȏȏŗǯŚǯǯ Mislan, K.A.S., & Wethey, D.S. 2011. Gridded meteorological data as a resource for mechanistic macroecology in coastal environments. Ecological Applications ŘŗǰȱŘŜŝŞȬŘŜşŖǯ Moerlein, K. and C. Carothers. In press. Total environment of change: Impacts of climate change ȱȱȱȱȱęȱȱ ȱǯ ǰȱǯǯǰȱǰȱ ǯȱǭȱǰȱǯȱŘŖŖŜǯȱȱĚȱȱ ȱȱȱȱ production in Mytilus edulis. ȱȱȱ¡ȱ¢ ŘŖşǰȱŞŞŗȬŞşŖǯ ĜĴȱǯǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱȱǯȱǭȱǰȱǯ ǯȱ ŗşşŞǯȱȱȱȱȱęȱȱȱ¢DZȱȱȱęȱment. Journal of Aquatic Animal Health. ŗŖ, 95-100. ĜĴǰȱǯȱǻŘŖŖŚǼȱȱȱȱȱ ȱȱȱȱȱȱ Propagated and Free-Ranging Fish Populations. American Fisheries Society Symposium ŚŚDZśŘşȬśřŝǯ ǰȱ ǯǰȱǯȱǰȱǯȱǯȱ¢ǰȱȱǯȱǯȱŘŖŖŚǯȱȱȱȱȱ ȱ DZȱȱȱȱȬǯȱ¢ȱȱ¢ȱşDZȱŘǯ ǰȱǯǯǰȱǭȱ ǰȱǯȱŘŖŗŗǯȱȱǰȱǰȱȱȱ¢ȱȱȱ¢ology in marine climate change research. ȱȱȱ¢ ŜŖǰȱŗŘřȬŗŜŖǯ ǰȱǯǯǰȱǯǯȱȱȱǯǯȱ¢ǯȱŘŖŖşǯȱDZȱȱȱȱǯȱ ŘŖŖşǯȱȱȱȱ¢ȱŗŖŝDZȱŝŖŝȬŝŗŜǯ ǰȱǯǯȱȱ ǯǯȱǯȱŘŖŖśǯȱěȱȱ ȱȱȱȱǻMicropogonias undulatusǼȱȱȱȱ¢ǰȱǯŗŞśȬŗşŘǯȱȱǯǯȱȱǻǯǼȱHurricane Isabel in PerspectiveǯȱȱȱǰȱȱȱŖśȬŗŜŖǰȱ ǰȱǯ ǰȱǯǯǰȱǭȱ¢ǰȱǯǯȱŗşşŝǯȱȱȱȱȱĚȱȱ ȱȱȱȱȱȱȱȱȱȬ ȱDZȱȱȱ climate change. ICES Journal of Marine Science śŚǻŚǼǰȱŜŖŞȬŜŗŚǯ Moore, C. 2011. ȱȱȱȱęDZȱȱȱȱȱȱȱǯǯȱ ȱę¢ǰȱȱȱŗŗȬŖŜǯ Washington, DC: National Center for Environmental ǰȱǯǯȱȱȱ¢ǯ ǰȱǯǯǰȱǯǯȱǰȱǯǯȱǰȱǯȱǯȱǰȱǯȱǰȱȱǯǯȱǯȱŘŖŖŜǯȱ ȱǰȱȱǰȱŘŖŖŘȬŘŖŖŚǯȱȱȱȱŗŘDZȱśŖŗȬśŖřǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱěȱȱȱȱ ȱȱȱ ȱȱ¢DZȱȱȱȬȱǯȱJournal of Coastal Research śśǰȱŗřśȬŗŚŝǯȱ Moore, S., and Gill, M. 2011. Marine ecosystems summary. In: Arctic Report Card 2011. RichterǰȱǯǰȱěǰȱǯǯȱǭȱǰȱǯǯȱǻǯǼǯȱǯȱŜřȬŜŚǯ ǰȱǯǯȱŘŖŖŞǯȱȱȱȱ¢ȱǯȱJournal of Mammalogy ŞşǰȱśřŚȬśŚŖǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖřǯȱ¢ȱ ȱȱȱȱȱ habitat in the northern Bering Sea: current conditions and retrospective summary. Canadian Journal of Zoology ŞŗǰȱŝřŚȬŝŚŘǯ References ǰȱǯǯǰȱǰȱǯǯǰȱ ¢ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱȱȱ¢ȱęȱ toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae ŞǰȱŚŜřȬŚŝŝǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǭȱǰȱǯǯȱ ŘŖŖŞȱȱȱȱ¢ȱȱȱȱȱȱȱȱȱȱ human health. Environmental Health ŝǰȱŚǯ ¤ǰȱǯǯǯǰȱà£ȬǰȱǯǰȱȬÇ£ǰȱǯȱǭȱǰȱǯǯǯȱŘŖŗŖǯȱȱȱȱ ȱ¢ȱȱȱ ȱǯȱȱȱ¢ ŗŜǰȱŗŗřŝȬŗŗŚŚǯȱ ǰȱǯȱǭȱǰȱǯȱŘŖŖşǯȱȱȱȱ¢ȱȱ¢ȱȱ coastal tourism. Journal of Sustainable Tourism ŗŝǰȱŚŝřȬŚŞŞǯ ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŗşşŘǯȱȱȱȱ ȱ ¢ȱȱȱȱȱ ȱȱ ǯȱJournal of Herpetology ŘŜǰȱřŖŗȬřŖŞǯ ǰȱǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱȱȱDZȱȱȱȱȱȱ managers for successful adaptation to change. Climatic Change Şŝ, 309-322. ¢ǰȱǯǯǰȱ ǰȱǯǯǰȱ¢ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱęȱȱȱ ȱȱȱǯȱNature Geoscience ŘǰȱŘŝŜȬŘŞŖǯ £ěǰȱǰȱȱǯȱǯȱǯȱǻŘŖŖŜǼȱȱǰȱǰȱȱȱDZȱȱ ȱȱȱȱęǯȱȱŘşŜDZȱŗŞŞśȬŗŞşşǯ ȱȱǯȱŘŖŗŘǯȱȱȱěȱȱȱȱ¢ǯȱ ȱȱȱǰȱǰȱǯȱȱ¢ȱȱǻǯȱǰȱǯǯȱǰȱ ȱǯǯȱ ǯǼȱȱȱ ȱDZȱĴDZȦȦǯȦȦȏȏȏěȏȏȏȏ¢ǯȱ ǰȱǯǯǰȱȱĵ ǰȱǯǯȱŘŖŖŞǯȱȱȱȱȱȱ¢ȱȱȱȱȱ ȱǯȱȱȱŗŞǻŘǼǰȱřŖşȬřŘŖǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŗŗǯȱ¡ȱȱȱȱ ȱ ¢ȱȱǻTheragra chalcogramma) in the eastern Bering Sea under future climate change. ICES Journal of Marine Science ŜŞǰȱŗŘŞŚȬŗŘşŜǯ ǰȱǯǯǰȱǰȱǯǯǰȱǭȱ ǰȱǯǯȱǯȱŘŖŗŗǯȱȱȱȱȱȱȱ ȱȱ¢ȱȱęǯȱȱNorth by 2020: Perspectives on Alaska’s Changing Social-Ecological Systems, A.L. ȱǭȱ ǯȱȱǻǼǯȱǰȱDZȱ¢ȱȱ ȱǰȱřŘşȬřśŝǯ ¢ǰȱǯǯǰȱĴǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ǰȱ ǯǯǰȱÇ£ǰȱǯǰȱȬǰȱǯǰȱȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱȱȱ coral reefs to climate change. ¢ȱĴ ŗŚǰȱŗřŘȬŗŚŖǯ ¢ǰȱǯǯǰȱȬǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱ Ȭǰȱǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱ£ǰȱǯǯǰȱ ǰȱǯǰȱ ĵǰȱǯǯǰȱ¢ ¢ǰȱǯǯȱǭȱǰȱ N. 2011. Revisiting climate thresholds and ecosystem collapse. Frontiers in Ecology and the Environment şǰȱşŚȬşśǯ Mundy, P.R., and D. F. Evenson. 2011. “Environmental controls of phenology of high-latitude ȱȱȱȱȱȱǰȱȱǰȱ ȱȱȱę¢ȱ ǯȄȱȱȱȱȱDZȱȱȱȱŜŞȱǻŜǼȱǻ¢ȱŗǼDZȱŗŗśśȱȬŗŗŜŚǯȱ DZŗŖǯŗŖşřȦȦŖŞŖǯ ǰȱǯǰȱȱ ĴǰȱǯȱǭȱǰȱǯȱŘŖŖŚǯȱȱȱȱȱȱȱęȱ stocks: legal and economic aspects. ȱȱȱȱǯȱŚŜśǰȱDZȱȱȱ ȱ£ȱȱȱȱǯ ǰȱǯȱŘŖŗŗǯȱȱȱDZȱȱȱȱȱȱȱęǯȱȱȱȱȱȱŜŞǻŜǼDZȱŗřŜŞȬŗřŝŘǯ 227 228 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǯȱŗşşřǯȱȱȱȱȱȱDZȱȱȱ ȱ Analogy. Transactions of the American Fisheries SocietyǰȱŗŘŘǻśǼDZŜŚŝȬŜśŞǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŗşşŝǯȱ ȱ£ȱȱȱȱȱȱǯȱDZȱThe biology of sea turtles, Vol 1, ǯǯȱĵȱǭȱǯǯȱȱǻǯǼǯȱȱǰȱDZȱȱǰȱŗřŝȬŗŜřǯ ǰȱǯǰȱǰȱ ǯȬǯȱǭȱǰȱǯȱŘŖŗŗǯȱęȱȱ¢¡ȱȱȱȱ¢ȱȱÛȱ ȱȱȱȱȱěȱǯȱ¢ȱȱĴ, řŞǰȱŘŘŜŖŘǯ ǰȱǯǰȱǯȱ£ǰȱǰȱǯǯǯȱǻŘŖŗŗǼǯȱȱȱȱȱęDZȱȱȱȱ ȱȱȱȱęȱǰȱȱȱȱŗŝŗŖȱȱȱȱȱ World Economy (forthcoming in Climatic Change). DZȱȱȱȱǻŘŖŗŘǼȱĴDZȦȦǯȦȦȦǯ National Climate Assessment (NCA) Report Series. 2010a. Volume 5b. Monitoring climate changes and its impacts: physical climate indicators. ǰȱǯǯDZȱǯǯȱȱȱȱ Program. National Climate Assessment (NCA) Report Series. 2010b.Volume 5a. Ecosystem responses to climate change: selecting indicators and integrating observation networks.ȱǰȱǯǯDZȱǯǯȱ Global Change Research Program. National Climate Assessment (NCA) Report Series. 2011. Volume 5c. Climate change impacts and responses: societal indicators for the National Climate Assessment.ȱǰȱǯǯDZȱǯǯȱȱ Change Research Program. ȱȱȱȱǯȱŘŖŖşǯȱȱȱǯȱȱȱȱȱȱǯǯȱȱ ȱǯȱŜthȱǯȱǯǯȱȱȱǰȱȱȱǯȱ ȬȦȬŞŖǯȱřŜşȱǯ National Marine Fisheries Service (NOAA Fisheries) 2009b. Gulf of Mexico Red Snapper RecovDZȱȬȱȱȱȱȱęȱȱȱęǯȱȱȱ ȱȱŗŗǰȱŘŖŖşȱȱĴDZȦȦ ǯ ǯǯȦŘŖŖşȦŘŖŖşŗŘŗŗȏ redsnapper.html. ȱȱȱȱǻȱǼǯȱŘŖŖşǯȱȱȱȱȱȱ ǰȱŘŖŖŜǯȱǯǯȱǯȱǰȱȱǯȱǯȱȱȬȦȬşŞǯ National Marine Fisheries Service (NOAA Fisheries). 2009c. Our Living Oceans. Report on the status of U.S. living marine resources. 6th edition.ȱǯǯȱȱȱǰȱȱȱǯȱȬȦȬŞŖǯ National Marine Fisheries Service (NOAA Fisheries). 2010. Fisheries Economics of the United States, 2009.ȱǯǯȱǯȱǰȱȱǯȱǯȱȱȬȦȬŗŗŞǰȱŗŝŘǯ ȱȱȱȱǻȱǼǯȱŘŖŗŘǯȱȱȱȱȱ ǯȱȱȱ ĴDZȦȦ ǯǯǯȦȦ ȦȦǯ ȱȱȱǯȱŘŖŗŗǯȱȱȱȱȱǰȱŘŖŗŖǯȱȱ¢ȱ ȱǯȱŘŖŗŖǯȱȱǰȱ¢DZȱĜȱȱȱȱ¢ȱȱŘŖŗŗǯ National Ocean Council. 2012. Draft National Ocean Policy Implementation Plan. Washington, ǯǯȱĴDZȦȦ ǯ ǯȦȦȦȦȱ National Research Counci (NRC)l. 2000a. Long-Term Institutional Management of U.S. Department of Energy Legacy Waste Sites. Washington, D.C.: The National Academies Press. ȱȱȱǻǼȱĴȱȱȱȱȱȱȱǻŘŖŖŗǼǯȱȱ Change Science: An Analysis of Some Key Questions, The National Academies Press. ȱȱȱǻǼǯȱŗşşŜǯȱȱDZȱȱȱȱȱcratic Society. Washington, D.C.: The National Academies Press. National Research Council (NRC). 2000b. ȱȱȱ¢ȱȱȬȱments. Washington, DC: The National Academies Press. References National Research Council (NRC). 2010. Adapting to the Impacts of Climate Change. America’s Climate Choices. Washington, D.C.: The National Academies Press. ȱȱȱǻǼǯȱŘŖŗŖǯȱȱęDZȱȱȱ¢ȱȱȱȱ Challenges of a Changing Ocean. Washington, DC: The National Academies Press. ¢ǰȱǯȱǯǰȱǰȱǯȱǯǰȱǰȱǯ ǯǰȱ¢ǰȱǯǰȱǰȱǯȱǯȱǯǰȱ¢ǰȱǯǰȱǰȱ ǯǰȱǰȱǯǰȱ¢ǰȱ ǯǰȱȱǯȱǯȱŘŖŖŖǯȱȱŚŖśDZȱŗŖŗŝȬŗŖŘŚǯ ¢ǰȱǯǯǰȱǯǯȱ ¢ǰȱǯǯȱǰȱǯȱǰȱǯȱĴǰȱǯǯȱǰȱǯȱǰȱǯǯȱǰȱ ǯǯȱǰȱǯȱ ǰȱȱǯǯȱǯȱŘŖŖşǯȱȱȱȱȱȱȱęȱ ǯȱȱȱȱȱ¢ȱȱǰȱŗŖŜǻřŜǼDZŗśŗŖřȬŗśŗŗŖǯ £ǰȱǯȱǯȱŘŖŖřǯȱȱȬȬȱȱ ȱȱȱDZȱ¢ȱȱȱ ǰȱ ǯȱŗȬŘŖǯȱȱǯǯȱ£ǰȱǯȱEthno-ecology: Situated Knowledge/Located Livesǯȱǰȱȱȱ £ȱǯȱřŖŖǯ ǯȱŘŖŗŖǯȱŘŖŖşȦŘŖŗŖȱȱǯȱȱȱŗŘǰȱŘŖŗŘȱȱĴDZȦȦ ǯǯǯȦ special-reports/2009-2010-cold-season.html. ǰȱǯȱŘŖŗŗǯȱȱȱ¢ȱȱȱȱ¢ǯȱȱȱȱȱ ȱ¢ȱ ȱȱŘŘǰȱŘŖŗŗǯȱȱ¢ȱşǰȱŘŖŗŘȱȱĴDZȦȦ ǯǯ ȦŘŖŗŗȦŖŞȦŘŘȦŘŖŘŜŝŚŘȦȬȬ¢ȬȬȬǯǯ ǰȱǯǯȱŗşŜşǯȱ ȱȱȱȱǯȱǰȱDZȱ¢ȱȱȱǯ ǰȱǯǯȱŗşŞŜǯȱ ȱȱȱȱDZȱȱȱȱȱȱȱ ǯȱǰȱDZȱ¢ȱȱȱǯ ǰȱǯȱǯȱǭȱ£ǰȱǯȱŘŖŗŗǯȱȱȱ ȱȱȱȱDZȱȱ ȱȱ¡Ȭȱȱȱ ȱȬȱ¡ȱǯȱ PLoS ONE 6ǰȱŗŞŗŗŝǯ ǰȱǯȱǯǰȱǯȱǯȱǰȱǯȱǯȱǰȱǯȱǯȱǰȱǯȱǯȱǰȱȱǯȱǯȱǯȱ ŘŖŖŝǯȱ ȱȱȱ¢ȱ¢ȱȱ ȱȱȱȱȱȱȱ Sea: isotopic analysis of northern fur seal teeth. Marine Ecology Progress Series 332 (March śǼDZȱŘŗŗȬŘŘŚǯȱDZŗŖǯřřśŚȦřřŘŘŗŗǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱȬǰȱǯǰȱ¢ǰȱǯȱǭȱǰȱǯȱŘŖŖŝǯȱȱ reduction of Arctic perennial sea ice. ¢ȱȱĴ řŚǰȱŗşśŖŚǯ ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯȱȱ ǰȱǯȱŘŖŗŗǯȱȱȱȱability in culturable pathogenic Vibrioȱǯȱȱȱǰȱǰȱ ȱcanes Katrina and Rita. Applied and Environmental MicrobiologyȱŝŝǻŗśǼDZśřŞŚȬśřşřǯ ȱȱȱǯȱǯǯȱ ȱȱDZȱȱȱȱ¡ȱǯȱǻȱDZȱȱǰȱȱȱȱȱ ȱǼǯȱ ȱ¢ȱřŖǰȱŘŖŗŘȱȱĴDZȦȦǯǯȦ£ȦȦǯ ǯȱŗşşŝǯȱǰȱęǰȱȱȱȱȱ ȱȱȱǯȱHabitat Connections ŗ:3. ǯȱŗşşŝǯȱǰȱęǰȱȱȱȱȱȬȱȱǯȱHabitat Connections ŗ:5. ǯȱŘŖŗŖǯȱȱȱȱ¢ȱȬȱȱȱȱȱ ǯȱȱȱ ȱȱǯȱȱ¢ȱŜǰȱŘŖŗŘȱȱĴDZȦȦ ǯǯǯȦȏȏ ǯǯ DZȱŘŖŗŗȱȱ¢ȱȱȱ¡ȱȱȱȱȱĴDZȦȦ ǯ ǯǯȦ ŘŖŗŘȦŘŖŗŘŖŗŗşȏȏǯȱǻȱ¢ȱŘŖŗŘǼǯ ǰȱǯȱŘŖŖŘǯȱȱǯȱǰȱDZȱȱȱǯ ǰȱǯ ǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǭȱ¢ǰȱǯǯȱŘŖŖŜǯȱȱȱȬȱȱȱ ȱ 229 230 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱȱȱȬȬȬȱȱȱěȱǰȱ ȱȱǰȱǰȱȱ 17--22, 2005. Morbidity and Mortality Weekly Report śśǰȱřŞȬŚŗǯ ȱęȱ¢ȱȱȱǻǼǯȱŘŖŖşǯȱ¢ȱȱȱȱęȱ ȱȱȱȱȱǯȱĴDZȦȦ ǯǯǯȦȦȦ fmp/Arctic/ArcticFMP.pdf ȱęȱ¢ȱȱȱǻǼǯȱŘŖŗŗǯȱȱȱȱ¢ȱ Evaluation Report for King and Tanner Crab Fisheries of the Bering Sea and Aleutian Islands DZȱȱȱŘŖŗŗǯȱĴDZȦȦ ǯǯǯȦȦȦȦȦ CrabSAFE/CrabSAFE2011.pdf ǰȱǯǯǰȱȱǯǯȱǯȱŘŖŖřǯȱȱĚȱȱȱȱȱȱ ȱȱȱęęȱȱȱěȱǯȱǯȱǯȱȱǯȱ ǯȱǯȱŚŚDZŗŘřȬŗřřǯȱ ǰȱǯǯǰȱȱǯǯȱǯȱŘŖŖŚǯȱ¢ȱȱ¢ȱȱȱĚȱȱ ȱȱęȱȱȱǯȱǯȱǯȱȱǯȱǯȱǯȱ ŚśDZŗřŜȬŗŚśǯ ǰȱǯǯǰȱȱǯǯȱǯȱŘŖŖśǯȱȱȱȱȱǻȱ¡Ǽȱdance to climate-scale ecological changes in the California Current system. Calif. Coop. ȱǯȱǯȱǯȱŚŜDZŞřȬşŘǯ ĴǰȱǯȱǭȱǯǯȱǰȱǯȱŘŖŖŖǯȱThe Arctic: Environment, people, policy. ȱǰȱDZȱ Taylor and Francis. ĴǰȱǯȱŘŖŖŗǯȱȱȱȱȱȱȱȱȱǯȱȱěȱ ŚǻŗǼDZŘŜȬřřǯ Ĵǰȱǯǰȱǯȱǰȱǯȱǰȱǯȱęǰȱǯȱǰȱȱǯȱ£ǯȱŘŖŖŚǯȱ ǰȱ ǰȱ ȱȱDZȱȱȱȱ ȱǯȱImpacts of a Warming Arctic: Arctic Climate Impact Assessment. ¢ȱ¢ǰȱȱǰȱȱȱ ǰȱǯȱ ǯŜŚşȬŜşŖǯȱDZȱȱ¢ȱǯȱ ĴǰȱǯǰȱȱǯȱǯȱǰȱǯȱŘŖŖŖǯȱThe Arctic: Environment, People, Policy. Amsterdam: ȱȱDzȱ ǰȱȱǯȱŘŖŖŗǯȱThe Environment, International Relations, and U.S. Foreign Policy. ǰȱDZȱ ȱ¢ȱǯ ¢ǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǯȱǭȱĵǰȱǯǯȱŘŖŖşǯȱȱȱȱȱ ȱ ȱȱȱȱȱȱȱȱȱ£ǯȱMarine Ecology Progress Series řşř, 111-129. ¢ǰȱǯǯǰȱ¢ǰȱǯǯǰȱ ǰȱǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱȱ ȱ Atlantic circulation. Nature Communications ŘǰȱŚŗŘǯ O’Connor, M.I. 2009. Warming strengthens an herbivore-plant interaction. Ecology şŖǰȱřŞŞȬřşŞǯ Ȃǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱ 2007. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences USA ŗŖŚǰȱŗŘŜŜȬŗŘŝŗǯ ȂǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱȱȱ ¢ȱȱȱ ȱȱȱǯȱȱ¢ ŝǰȱŗŖŖŖŗŝŞǯ Ȃ¢Ȭ ǰȱǯȱŘŖŖŞǯȱȱȱȱȱȱ¢ȱȱȱǯȱȱȱŗŞDZȱśŜȬŝŜǯ OECD. 2010. The Economics of Adapting Fisheries to Climate Change. OECD Publishing. ȱ¢ȱŗŝǰȱŘŖŗŘǰȱȱĴDZȦȦ ǯȬ¢ǯȦȬȬȦ ȬȬȬȬęȬȬȬȏşŝŞşŘŜŚŖşŖŚŗśȬǯ ĜȱȱȱȱȱȱǻǼǯȱŘŖŗŗǯȱȱDZȱȱȱȱȱ ȱ¢ȱŘŖŗŖǯȱȱŘŖŗŗǰȱǯǯȱȱȱǰȱǰȱĜȱȱȱȱ References ȱǰȱǰȱǯǯȱȱ¢ȱŜǰȱŘŖŗŘǰȱȱĴDZȦȦǯǯǯ ȦȦǯȏǯȏ ǯǯ ĜȱȱȱȱȱȱǻǼǯȱŘŖŗŗǯȱȱȱȱȱǯǯȱ ǰȱǰȱȱȱDZȱŘŖŗŖǯȱ¢ȱŘŖŗŗǰȱǯǯȱȱȱǰȱǰȱęȱȱȱȱȱǰȱǰȱǯǯȱȱ¢ȱŜǰȱŘŖŗŘǰȱȱ ĴDZȦȦǯǯǯȦȦǯȏǯȏ ǯǯ ǰȱǯȱǭȱǰȱǯȱŘŖŖŝǯȱVibrio species, In Food microbiology: Fundamentals and Frontiers, 3rd Editionǯȱǯǯȱ¢ȱǭȱǯǯȱȱǻǼǯȱǰȱǯǯDZȱȱǰȱřŚřȬřŝşǯȱ ǰȱǯȱŗşŞşǯȱVibrio ę. In ȱȱǰȱǯǯȱ¢ȱǻǯǼǯȱ ȱǰȱǯǯDZȱ ȱǰȱśŜşȬśşşǯ ǰȱǯȱŘŖŖśǯȱȱȱȱ¢ȱȱę and other marine bacteria. Epidemiology and Infection ŗŘŘǰȱřŞřȬřşŗǯ £ǰȱǯǰȱǯȱǰȱǯȱǰȱȱǯȱǯȱŘŖŖŚǯȱȱȱȱȱ ȱȱȱȱ ȱȱǻChionoecetes opilio) in the eastern Bering Sea-An environȱǵȱȱȱŚśǰȱǯȱŜŝȬŝşǯ ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱ ǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǯǰȱ¢ǰȱǯǰȱȬǰȱǯǰȱǰȱǯǰȱ¢ǰȱ ǯǰȱǰȱǯǰȱǰȱǯǯǰȱĴǰȱǯȬǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ĵǰȱǯǰȱǰȱǯǯǰȱĴǰȱǯǯǰȱǰȱǯȬǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖśǯȱȱȱęȱȱȱ ¢Ȭęȱ¢ȱȱȱȱȱ¢ȱisms. Nature ŚřŝǰȱŜŞŗȬŜŞŜǯ ǰȱǯǯȱǻǯǼǯȱŘŖŖŞǯȱClimate Impacts on U.S. Living Marine Resources: National Marine Fisheries Service Concerns, Activities and Needs. ǯǯȱȱȱǰȱȱȱ ǯȱȬȦȬŞşǯȱŗŗŞȱǯ ǰȱǯȱŘŖŗŖǯȱȱ ȱDZȱ¢ȱȱǰȱ¢ǰȱȱǯȱ ȱDZȱ¢ȱȱȱǯȱ Ĵǰȱǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱ ¢ȱ¢ȱ ȱ ȱ¢ȱȱȱęȱǯȱJournal of Marine Systems ŝşǰȱřŚřȬřŜŖǯ ĴǰȱǯǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱǰȱȱǯȱŘŖŖŗǯȱȱěȱȱȱȱ ȱǯȱȱŗŘŞDZȱŗȬŗŚǯ ĵǰȱǯǯǰȱ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱǯǯȱȱȱ shelf. Marine and Coastal Fisheries: Dynamics, Management and Ecosystem Science ř, 219-252. ǰȱǯǰȱǰȱǯǰȱǭȱǰȱǯȱŘŖŗŗǯȱȱȱȬȱȱDZȱȱȱȱȱ ¢ȱȱȱǯȱPolar ResearchȱřŖǰȱŗśŝŞŝǯ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱ ȱȱȱ¢ȱȱęȱǯȱJournal of Marine Systems ŝş, 305-315. ǰȱǯȱŘŖŗŘǯȱȱȱȱȱȱȱȱȱǯȱFlorida Law Review 64ǰȱŗŚŗȬŘŖŖǯ ęȱ¢ȱȱȱǻǼǯȱŗşşŞǯȱȱŞȱǻȱȱȱ¢ȱ ę¢ȱȱǼȱȱȱȱȱDZȱȱȱȱȱ ¢ȱȱǯȱęȱ¢ȱȱǰȱǰȱǯȱ ȱ ǰȱ ȱǯȱŘŖŖŞǯȱȱȱȱǯȱScienceȱřŘŖDZśŝȬśŞDzȱȱ ǰȱ ȱǯȱŘŖŖşǯȱ Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1(1): 27-37. ǰȱǯǯȱŗşşŘǯȱȱ ȱ¢ȱȱęȱȱȱȱȱȱ strength. Nature řśś, 73-75. 231 232 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱ ǰȱǯǯȱŘŖŖŚDZȱȬȱȱȱ ȱȱęȱȱȱȱǰȱŗşśŖȬŗşşřǯȱJournal of Geophysical Research ŗŖşǰȱŗŖŖŗŜǯ Pallab, M. E. Flugman and T. Randhir. Adaptation behavior in the face of global climate change: ¢ȱȱȱ¡ȱȱȱȱȱȱȱ¢ǯȱOcean & Coastal Management śŚDZȱřŝȬŚŚǯ ǰȱ ǯǯȱŘŖŗŗǯȱȱȱȱȱȱȱȱȱ DZȱȱ ȱȱ environmental impact and climate change? In Progress in Parasitologyǯȱ ǯȱȱǻǯǼǯȱ Berlin: Springer Verlag, 223-250. Palmer, C. T. 1991. Kin-selection, reciprocal altruism, and information sharing among Maine lobstermen. Ethology and Sociobiology 12(3):221-235. Palmer, C.T. 1990. Telling the truth (up to a point): Radio communication among Maine lobstermen. Human Organization ŚşǰŗśŝȬŗŜřǯ ęǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱ ȱȱ ȱȱȱęǯȱScience řřřǰȱŚŗŞȬŚŘŘǯ £ǰȱǯȱŘŖŖşǯȱȱȱȱȱȱȱȱ ȱǯȱȱ¢ȱ ŚǰȱŘŖŗŗǰȱȱĴDZȦȦǯǯȦȦȦȬȬǯ html. ǰȱǯǰȱǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŝǯȱȱ¢ȱȱȱĴȱ ¢¡ȱȱ ȱȱȱȱ¢ǰȱǯȱEstuaries and Coasts řŖǰȱśŚȬŜśǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱĴǰȱǯȱǭȱǰȱǯǯȱŗşşşǯȱȱȱȱ ȱ ȱȱ Ȭȱȱȱ ȱ¡ǰȱǯȱAmerican Journal of Tropical Medicine and Hygiene ŜŗǰȱŞŗŚȬŞŘŗǯ ǰȱǯǰȱǭȱǰȱǯȱŘŖŖřǯȱȱ¢ȱȱęȱȱȱȱȱȱ natural systems. Nature ŚŘŗǰȱřŝȬŚŘǯ ǰȱǯǯȱŘŖŖŝǯȱ ȱȱȱȱȱȱȱȱ¢ȱȱȱ¢ǯȱ ęȱǰȱǯȱ¢ǰȱǰȱȱȱǰȱȱȱŖŝȦŖŗǯȱǯŗŗǯ ǰȱǯǰȱǯȱǰȱȱǯȱ¢ǯȱŗşŞşǯȱ¢ȱȱȱęȬȱ£ȱȱȱȱParalithodes camtschaticaȱǻǼǯȱȱȱ¡ȱȱ¢ȱȱ¢ǰȱŗřŖǰȱ śśȬŜşǯ ¢ǰȱǯȱŘŖŗŖǯȱȱęȱȱȱDZȱ¡¢ǰȱȱȱȱ ȱȱ Ȭ breathing animals, Vol. 22 in Excellence in Ecology Series (ed. Kinne, O.) (International Ecology Institute. £ǰȱǯǰȱǰȱǯǰȱ£ǰȱǯǰȱǰȱǯȱȱǰȱǯȱŘŖŖŝǯȱȱȱȱȱȱȱ Vibrio ę disease in Israel. Environmental ResearchȱŗŖřǻřǼDZřşŖȬřşŜǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖŝǯȱȱȱȱȱȱ¢ȱȱȱȱȱȱȱ£ȱȱȱ ȱǯȱȱȱ¢ ŗřǰ ŗŞşŞȬŗşŖşǯ Peloso, M. 2010. Adapting to Rising Sea Levels. PhD Dissertation, Marine Science and Conservation ǰȱȱȱȱȱǰȱȱ¢ǯȱŚŗŞȱǯ ǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱĚǰȱǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱěǰȱǯǯǰ¥ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱȬǰȱ ǯǰȱǰȱǯǰȱ ǰȱǯǰȱȱǯǰȱȱǰȱǯȱǻȱ Ǽǯȱȱȱȃȱ carbon” emissions from conversion and degradation of coastal ecosystems. PlosOne (in Ǽǯ ǰȱǯ ǯȱȱǯȱǯȱŗşşŞǯȱȱȱȱȱȱȱȱ ȱȱ ȱęȱȱȱȱǯǯȱLand EconomicsȱŝŚǻŚǼDZŚŞřȬşŜǯ References ǰȱǯǰȱǰȱǯȱȱǰȱǯȱŘŖŖŖǯȱVibrioȱȱȱȱȱǯǯȱȱǯȱ CorneaȱŗşȱǻŗǼDZȱŘŜȬşǯ £ǰȱǯȱŘŖŖřǯȱȱȱȱȱȱȱȱȱȱǯȱActa Oecologia ŘŚ, ŗřşȬŗŚŚǯ ǰȱ ǯǯǰȱ¢ǰȱǯǯǰȱ³ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǯǰȱ£Ȭ ·ǰȱǯǯǰȱøǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯǯǰȱǰȱǯǰȱǰȱ ǯǯǰȱǰȱǯǯǰȱ·Ĵǰȱǯǰȱ Ĵǰȱǯǯǰȱ ǰȱ ǯǯǰȱǰȱǯǯǰȱěǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱ global biodiversity in the 21st century. Science řřŖǰȱŗŚşŜȬŗśŖŗǯȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǭȱȬǰȱǯȱŘŖŗŗǯȱSea ice. Marine ecosystems study. Arctic report card: update for 2011.ȱȱȱŜǰȱŘŗŖŗŗȱȱĴDZȦȦ ǯǯǯ ȦȦȏǯǯ ¢ǰȱǯǰȱ ǰȱǯǰȱǰȱǯȱǭȱ¢ǰȱǯȱŘŖŖśǯȱȱȱȱȱȱȱȱ ęǯȱScience řŖŞ, 1912-1915. Perry, R.W., and Quarantelli, E.L., eds. 2005. What is a Disaster? New Answers to Old Questions. ȱȱĴȱȱǯȱDZȱȱǯ ǰȱǯǰȱǭȱǰȱǯǯȱǻǯǼǯȱŘŖŖşǯȱȱȱȱȱȱŘŖŖŞǯȱȱȱȱ ȱȱȱȱȱȱ¢ȱşŖǻŞǼDZȱŗȬŗşŜǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŖŞǯȱȱȱ¡ȱȱȬěȱ ȱȱȱȱǯȱEcological Monographs ŝŞǰȱřŞŝȬŚŖŘǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱ¢ǰȱǯǯȱŘŖŖŝǯȱȱȱȱǰȱ ǰȱ ȱȱȱ ȱȱȱǯȱȱȱ¡ȱȱ¢ȱ and Ecology řśŗǰȱŞřȬşŗǯ ǰȱǯǯǰȱ£ǰȱǯǰȱ¢ǰȱǯǰȱǰȱǯǯǰȱǰȱǯȬǯǰȱǰȱǯǰȱǰȱǯǰȱ£ǰȱ ǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱĴǰȱǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǰȱ·ǰȱǯǰȱĵǰȱǯǰȱĵǰȱǯȱǭȱǰȱǯȱŗşşşǯȱȱȱȱ ¢ȱȱȱȱŚŘŖǰŖŖŖȱ¢ȱȱȱȱȱǰȱǯȱNature řşşǰȱŚŘşȬŚřŜǯ ěǰȱǯȱǯǰȱǯȱǯȱ ǰȱȱǯȱǻŘŖŖŞǼǯȱȃȱȱȱȱȱȱ 21st-Century Sea-Level Rise.” Science řŘŗǻśŞşŚǼDZȱŗřŚŖȬŗřŚřǯ ȱȱȱȱǰȱȬȱȱǰȱǻŘŖŗŘǼȱĴDZȦȦ ǯǯǯȦȦȦȦǯȱǻȱȱ February 2012) ǰȱǯȱȱǯȱǯȱȱȱǻŘŖŖŜǼǯȱȃȱȱȱȱȱȱȱ ǯȄȱ¢ǯȱǯȱĴǯȱřřǻŗŗǼDZȱŗŗŝŖŚǯ ǰȱǯǯǯǰȱȱǰȱ ǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ·ǰȱǯǯȱǭȱǰȱǯȱŘŖŖřǯȱ Climate-related changes in recruitment of the bivalve Macoma balthica. Limnology and Oceanography ŚŞǰȱŘŗŝŗȬŘŗŞśǯ Phillips, B.D. 1993. Cultural diversity in disasters: Sheltering, housing, and long-term recovery. International Journal of Mass Emergencies and Disasters 11(1): 99-110. ǰȱǯǰȱǭȱ ǰȱǯ ǯȱŘŖŖŝǯȱȱȱȱDZȱȱȱȱǰȱǰȱȱ ǯȱNatural Hazards Review ŞǰȱŜŗȬŜŞǯ ȱǰȱȱǰȱȱȱǻŘŖŖŗǼȱȱȱ ȱȱ ȱȱȱȱȱ¢ǯȱ¢ȱȱĴǰȱǯȱŘŞǰȱǯȱŞǰȱȱ ŗśŚřȬŗśŚŜǯ ǰȱǯȱŘŖŖŞǯȱ¢DZȱȱȱȱȱȱȯȱ ȱ ȱȱȱǵȱ ȱ¢ ŗŞ, R117-R119. 233 234 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǰȱǰȱǯǰȱĴǰȱǯȱǭȱǰȱǯȱŗşşśǯȱȱȱȱ¢ǯȱScience ŘŜşǰȱřŚŝȬřśŖǯ ǰȱǯǰȱǰȱǯȱǭȱ ǰȱǯȱŘŖŖŞǯȱ¢ȱȱȱ ȱȱȱȱ feeding performance of a top intertidal predator. Limnology and Oceanography śřǰȱŗśŜŘȬŗśŝřǯ ¢ǰȱǯȱŘŖŖŘǯȱȱȱȱȱȱǯȱȱȱȱ ¢ȱȱȱŘŜDZȱŗŜŝŝȬşŝǯ ȱǯȱȱǯȱǯȱȱ ǯȱȱȱȱȱȱ¢DZȱǰȱ ȱȱǯȱȱȱȱǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŗŘǯȱȱęȱȱȱtion and physiological response of Mytilus californianusȱ ȱęȱǯȱFunctional Ecology ŘǰȱŗŚŚȬŗśśǯ ǰȱǯǯǰȱȂǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŖŞǯȱȱ¡ȱȱȱȱȱ Mytilus californianus: physiological response to environmental factors on a biogeographic scale. Marine Ecology Progress Series řśŜǰȱŗȬŗŚǯ ǰȱǯȱǯȱȱǯȱǯȱǰȱǯȱŗşŞŞǯȱȱȱȱȱȱȱ ȱȱ Fishermen and Its Application to Fisheries Management Policy. American Anthropologist şŖǻŚǼDZȱŞŞŞȬşŖŗǯȱ ǰȱǯȱǯǰȱǯȱĴȬǰȱǯȱǰȱǯȱǯȱǰȱǯȱǯȱ¢ǰȱȱǯȱǯȱŘŖŖŜǯȱȱȱ ȱęȱȱȱǯȱMar. Fish. Rev.ȱŜŞǻŗȬŚǼDZŗȬŗŞǯȱĴDZȦȦǯǯǯȦ ŜŞŗȬŚȦŜŞŗȬŚŗǯ £ǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŖŞǯȱȱȱȱ of populations of competing species to climate change. Ecology ŞşǰȱřŗřŞȬřŗŚşǯ £ǰȱǯǯǰȱǰȱǯǯȱǭȱ ¢ǰȱǯǯȱŘŖŖşǯȱ¢ȱȱȱȱȱȱ change. ȱȱȱ¢ śŜ, 151-211. ǰȱǯǰȱǰȱǯǰȱ£ǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯȱǭȱĴǰȱǯȱȱȱ¡ȱ ȱDZȱȱȱȱȱȱȱȱǯȱDeep Sea Research II śřǰȱřŘŜȬřřşǯ ǰȱǯǯȱǭȱ ǰȱǯǯȱŗşşşǯȱȱǰȱ¢ȱ¢ǰȱȱęȱȱȱȱ ȱ ȱǯȱȱ¢ȱȱȱęȱǰȱ ǰȱDZȱȱȱȱȱȱȬȬşşȬŖŗǰȱŘřȬřŘǯ ǰȱǯǯȱŘŖŖśǯȱȱǰȱȱǰȱȱȱȱȱęǯȱ ȱȱȱ ŝŜǰȱŘřřȬŘŚŚǯ ǰȱǯǯȱŘŖŖŝǯȱȱȱȱȱȬęȱȱȱȱęȱȱ (Thunnus thynnusǼȱȱ ȱȬȱȱȱ¢ȱǯȱFisheries Oceanography śǰȱŗŗŚȬŗŗşǯ ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŗŗǯȱȱ¡ȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱ ȱęȱȱȱ ǯȱICES Journal of Marine Science ŜŞǰȱşŞŜȬşşśǯ ǰȱǯǯǰȱ ǰȱǯǯȱǭȱǰȱǯȱŘŖŖŞǯȱȂȱȱȱ ȱȱ¡ǯȱ ¢ȱȱĴ řśǰȱŖřŜŗŞǯ ãǰȱ ǯȱǯȱǭȱǰȱǯȱŘŖŖŝǯȱȱȱěȱȱęȱȱȱ¡¢ȱtion of thermal tolerance. Science 315, 95-97. ãǰȱ ǯǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱ¢¢ȱȱȱǯȱScience řŘŘǰȱŜşŖȬŜşŘǯ ãǰȱ ǯǯȱŘŖŖŞǯȱ¢ȱěȱȱȱęȱȱȱȱȱ DZȱȱ¢Ȃȱ ǯȱMarine Ecology Progress Series řŝř, 203-217. ãǰȱ ǯǯȱŘŖŗŖǯȱ¡¢Ȭȱȱ¢ȬȱȱȱDZȱȱ¡ȱȱȱ Ȭȱȱěȱȱȱ¢ǯȱȱȱȱ¡ȱ¢ȱŘŗř, ŞŞŗȬŞşřǯ References ãǰȱ ǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱ ȱȱȱȱȱDZȱ¢ȱ¢ȱȱȱěȱȱȱęǯȱ Climate Research řŝ, 253-270. £ǰȱǯǰȱǰȱǯǯȱǭȱ ȬǰȱǯǯȱŘŖŗŗǯȱěȱȱȱęȱȱȱ communities. ȱȱ¡ȱȱ¢ȱȱ¢ ŚŖŖǰȱŘŝŞȬŘŞŝǯ ǰȱǯǯǰȱǰȱǯ ǯǰȱ ǰȱǯ ǯȱǭȱǰȱ ǯǯȱŘŖŖşǯȱȱȱȱ¢ȱ reefs in no-harvest sanctuaries: implications for restoration. Marine Ecology Progress Series řŞş, 159-170. Ĵǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱ ǯǯǰȱǰȱǯǯǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱěȱȱȬȱȱȱ ȱȱȱęDZȱȱȱȱǯȱ¢ȱȱȱ¢DZȱ an Annual Review 46ǰȱŘśŗȬŘşŜǯ Ĵǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱ ȱǯȱǭȱǰȱǯȱŘŖŗŗǯȱ¢ȱȱȱęȱȱȱȱęȱȱȱ change. In ¢ȱȱȱęȱȱȱȱȱȱǰȱǯǯȱȱ ȱǯȱǻǼȱǰȱ ȱDZȱȱȱȱęȱ¢ǯ ǰȱǯǯǰȱǰȱǯǯǰȱ£ǰȱǯǯȱǭȱ°ǰȱǯȱŘŖŖşǯȱȱȱȱȱȱ ȱ ǯȱICES Journal of Marine Science 66ǰȱŗśŘŞȬŗśřŝǯ Rabalais, N.N., Turner, R.E., Sen Gupta, B.K., Boesch, D.F., Chapman, P., & Murrell, M.C. 2007. ¢¡ȱȱȱȱȱȱ¡DZȱȱȱȱȱȱȱȱǰȱgate and control hypoxia? Estuaries and Coasts řŖ, 753-772. ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱěȱȱȱȱȱȱȱǯȱ ȱ¢ ŘŘ, 521-533. ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱĴǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱěǰȱǯǯǰȱǰȱǯǰȱǭȱ¢ǰȱǯǯȱŘŖŖŝǯȱȱȱȱ Their Evaluation. In ȱȱŘŖŖŝDZȱȱ¢ȱȱǯȱȱȱȱ Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S. SoloȱȱǯȱǻǼǯȱȱȱȱ ȱǰȱDZȱȱ¢ȱǰȱśŞşȬŜŜŘǯ ǰȱǯǯǰȱǯǯȱǰȱǯȱǰȱǯȱǰȱȱǯǯȱ ¢ǯȱŘŖŗŗǯȱȱȱȱ as allelopathic agents against reef corals. Proceedings of the National Academy of Science ȱŗŖŞDZȱŗŝŝŘŜȬŗŝŝřŗǯ Ĵ¢ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖşǯȱȱȱȂȱȱȱ ǰȱ ȱȱ-ȱȱȱȱ ȱǰȱǯȱPolar Research ŘŞǰȱŝŗȬŞŞǯ ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱ ĴǰȱǯǯǯȱŘŖŖŜǯȱȱ¢ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȬȱ¢DZȱȱ ŘȱǯȱJournal of Climate ŗşǰȱŚŚŜȬŚŜşǯ ǰȱǯǯǰȱ ǰȱǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱȱ ȱȱȱ ȱȱȱ¢ȱȱ¢ȱȱǯȱEcology ŞşǰȱŘŚşřȬŘśŖśǯ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱęȱȱȱȱȱȱDZȱenology and analysis. The Journal of the Acoustical Society of America ŗŘŞǰȱŗřŝȬŗŚřǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖŜǯȱȱȱȱȱȱȱȱȱ SeaǯȱȬȱȱŘŖŖŜȬŗřřŝǰȱǰȱDZȱǯǯȱȱ¢ǯȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱ ǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱȱ of polar bears in the southern Beaufort Sea in relation to sea ice. Journal of Animal Ecology ŝş, 117-127. 235 236 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖŝǯȱȱȱȱȱȱȱȱDZȱȱȱȱęȱȱNeodenticula seminae in the ȱȱȱȱęȱȱȱŞŖŖǰŖŖŖȱ¢ǯȱȱȱ¢ ŗř, 1910-1921. ǰȱǯǯ ǯǰȱǯȱǰȱǯȱ §ǰȱȱǯȱǯȱŘŖŖśǯȱ¢ȱ¢ȱȱȱ extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences ȱŗŖŘDZȱŘŞŘŜȬŘŞřŗǯȱ ǰȱǯȱǭȱǰȱ ǯǯȱŗşśŝǯȱȱ¡ȱ¡ȱ ȱȱȱȱȱȱ ȱȱȱȱȱȱ2 during past decades. Tellus şǰȱŗŞȬŘŝǯ ¢ȬǰȱǯǯȱǭȱĴǰȱǯǯȱȱŘŖŖŚǯȱȬȱȱ¢ȱȱȱ¢ȱ mixed estuary. Estuarine, Coastal and Shelf Science ŜŖǰȱřşśȬŚŖŝǯ ǰȱǰȱǰȱǯǰȱǰȱǯȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯǯȱŘŖŖŖǯȱȱ ęȱȱȱȱȱȱȱȱȱ2. Nature ŚŖŝ, řŜŚȬřŜŝ ǰȱǯǰȱ£ǰȱǯǯǰȱ¢ǰȱǯǯǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ãǰȱǯǰȱǰȱ ǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱãǰȱǯȱŘŖŖŝǯȱȱȱȱ consumption in a high CO2 ocean. Nature ŚśŖǰȱśŚśȬśŚŞǯ ǰȱǯǰȱǰȱǯǰȱǭȱǰȱǯȱŘŖŖşǯȱȱęȱ¡ȱ¡ȱȱȱ CO2ȬȱȱęǰȱGeology řŝǻŗŘǼǰȱŗŗřŗȬŗŗřŚǯ ǰȱǯǯȱŘŖŗŖǯȱ DZȱȱȱ¡ȱȱȱȱȱȱ ȱ ȦȱǻȬȱǼȱȱȱěȱȱȱȱęǯȱ ŝǰȱŘŝşśȬŞŚş Rignot, E., I. Velicogna, et al. (2011). “Acceleration of the contribution of the Greenland and ȱȱȱȱȱȱǯȄȱ¢ǯȱǯȱĴǯȱřŞ(5): L05503. ǰȱǯǰȱ ĵǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖśǯȱȦȱȱȱȱDZȱŘǯȱ ȱȱȱ ȬȱȱȬȱȱǰȱJournal of Geophysical Research ŗŗŖǰȱŗŘŗŖŞǯ ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯ ǯǰȱǰȱǯǯǰȱǰȱ ǯǯǰȱęǰȱǯǯȱǭȱǰȱ ǯǯǯȱŘŖŖśǯȱȱȱȱ¢ȱǯȱȱ ȱȱŚŗŚ Robinson, S. and the Gloucester Community Panel. 2003. A study of Gloucester’s commercial ęȱǯȱ¢ȱȱǯȱȱ¢ȱŗŝǰȱŘŖŗŘǰȱȱĴDZȦȦ ǯǯȦȦȏȦǯ ǰȱǯȱȱȱȱ¢ȱǯȱŘŖŖśǯȱȱęȱ¢ȱȱȱ ȱ ǰȱ ȱȱȱȱǯȱ¢ȱȱǯȱȱ¢ȱŗŝǰȱ ŘŖŗŘǰȱȱĴDZȦȦǯǯȦȦȏȦǯ àǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯǯǯȱŘŖŖŘǯȱȱȱDZȱȱ¢ȱ ȱȱȱȱǵȱProceedings of the National Academy of Sciencesȱȱşş, ŗŘşŖŗȬŗŘşŖŜǯ £Ȭ£ǰȱǯǰȱǯȱȬǰȱǰȱ ǯǰȱȱȬǰȱǯȱŘŖŖŘǯȱ¢ȱ ¢ȱȱȱȱęȱȱȱȱȱȱ¢ȱȱȱ ȱȱǯȱǯȱǯȱǯǯȱǯȱśşǻŗŘǼDZŗşŞŖȬŗşŞŞǯ ǰȱǯǰȱ ǰȱǯǰȱŗşşśǯȱȱȱȱȱȱȱȱȱȱ ȱǯȱȱŘŜŝǰȱŗřŘŚȬŗřŘŜǯ ěǰȱǯǯȱŗşşŘǯȱEvolution of life histories: theory and analysis.ȱ ȱǰȱǰȱDZȱȱȱ ǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŗŘǯȱȱęȱȱ ȱ reproduction: increased CO2ȱȱȱȱěȱȱ ȱ ȱȱȱ References ȱȱȱȱȱMacrocystis pyrifera (Laminariales, Phaeophyceae). Global ȱ¢ ŗŞǰȱŞśŚȬŞŜŚǯ £ǰȱǯǯǰȱǯȱ¢ǰȱǯȱǰȱȱǯȱǯȱŗşşŞǯȱȱ ȱ ȱȱ ¢Ȭȱȱȱȱȱȱȱȱȱǯȱȱȱȱ ǰȱśǰȱŗŞȬŘŚǯ £ǰȱǯǯǰȱǯȱ¢ǰȱǯȱǯȱŘŖŖŗǯȱěȱȱ ȱȱȱ ȱȱȱ ȱȱȱȱȱ¢ǰȱǯȱȱ¢ǰȱŗŖǰȱŗȬŗŘǯ ǰȱǯǯǰȱĴǰȱȱȱǰȱȱ ǰȱȱ ǰȱȱȱǰȱȱĵǰȱȱȱǯȱ ŘŖŖşǯȱ¢ȱȱěȱĴȱȱǻȱǼǰȱȱǯȱ Emerging Infectious Diseases ŗśǰȱśŞŞȬśşŖǯ Rubinstein, D. 2001. A Sociocultural Study of Pelagic Fishing Activities in Guam. Final progȱȱȱȱ¢ȱȱ ȱȱȱȱȱȱȱ ǰȱȱȱȱǯȱȱ¢ȱŜǰȱŘŖŗŘȱȱĴDZȦȦ ǯ ǯ ǯȦȦȦŖŗǯǯ ǰȱǯǯȱŘŖŗŖǯȱȱȱȱȱȱȱȱȱȱ ǯȱEnvironmental Law ŚŖǰȱřŜřȬŚřŗǯ £ǰȱǯǯǰȱěǰȱǯǰȱ ǰȱǯ ǯȱǭȱ£ǰȱǯǯȱŗşşşǯȱȬȱȱȱȱ in estuarine and marine communities: assessing invasion impacts and interactions. Limnology and Oceanography 44, 950-972. £ǰȱǯǯǰȱěǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱ ǰȱǯ ǯȱŘŖŖŖǯȱȱȱȱ ȱȱȱȱDZȱȱĴǰȱǰȱȱǯȱAnnual Review of Ecology and Systematics řŗǰȱŚŞŗȬśřŗǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯ ǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱ¢ǰȱ ǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯ ǯǰȱ ǰȱǯ ǯǰȱ ǰȱǯ ǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǯȱǭȱ ǰȱǯǯȱŘŖŗŖǯȱȱȱȱȱȱȱȱ¢ȱ of Atlantic cod in the Gulf of Maine: integration of observations and modeling. Progress in Oceanography ŞŝǰȱŘśŗȬŘŜřǯ ǰȱǯǯǰȱ ¢ǰȱǯǯǯǰȱǰȱǯǰȱ£ ǰȱǯǰȱǰȱǯǰȱ Ȭǰȱǯǯȱ ǭȱǰȱǯǯȱŘŖŗŗǯȱȱ¢ȱȱȱ ȱȱȱȱȱ ěȱȱȱȱȱȱ¢ǯȱ¢ȱĴȱDZȱŗŖǯŗŖşŞȦǯŘŖŗŗǯŖŝŝşǯ Rust, M.B. 2002. Chapter 7: Nutritional Physiology. In Fish Nutrition, 3rd edǯȱǯǯȱ ¢ȱǭȱǯȱ ǯȱ ȱǻǯǼǯȱȱǰȱDZȱȱǰȱřŜŝȬŚśŘǯ ǰȱǯǯǰȱ ǰȱǯǯǰȱ ¢ǰȱǯǯǰȱ£ǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱ ȱǯȱȱȱȱȱȦȱȱȱǯȱŗŖřȱǯ ¢£ ǰȱǯǯǰȱǭȱǰȱǯǯȱǻŘŖŗŖǼȱȱȱ¢ȱȱȱȱȱ ¢ȱ ȱȱ ȱȱȱęȱȱȱȱ¢ȱǯȱ ¢ȱȱĴǰȱřŝ ǰȱǯȱŘŖŖŝǯȱǰȱǰȱȱȱȱęȱ£ȱȱȱȱ ȱȱȱ ȱȱęȱ¢ǰȱǰȱȱ¢ȱȱȱ American Samoa. Biological Report Series No: 2007-01. Department of Marine and Wildlife Resources, American Samoa. ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱ ǯǯǰȱǰȱǯǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯȬǯǰȱ£¢ǰȱǯǰȱǰȱǯǰȱǭȱǰȱǯǯȱ ŘŖŖŚǯȱȱȱȱȱȱ2. Science řŖśǰȱřŜŝȬřŝŗǯ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŘǯȱȱȃȱȄȱDZȱȱ ȱ¡ȱȱȱȱ biogeographical rule? ¢ȱĴ śǰȱŗřŝȬŗŚŝǯ 237 238 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǯǰȱǯǯȱ¢ǰȱǯǯȱǰȱȱǯ ǯȱ¡ǯȱŗşşşǯȱȬȱȱȱȱȱ¢ȱȱȱȱȱȱǯȱȱȱŜşǻŚǼDZȱŚŜśȬŚşŖǯ ǰȱǯǰȱǭȱ ǰȱǯȱŘŖŖŜǯȱȱȱ¢ȱǯȱAnnual Review of Environment and Resources řŗ, 93-122. ¢ȱǰȱȱǰȱ ȱǰȱȱǯȱǻŘŖŖŞǼǯȱȱęȱ¢ȱDZȱȱ ȱȱȱ ęǵȱȱǰȱǰȱŞşǰȱśŗřǯ ǰȱǯǯǰȱǯǯȱǰȱǯǯȱǰȱǯǯȱǰȱǯǯȱǰȱȱǯȱŘŖŖŞǯȱȱȱ ȱȱȱȱȱȱȱȱǯȱȱȱřDZȱŗśŚŞǯ Sanford, E. & Kelly, M.W. 2011. Local adaptation in marine invertebrates. Annual Review of Marine Science ř, 509-535. ǰȱǯȱŗşşşǯȱȱȱ¢ȱȱ¢ȱȱȱȱȱǯȱ Science ŘŞř, 2095-2097. ǰȱǯǯǰȱǭȱǰȱǯ ǯȱŘŖŖŖǯȱȱęȱȱȂȱȱ DZȱ ȱȱ livelihoods, maladapted management. In Proceedings of the 10th international conference of the Institute of Fisheries Economics and Trade, Corvallis, Oregon, July 9-14, 2000 ǰȱǯȱǯȱȱǯȱŘŖŖŚǯȱȱȱȱ¢ȱȱȱ ǯȱǯȱǯȱ ¢ȱŗŞǰȱřŖŖřǯ ǰȱǯǯǰȱǰȱǯǰȱ££ǰȱǯǯǰȱǭȱǰȱǯǯǰȱŘŖŖŚǯȱ Ȭȱȱȱȱȱȱ ȱȱȱ¢Nature. 427ǰȱśŜȬŜŖǯ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱãǰȱ ǯǯȱŘŖŖřǯȱȬȱ ȱȱ¢ȱǰȱȱ ȱȱȱ¡¢ȱȱȱȱȱ cod. ȱȱȱ¢ ŜŘ, 1239-1253. ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱ¡ǰȱǯǰȱ ǰȱȬǯǰȱ¢ǰȱǯǰȱǰȱǯȱǭȱĜǰȱǯȱ ŘŖŗŗǯȱȱȱȱȱȱȱȯȱǯȱEmerging Infectious Diseases ŗŝ, 7-15. ěǰȱǯȱǭȱǰȱǯǯȱŘŖŖřǯȱȱȱȱȱ¢DZȱȱ¢ȱȱ observation. Trends in Ecology and Evolution ŗŞǰȱŜŚŞȬŜśŜǯ ěǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱ ǰȱ ǯǰȱȱ ǰȱǯ ǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖşǯȱ¢Ȭ ȱȱȱȱǯȱ Nature ŚŜŗ, 53-59. ěǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŖŗǯȱȱȱȱ¢tems. Nature ŚŗřǰȱśşŗȬśşŜǯ ǰȱǯǰȱǰȱǯǰȱǭȱǰȱǯȱŘŖŗŖȱȱȱȱȱȱȱŗǯśȱ ȱȱ DZȱȱęǰȱȱ ȱȱȱȱȱǯȱEarth System Dynamics Discussions, ŗǰȱŘşŝȬřŘŚǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŝǯȱȱ ȱȱ change and contaminants. ȱȱ śŚǰȱŗŞŚśȬŗŞśŜǯ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŚǯȱȱ¢ȱȱȱȱ ȱȱ comprehensive changes in marine benthic communities. Ecology ŞśǰȱŗŞřřȬŗŞřşǯ ǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱ ŘŖŗŖǯȱȱ¢ȱȱȱȱěȱȱȱ¡ȱǯȱNature ŚŜśǰȱŜŖşȬŜŗřǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱ ¢ǰȱǯ ǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱ ŘŖŖŞǯȱȱȱȱȱȱDZȱȱȱȱȱȱ ęȱǯȱEcology Şş, S91-S107. ĴǰȱǯȱŘŖŖśǯȱȱȱȱȱ¢ȱȱ¢ȱȱȱȱȱȱturning circulation. Nature ŚřŚǰȱŜŘŞȬŜřřǯ References ǰȱǯǯǰȱȱǰȱǯǯȱǭȱ ǰȱǯȱŘŖŗŖǯȱȱěȱȱȱ¢ȱȱ ȱ¢ȱȱȱȱȱȱ ȱȱMytilus species. Journal of Thermal ¢ řśǰȱŗŜŗȬŗŜŜǯȱ ǰȱǯǯǰȱǯȱǰȱǯǯȱĴǰȱǯȱǰȱǯȱǰȱȱǯȱŘŖŖŖǯȱ¢ȱȱȱȱ ȱȱȱȱȱȱȱ¡ȱȱǯȱȱŚŖřDZȱŞŖȬŞŚǯ Ĵǰȱǯǰȱ¢ǰȱǯȱǭȱ ĵǰȱǯȱŘŖŖŚǯȱȱȱȱȱȱȱ climatic resources for tourism in North America. Climate Research Řŝ, 105-117. ǰȱǯǯȱǭȱǰȱǯǰȱŘŖŗŖǯȱȱȱȱȱȱȱȱȱȱȱȱęǯȱNature 464ǰȱŗřřŚȬŗřřŝǯ ǰȱǯǰȱǯǰȱǯ£ǰȱǯǰȱǯȱȱǯǰȱŘŖŖřǯȱȱȱęȱ Islander Seafood Consumption – a community based study in King County Washington. Journal of Exposure Analysis and Environmental EpidemiologyȱŗřǰȱŘśŜȬŘŜŜǯ ǰȱ ǯȱŘŖŗŗǯȱȱ¢ȱȱȱȱ¡¢DZȱȱȱȱȱȱ and trait information. Aquatic Toxicology ŗŖś, 50-55. ǰȱǯǯǰȱǯǯȱ ǰȱȱǯǯȱǯȱŘŖŖŞǯȱȱȱȱȱȱ ȱ ȱǯȱȱȱŗŞDZȱŗŗŚşȬŗŗŜśǯ ǰȱǯǯǰȱǯǯȱ ǰȱǯǯȱǰȱǯǯȱǰȱǯǯȱǰȱǯǯȱ¢ǰȱǯȱǰȱȱ ǯǯȱǯȱŘŖŖşǯȱȱȱȱȱȱȱȱȁȂȱȱȱ¢ǰȱȱ ¬¬ȱȱȱǯȱȱȱŘŞDZȱŜřśȬŜśŖǯ £ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǭȱǰȱǯȱŗşşş. Excess hospital admissions during the July 1995 heat wave in Chicago. American Journal of Preventive Medicine ŗŜǰȱŘŜşȬŘŝŝǯ £ǰȱǯȱŘŖŖŗǯȱȱȱ¢ȱȱ¢ȱȱȱ ǰȱǰȱ ȱęȱȱǯȱ¢ȱȱǯȱ £ǰȱǯȱǭȱ¢ǰȱǯǰȱŘŖŗŗǯȱȱȱȱȱȱęǯȱGlobal and Planetary Change ŝŝǰȱŞśȬşŜǯ £ǰȱǯȱǭȱǰȱǯȱŘŖŖŜǯȱȱȱęȱǯȱClimatic Change ŝŜǰȱŘŚŗȬŘŜŚǯ ǰȱǯǯǰȱǯ ǯȱǰȱȱǯǯȱ ǯȱŘŖŖśǯȱȱȱȱȱȱǯȱȱȱ¢ȱȱȱȱřśǰȱśşȬŜŜǯ ȱǯǰȱǰȱǯǯǰȱ¢ǰȱ ǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱȱ present opportunities for conservation. ȱ¢ 6, e171. ǰȱǯȱŘŖŖşǯȱ¡ȱȱȬę¢ȱȱȱȱ ȱȱęȱȱ ȱȱȱ¢DZȱȱȱȱȱȱěȱȱǰȱǰȱ¢ǰȱȱȱ policies, macroeconomic (county and regional) conditions and coastal development on the ȱ¢ȱȱęȱ¢ǯȱȱȱŖśŚřřŗŖŝşǯ ǰȱǯǯǰȱȱǯǯȱ¢ǯȱŘŖŖşǯȱȱȱȱȱȱȱ¢ȱȱȱȱ the Bering Sea macroecosystem. N. Pac. Anadr. Fish Comm. Bull. 5: 332-331. ǰȱǯǯǰȱ¢ǰȱǯǯǰȱȱǰȱǯǯǰȱScience. 296, 730-733 (2002). ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱĵǰȱǯǯǰȱ ǰȱǯǯȱǭȱ ǰȱǯǯȱǯȱŘŖŗŗǯȱ¡ǰȱęǰȱȱDZȱȱȱȱǰȱǰȱȱ Beaufort Seas in a time of climate change. Oceanography ŘŚǰȱŘśŖȬŘŜśǯ ǰȱǯǰȱ£ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱ£ǰȱǯȱŘŖŖşǯȱȱȱ¢ȱȱȱ ȱȱ2 doubles. ¢ȱȱĴȱřŜǰȱŖśŜŖŜǯ ǰȱǯȱǭȱĴǰȱǯǯȱŘŖŖşǯȱȱȱȱDZȱȱȱȱments. ȱȱȱȱȱȱȱȱ Şş, 203-210. ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŝȱȱȱȱȱȱȱȱDZȱ¢ȱ ȱȱęȱǯȱOryx ŚŗǰȱŗşȬŘŜǯ 239 240 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯŗşşŚǯȱȱȱȱ ȱȱȱȱǯǯȱȱDZȱȱȱȱȱ Medical Anthropology. Social Science and Medicine řşǻŝǼDZȱşřŗȬşŚŞǯ ǰȱǯȱǭȱęǰȱǯȱŗşŝśǯȱȱěȱȱȱȱȱȱȱ¡ȱ ȱȱȱȱȱȱȱȱȱ ȱȱŘśoC. Limnology and Oceanography ŘŖǰȱŗŖřȬŗŖŞǯ Slenning, B.D. 2010. Global climate change and implications for disease emergence. Veterinary Pathology Online ŚŝǰȱŘŞȬřřǯ ȱȱȱǻǼǯȱŘŖŖŞǯȱ ȱȱȱęȱ¢ȱ. ǰȱǯȱǯȱȱǯȱǯȱ¢ǯȱŘŖŗŖǯȱȱȱȱȱȬDZȱ¢ȱȱ Five Marine Commercial Fisheries. Human OrganizationȱŜşǻŘǼDZȱŗśŞȬŗŜŞǯ ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŗŗǯȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱ invasive impacts. ȱȱȱ¢ȱ¢ȱ ŘŝşǰȱŗŖŗŝȬŗŖŘŜǯ ǰȱǯǯǰȱ ǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱ ¢ǰȱǯȱǭȱ ǰȱǯǯȱŘŖŖŜǯȱȱěȱȱȱȱDZȱȬǰȱȬ induced coral mortality. ¢ȱĴ şǰȱŞřśȬŞŚśǯ ǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖŜǯȱȱȱȱȱȱ¢ȱsity. Ecology ŞŝǰȱŗŗśřȬŗŗŜŗǯ ¢ǰȱǯȱǯǰȱǯȱǯȱǰȱȱǯȱǻŘŖŖřǼǯȱȃȱȱȱȱ ȱȱȱȱ ǯȄȱ¢ǯȱǯȱĴǯȱřŖǻŗśǼDZȱŗŞŘřǯ ǰȱǯǯȱǭȱ ǰȱǯǯȱŘŖŖŜǯȱȱȱȱȱȱȱȱȱȱ models. Journal of Climate ŗşǰȱřřśŚȬřřŜŖǯ ǰȱǯǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱěȱȱȱȱȱȱȱȱȱȱDZȱȱȱȱȱǯȱClimate Research řŝ, ŗŞŗȬŘŖŗǯ ȱǯǰȱȱǯǰȱȱǯǰȱȱǯǰȱȱǯǰȱ¢ȱǯǯǰȱȱǯǰȱȱ ǯǯȱ2007, ǻǯǼǰȱȱȱŘŖŖŝDZȱȱ¢ȱȱDZȱȱȱȱȱȱȱȱ Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge, UK Cambridge University Press 996 p. ǰȱǯǯȱŘŖŗŗǯȱȱ¢¢DZȱȱȃ¢ȱȄȱȱȱȱȱ global change. American Journal of Physiology – Regulatory, Integrative, and Comparative Physiology řŖŗǰȱŗȬŗŚǯ ǰȱǯǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱȱȱȱ indicator of potential population responses to climate change. Journal of Experimental Marine ¢ȱȱ¢ȱŚŖŖ, 209-217. ǰȱǯǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱȱȱȱȱtions: comparative spread rates and community impacts. ȱ¢ȱȱ¢ȱŗş, řŖřȬřŗŜǯ ǰȱǯǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯǯȱŘŖŗŖǯȱȱ ȱȱȱȱȱ species in a marine fouling community. Ecology şŗǰȱŘŗşŞȬŘŘŖŚǯ ǰȱǯǯǰȱǰȱǯǰȱ Ȭǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ¢ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱ£ ǰȱ ǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǯŘŖŖśǯȱ Ȭȱȱȱȱȱȱȱ ȱȱǯȱAdvances ȱȱ¢ Śŝ, 1-105. ǰȱǯǯǰȱ¢ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŝǯȱ ȱ¢DZȱȱȱȱ ¢ȱȱȱ ȱȱȱȱǯȱMarine Ecology Progress Series řśŘǰȱŘŞşȬŘşŝǯ References ǯȱǰȱǯȱǭȱ ȬǰȱǯȱŘŖŖŞǯȱȱȱ¢DZȱȬǰȱǰȱȱ implications for marine spatial planning, Marine Policy řŘǰȱŝŝşȬŝŞŜǯ £ǰȱǯǰȱǰȱǯȱǭȱě¢ǰȱǯȱŘŖŖŝǯȱȱȱěȱȱȱ¢ȱȱ communities and ecosystems. Annual Review of Ecology, Evolution, and Systematics řŞǰȱŝřşȬŝŜŜǯ £ǰȱǯǯǰȱǰȱ ǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŘǯȱ¢ǰȱȱǰȱ ȱȱ¢ȱDZȱȱĴȱȱǯȱEcology Şř, 2575-2590. £ǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŘǯȱȱȱȱȱ ȱDZȱȱ ȱȱȱȱǯȱProceedings of the National Academy of Sciences USA şşǰȱŗśŚşŝȬŗśśŖŖǯ ěǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȱ2007ǯȱ¢ȱ ȱȱȱȱ ǰȱǰȱ ȱȱ ȱȱŘŖŖřȬŖŚǯȱArctic ŜŖǰȱŗŜŝȬŗŝŘǯȱ ȱȱ ȂȱȱȱǰȱȱȱȱȱǻǼǯȱŘŖŖŞǯȱ Visitor Statistics. Stearns, S.C. 1992. The evolution of life historiesǯȱ¡ǰȱǯǯDZȱ¡ȱ¢ȱǯȱ ǰȱǯǰȱǰȱǯǰȱãǰȱǯȱǯǰȱĴǰȱǯȬǯȱǭȱ¢ǰȱǯȱǯȱŘŖŖşǯȱȱȱęȱȱȱȱȱ ȱȱȱȱȱȱ¢Ȭȱǰȱ ȱŜǰȱśŗśȬśřřǯ ǰȱǯǰȱǰȱǯǰȱãǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯǯǰȱǰȱ ǯǰȱ¢ǰȱǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱŘŗst century decrease in marine productivity: a multi-model analysis. ŝ, 979-1005. ǰȱǯǰȱǯȱȱȱǯȱǯȱ¢ǯŘŖŖŝǯȱȱȱȱȱȱȱȱ ȱȱǯǯȱȱȱȱȱȱȱȱǯȱ November. Washington, DC. ǰȱǯǰȱǰȱǯȱǭȱ¢ǰȱǯȱǯȱŘŖŖşǯȱ ȱȱęȱȱȱȱȱȱȱ ȱǯǯDZȱȱȱȱ¢ȱǯȱMarine Policy řřǰȱŚşȬśŝǯ ǰȱǯǯǰȱ¢ǰȱǯǰȱĴǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯȬǯȱǭȱǰȱǯȱŘŖŖŘǯȱȱ ěȱȱȱĚǯȱScience ŘşŝǰȱŗŘşŘȬŗŘşŜǯ ǰȱǯȱǯǰȱȱǯȱǻŘŖŖŞǼǰȱȱDZȱȱȱ¢ȱȱȱȱęȱ¢ȱ of operation, Journal of Geophysical ResearchǰȱŗŗřǰȱŖŖŗŞǯ ǰȱǯȱǯǰȱȱǯȱǻŘŖŖŞǼǰȱȱDZȱȱȱ¢ȱȱȱȱęȱ¢ȱ ȱǰȱǯȱ¢ǯȱǯǰȱŗŗřǰȱŖŖŗŞǰȱDZŗŖǯŗŖŘşȦŘŖŖŞŖŖşşŞŘǯ ǰȱǯȱŗşşŖǯȱȬȱ ȱȱȱȱȱȱǻParalithodes camtschaticaǼǰȱȱȱěȱȱ£ȬȬȱȱȱȱȱȱȱȱǯȱ ȱȱȱȱȱȱǰȱŚŝǰȱŗřŖŝȬŗřŗŝǯ ǰȱǯǯǰȱ ǰȱǯǯǯǰȱǰȱǯǰȱǰȱǯȱǭȱ¢ǰȱǯȱŘŖŖŝǯȱȱȱȱȂȱDZȱ Implications for cruise tourism. Arctic ŜŖǰȱřŝŖȬřŞŖǯ ǰȱǯȱŘŖŖśǯȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ¢ǰȱǰȱŗşşŗȬŘŖŖŖǯȱȱ¢ȱŘŞDZȱřŞŗȬřŞŝǯ ǰȱǯǰȱǭȱǰȱǯǯȱŘŖŖŜǯȱȱěȱȱȱ ȱȱȱȱȱ polar bears (Ursus maritimus) in the Canadian Arctic. Arctic śşǰȱŘŜŗȬŘŝśǯȱ ǰȱǯǰȱǰȱǯǯȱǭȱ££ǰȱǯȱŗşşşǯȱȬȱȱȱȱȱ¢ȱȱȱ ȱȱ ȱ ȱ¢ȱȱȱȱȱǯȱArctic śŘǰȱŘşŚȬřŖŜǯ ǰȱǯǰȱǯǯȱǰȱȱǯȱ££ǯȱŗşşşǯȱȬȱȱȱȱȱ¢ȱȱȱ ȱȱ ȱ ȱ¢ȱȱȱȱȱǯȱȱśŘDZȱŘşŚȬřŖŜǯ ǰȱǯǯǰȱ¡ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱĜǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱ ǰȱǯǯǰȱ ¢ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ¢£ ǰȱǯǯǰȱǰȱǯǯǰȱěǰȱ 241 242 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱȬȱȱȱ assess the impact of climate on Living Marine Resources. Progress in Oceanography, ŞŞ, 1-27. ȱȱŘŖŖśǯȱȱȱȱȱDZȱȱȱȱȱȱȱ ȱȱȱǯȱȱȱȱȱǻǼǰȱǰȱ ĵǯ ǰȱǯ ǯǰȱǯȱǰȱǯȱ¢ǰȱȱǯǯȱ£ǯȱŘŖŖŞǯȱȱȱ¢ȱȱȱȱŘŖŖřȬŘŖŖŚǰȱȱ ȱȱÛȱȱȱǰȱȱǰȱ ȱȱǯȱ¢ȱȱȱŗřŜDZȱŗŚŖŝȬŗŚŗśǯȱ ěǰȱǯǯǰȱǰȱǯǰȱ¢ǰȱǯǯǰȱ¡ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱ ǰȱǯǯǰȱ ǰȱ ǯǰȱ ǰȱǯǰȱǰȱǯ ǯǰȱǰȱǯǯǰȱǰȱǯǰȱ¢ǰȱ ǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱĴĴǰȱ ǯȱǭȱǰȱǯǯȱŘŖŖŜǯȱȱȱȱȱȱȱȱȱȱtion to past and future climate changes. Journal of Climate ŗşǰȱŗřŜśȬŗřŞŝǯ Stram, D.L., and Evans, D.C.K. 2009. Fishery management responses to climate change in the ȱęǯȱICES Journal of Marine Science 66ǰȱŗŜřřȬŗŜřşǯ ǰȱǯǰȱ£ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱ ǯȱŘŖŖŞǯȱȱȱȱ¡ȱȱȱŘŖŖŝǯȱEos Transactions of the American Geophysical Union Şş, 13.. ǰȱǯǯǰȱ£ǰȱǯǯǰȱ ǰȱǯǯǰȱ¢ǰȱǯǯǰ ǰȱǯǰȱǭȱĴǰȱǯǯȱŘŖŗŗǯȱȱ Ȃȱ¢ȱȱȱȱDZȱȱȱ¢ǯȱClimatic Change doi: 10.1007/ ŗŖśŞŚȬŖŗŗȬŖŗŖŗȬŗǯ ǰȱǯȱȱǰȱǯǯȱǻŗşŝŖǼǯȱAquatic chemistryǰȱ ȱǰȱDZȱ¢ǯǯ ǰȱǯȱŗşŝŚǯȱȱȱȱȱȱǯȱJournal of Geophysical Research ŝş, ŞŘśȬŞřŖǯ ǰȱǯȬǯǰȱǰȱǯȬǯǰȱǰȱǯǯǰȱǰȱǯȬǯȱǭȱǰȱǯȱŘŖŗŗǯȱȱȱȱȱmental variation on the distribution of blue marlin, Makaira nigricansǰȱȱȱęȱǯȱ ICES Journal of Marine Science ŜŞǰȱŗŖŝŘȬŗŖŞŖǯ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǯǰȱ¢ǰȱǯȱǭȱ ǰȱǯȱŘŖŗŗǯȱȱȱȱȱ ȱ¢ȱȱȱȱ ȱęǯȱNature Climate Change ŗǰȱŚŚşȬŚśŜǯ ǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯȬǯȱŘŖŗŗǯȱěȱȱȱ pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Ȭĵȱǯȱ¢ȱȱ¢ȱśŜǰȱŞŘşȬŞŚŖǯ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱ ǯǰȱ ǰȱǯǰȱ ¢ǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱŘŖŗŖǯȱȱȱDZȱȱȱȱ ȱȱǯȱNew York University Environmental Law Journal ŗŞ, 55-155. ǰȱǯȱǯǰȱǯȱǰȱȱǯȱǰȱŘŖŖşDZȱȱȱȱȱȱ¢DZȱ¢Ȭ¢ȱŘŖŖşǯȱ Tech. Rep. NOS CO-OPS 051, NOAA, 30 pp. Sydeman, W., & Thompson, S.A. 2010. The California Current integrated ecosystem assessment (IEA) Module II: Trends and variability in climate-ecosystem state. Final Report to NOAA/ NMFS/Environmental Research Division ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯǯȱŘŖŖşǯȱSeabirds and climate in the California Current – a synthesis of change. CalCOFI Report Vol. 50. ǰȱǯǯǯȱȱǰȱǯȱŘŖŖşǯȱȱȱȱȱęȱȱDZȱȱȱȱȱȱȱȱęǯȱǰȱřŞǻŜǼDZŘşŚȬřŖŘǯ ǰȱǯǯǯǰȱ ǰȱǯǯǰȱǭȱǰȱǯȱŘŖŗŗǯȱȱȱ¢ȱȱȱȱȱȱęȱ and crustaceans: trends and prospectsǯȱȱȱȱȱȱȱǯȱśŜŚǯȱ References ǰȱǯǰȱ£ǰȱǯȱǭȱǰȱǯȱŘŖŖŝǯȱȱ ȱȱ¢DZȱ ¢ȱȱ ¢ȱĚȱȱȱȱȱȱȱȱȱȱȱǵȱCanadian Journal of Fisheries and Aquatic Sciences 64ǰȱŝŜŞȬŝŝŜǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŗŗǯȱěȱȱȱȱȱȱ¡ȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱ ȱȱǯȱ PLoS One 6ǰȱŘŜşŚŗǯ ǰȱǯǰȱǰȱǯȱȱȱǯȱŘŖŗŗǯȱ ȱȱȱVibrioȱęȱȱȱȱȱ ȱȱȱȱȱȬȱȱȱ¡ȱ ȱȱŘŖŗŖȱȱ ȱ £ȱȱǯȱEcohealth Epub ahead of print. ĴǰȱǯǯǰȱǰȱǯȬǯȱǭȱ ǰȱǯǯȱȱǯȱ ȱ2 and silicate limitation synergistically increase the toxicity of a harmful bloom diatom. PLoS ONE. ¢ǰȱǯǯǰȱ¡ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱ ǯǯȱŗşşśǯȱȱ ȱȱȱȱȱȱěȱȱȱȱDZȱȱȱ experiment. ȱ¢ȱśŘDZȱŗşȬřŚǯ ¢ǰȱǯǯȱŘŖŖŞǯȱȱ ȱȱȱȱȱȱǰȱ¢ȱ ǰȱȱȱȱǰȱǯȱȱȱȱ¢ȱŗŚǰȱŘŘşȬŘřśǯȱǰȱǯǰȱ¡ǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖŞǯȱȱȱȱ¡ȱȱȱȱ ȱȱ DZȱ ǰȱȱȱǰȱȱ isotopic signatures. Marine Ecology Progress Series řŜŞǰȱŗŗŝȬŗŘŜǯ ǰȱǯǰȱ£ȱǰȱȱǰȱ£ȱǰȱȱǰȱ ȱ ǰȱȱǰȱ ȱǰȱ¢¢ȱǰȱȱǰȱȱǰȱȱǰȱȱ ȱǯȱŘŖŖŜǯȱȱȬȱȱȱ¢ȱǯȱJAMAȱŘşŜǻśǼDZśŚşȬśśşǯ ǰȱǯǰȱǯǯȱ ¢ǰȱǯȱǰȱǯȱǰȱȱǯȱǯȱŘŖŗŖǯȱǰȱȱǰȱ and survival of California sea lions (Zalophus californianusǼȱĴȱȱȱȱ toxicosis. Marine Mammal Science ŘŜDZȱřŜȬśŘǯȱ Thomas, P. O. and K. L. Laidre. 2011. Biodiversity- Cetaceans and Pinnipeds (Whales and Seals). ĴDZȦȦ ǯǯǯȦȦȏ ȏ ǯ ǰȱǯǯǰȱǰȱǯǰȱ¡ǰȱǯǯȱǭȱ¢ǰȱǯǯȱŘŖŖŞǯȱȱȱȱ ȱȱ¢ȱȬȱǯȱȱȱȱśŜǰȱŘŜŗȬŘŜşǯ ¢ǰȱǯǯǰȱǰȱǯǯǰȱȱ¢ǰȱǯǯǰȱǯȱŘŖŖŗǯȱFacing the Unexpected: Disaster Preparedness and Response in the United States. ǰȱDZȱȱ ¢ȱ ǰȱǯȱǭȱ£ ǰȱǯǯȱŘŖŗŖǯȱȱȱȱȱȱȱȱMytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. ȱȱȱ¡ȱ¢ ŘŗřǰȱřśśşȬřśŝŚǯ ǰȱǯȱŘŖŗŗǯȱȱDZȱȱȱȱȱȱȱȱȱ response to environmental stress, pollutants, infection, symbiosis, and development. Annual Review of Marine Sciences ř, 373-399. ȱȱȱǰȱǯǰȱǯȱȱǰȱǯǯǯȱǰȱǯǯȱǰȱǯǯȱ ¢ǰȱǯǯȱ ǰȱȱǯǯǯȱ£ǯȱŘŖŖşǯȱȱȱȱȱȱȱ¢ȱȱ ȱȬĵȱǯȱȱȱȱȱȱǯȱȱȱȱ ȱŚśDZȱŗŖşȬŗŘŗǯ ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǯǯǰȱǰȱǯǰȱ ¢ǰȱǯǯȱǭȱǰȱ ǯȱŘŖŗŗǯȱȱȱǻȱǼDZȱȱȃȬȄȱȱȱǵȱReviews in Fisheries Science ŗşǰȱŘśŝȬŘŝŞǯ ǰȱǯȱǯȱǯȱȱǯȱǯȱ ǯȱŗşşŝǯȱȱȱȱȱȱ ¢ȱȱȱȱ ȱęǯȱLeisure SciencesȱŗşǻŘǼDZŗŘşȬŗŚŜǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱȱǰȱǯǯǰȱNature. 360ǰȱśşȬŜŘȱǻŗşşŘǼǯ 243 244 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ȱǯǯȱǭȱǰȱǯȱŘŖŖŝDZȱȱȱ¢ȱȬȱȱȱȱȱȱȱ cli- mate change. Journal of Geophysical Research ŗŗŘ, D23107. Trenberth KE, et al. Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change ŘŖŖŝDZȱȱ¢ȱȱǯȱǰȱǯǰȱǯȱǰȱǯȱǰȱǯȱǰȱǯȱǰȱ ǯǯȱ¢ǰȱǯȱȱȱ ǯǯȱȱǻǯǼȱǰȱȱDZȱȱ ¢ȱǯ ǰȱǯȱǯǰȱǰȱǯȱǭȱǰȱǯȱȱȱ¢ȱȱȬȱȱ ȱǯȱClim. Dyn., ŘŚDZȱŝŚŗȬŝśŞȱǻŘŖŖśǼǯ ǰȱǯǯȱȱȱȱ ȱȱǯȱClimate Research ŚŝǰȱŗŘřȬŗřŞȱǻŘŖŗŗǼǯ Trenberth, K.E., Dai, A., Rasmussen, R.M., & Parsons, D.B. 2003 The changing character of precipitation. ȱȱȱȱȱ¢ ŞŚǰ1205-1217. ǰȱǯǯǰȱǰȱǯǰȱǭȱǰȱǯȱŘŖŖşǯȱȂȱȱ¢ȱǯȱȱȱȱȱ Meteorological Society şŖ, 311-323 ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱȱǰȱǯȱǰȱǰȱ £ǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǰȱȱǯȱǭȱǰȱǯȱǯȱŘŖŖŝDZȱDZȱ Surface and Atmospheric Climate Change. In ȱȱŘŖŖŝDZȱȱ¢ȱȱǯȱ Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeȱǯȱǰȱȱǯȱǻǯǼǯȱǰȱȱȱȱ ȱǰȱǰȱ DZȱȱ¢ȱǯ ǰȱǯǯȱǭȱĴǰȱǯǯȱŘŖŖŗǯȱȱȱȱȱȱȱȱȱ evolution of geographic variation in a marine snail. Genetica ŗŗŘȬŗŗř, 321-337. ǰȱǰȱȱ¢ǰȱȱȱȱǰȱȱȱȱȱȱ¢ǯȱȱȱȱ¢ȱȱęȱȱ¢ȱȱȱ¢ǰȱȱȱ ȱ¢ȱȱȱȱȱęǰȱȱȱȱȱȱȱ Ȭȱǻȱ Ǽǰȱ ȱ¢ȱ DzȱŘŖŖŞȱŗśǻŘǼDZŗŝŗȬŗŞŚǯȱǽȱǰȱŘŖǰȱŘŖŖşǾ ǰȱǯǯǰȱǯǯȱǰȱǯǯǯȱǰȱȱǯǯȱǯȱŘŖŗŗǯȱȱȱȱȱȱȱȱȱȱȱȱȱȬřȱĴ¢ȱǯȱȱ¢ȱ ŗŘŚDZŜŖşȬŜŗŚǯ ǯǯȱȱǯǰȱǰȱ ǯǯȱȱȱȱȱǻǼǯȱŘŖŖŞǯȱ¢ȱ ȱȱȱȱ for climate-sensitive ecosystems and resources. In A report by the U.S. Climate Change Science ȱȱȱĴȱȱȱȱǰȱǯ ǯȱǰȱǯ ǯȱȱǯȱǻǯǼȱǰȱǯǯDZȱǯǯȱȱȱ¢ȱ. ǯǯȱȱȱȱȱǻǼǯȱŘŖŖŞDZȱȱȱȱ ¡ȱȱȱȱǯȱȱȱDZȱȱǰȱ ǰȱǰȱȱ ǯǯȱęȱǯȱȱȱ¢ȱȱǯǯȱȱȱȱȱȱȱĴȱȱȱȱǯȱȱǯȱǰȱȱǯȱǰȱȱǯȱǰȱ ȱǯȱ ǰȱȱǯȱǰȱȱȱǯȱ¢ȱǻǯǼǯȱȱȱǰȱ ȂȱȱȱȱǰȱǰȱǯǯǰȱǰȱŗŜŚȱǯ ǯǯȱȱȱȱ¢ǯȱŘŖŖŚǯȱȱȱȱȱȱŘŗst Century. Final Report. Washington, DC.ȱǛŖȮşŝśşŚŜŘȮŖȮ ǯǯȱȱȱ¢ȱǻǼǯȱŘŖŖŞǯȱěȱȱȱȱȱȱȱ Species and Implications for Management and Research. Washington, D.C.: National Center for Environmental Assessment . ǯǯȱȱȱ¢ȱǻǼǯȱŘŖŗŖǯȱȱȱȱȱȱ ȱȱȱȱȱęǰȱȱȱǰȱǰȱȱȱsion Directors, Regions 1-10. Nov. 15, 2010. References ǯǯȱȱȱȱǯȱŘŖŖŞǯȱEnhanced Aquaculture and Seafood Inspection - Report to Congress. ǰȱǯǯDZȱǯǯȱȱȱȱǯ ǯǯȱȱ¢ȱĜȱǻǼǯȱŗşşŞǯȱȱ¢DZȱȱěȱȱȱȱ ¢ȱȱȱȱȱȱȱǯȱǰȱDZȱȱ ȱĜǯȱǯȱŘȬřǯ ǯǯȱȱ¢ȱĜȱǻǼǯȱŘŖŖŚǯȱFood Safety: FDA’s Imported Seafood Safety Program Shows Some Progress, but Further Improvements are Needed. Report GAO 246. Washington, DC: GAO. ǯǯȱȱ¢ȱĜȱǻǼǯȱŘŖŖŝǯȱClimate change: agencies should develop guidȱȱȱȱěȱȱȱȱȱ ȱǯ Report to Congressional ǯȱȬŖŝȬŞŜřǯ ǯǯȱȱǯȱŘŖŗŗǯȱǯǯȱȱ ȱǯȱ¢ȱŘŖŗŗǯȱǯǯȱȱǰȱǰȱǯǯȱȱ¢ȱŘŖǰȱŘŖŗŘȱȱĴDZȦȦ ǯǯǯȱ ǯǯȱȱǯȱŘŖŗŘǯȱȱ¢ȱDZȱȱȱȱȱȂȱȱȱ ȱ¢ȱǯȱ¢ȱŗŞǰȱŘŖŗŘǯȱǯǯȱȱǰȱǰȱǯǯȱȱ ¢ȱŗşǰȱŘŖŗŘǰȱȱĴDZȦȦ ǯǯȦ ȦȬȦȬ¢ȬȬ ȬȱŘȱŞŖȱşşȬȬ Ȭ¢Ȭ ǯ ¢ǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǯǰȱǭȱǰȱǯǯǰȱŘŖŗŖǯȱȱȱȱping noise in varying acidity conditions. The Journal of the Acoustical Society of America ŗŘŞ, ŗřŖȬŗřŜǯ ǰȱǯǰȱǰȱǯǰȱǰȱ ǯǰȱǰȱǯǰȱǰȱǯȱǭȱ¢ǰȱǯȱŘŖŖŞǯȱȱ ȱȱȱȱȱȱȱȱȱȱȱǯȱ Journal of Climate ŘŗǰȱŗŜŜşȬŗŜŝşǯ ǰȱǯȱŘŖŖřǯȱ¢¡ȱDZȱȱȱȱȱȱǯȱ International Journal of CardiologyȱŞŞDZȱŘşŝȬŘşşǯ ȱȱȱȱȱȱȱǻŘŖŗŗǼȱȬȱȦȦŘŖŗŗȦǯŘŝ ȱȱȱȱ£ȱǻǼǯȱŘŖŗŘǯȱȱȱȱǯȱ ¢ȱŘŖŗŘȱȬȱȱ¡ǰȱȱŗŖǰȱȱǰȱȱȱ£tion, Madrid, Spain – First Printing 2012 (version 20/01/12) ȱǯȱŘŖŖşǯȱȱȱȱȱȱ ȱȱȃȱȱȱ ȱȱDZȱęǰȱǰȱȱȱȱǰȄȱ ȱǰȱǰȱȱřȬŜǰȱŘŖŖşǯ ȱȱȱȱȱȱǻǼǯȱŘŖŗŗǯȱǰȱȱȱȱ ȱȱȱȱȱȱĴǰȱęȱȱȱȱǯȱĜȱȱȱ ȱǯȱǰȱǯȱȱȱ¢ȱȱȱȱ ȱȱȱȱȱǰȱĴǯ ǰȱǯǯǰȱ ǰȱǯǯȱǭȱǰȱǯǯǯȱŘŖŗŗǯȱȱȱȱȱ¡ȱȱȱsive green mussel, Perna viridisǰȱȱȱȱȱǯȱJournal of Experimental Zoology řŗś, 12-21. ǰȱǯǰȱǰȱǯǰȱ ¡ ǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯȱǭȱǰȱǯȱŗşşŝǯȱȱ ȱȱ ȱDZȱȱȱ¢ȱȱ¢ȱǯȱ Limnology and Oceanography ŚŘǰȱŗŗŖśȬŗŗŗŞǯ ȱȱ ǰȱǯǰȱǰȱǯǯȱǭȱȱĴǰȱ ȬǯȱŘŖŖŘǯȱȱȱ¢ȱȱȱ change: strategies and ethical dilemmas. Climate Policy ŘǰȱřȬŗŞǯ ȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǰȱȱ£ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǰȱǰȱǯǰȱ ¢ǰȱǯǰȱǰȱǯǰȱǭȱǰȱ 245 246 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǯǯȱŘŖŖŜǯȱȱȬȱȱȱ¢ȱǯȱJournal of the American Medical Association ŘşŜǰȱśřŝȬśŚŞǯ ȱ ǰȱǯǯǰȱǭȱ ¢ǰȱǯǯǯȱŘŖŗŗǯȱȬȱȱȱȱȱȱȱ nesting. PLoS ONE 6ǰȱŗşŖŚřǯȱ ǰȱǯȱěȱȱȱȱȱȱȱȱȱȱȱ¢ȱ Christmas bird count data. 2000. Waterbirds ŘřDZȱŚŗŜȬŚŘŘǯ Ȭ¢ǰȱǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱ¢¡ȱȱȱ¢ǯȱProceedings of the National Academy of Sciences USA ŗŖśǰȱŗśŚśŘȬŗśŚśŝǯ ǰȱǯȱǯȱȱǰȱǯȱǯȱȱȱȱ ȱȱȱȱȱȱ ȱ ǯȱ¢ǯȱǯȱĴǯȱřŚǯȱŖŞŝŖŘȱǻŘŖŖŝǼ ǰȱǯǯǰȱǯǯȱǰȱǯȱ ǰȱǯȱǰȱȱǯǯȱ ǯȱŗşŝŗǯȱȱ £ȱȱȱȱǯȱȱŗŝŘDZȱŗŘśŖȬŗŘśŗǯ ǰȱǯȱǭȱǰȱǯȱŘŖŖŚǯȱ Ȭȱ ȱĚȱȱȱ¢ȱȱȱ Atlantic thermohaline circulation. Journal of Climate ŗŝǰȱŚŚşŞȬŚśŗŗǯ ǰȱǯȱǯȱȱǯȱǯȱǯȱŗşŞřǯȱResource Utilization in Atka, Aleutian Islands, Alaskaǯȱȱ ȱȱȱȱǰȱȱȱǰȱȱȱǯȱŞŞǯ ȱ ǯȱŘŖŗŘǯȱȱȱȱȱ¢ȱǯȱȱ¢ȱşǰȱŘŖŗŘȱȱ ĴDZȦȦ ǯȦ ȬȦǯ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱȱǯȱScience řŘŗǰȱŝŞŖȬŝŞŗǯ ǰȱǯȱȱǯȱǯȱŘŖŖŚǯȱȱȱȱȱȱȱȱȱȱȱȱŘŖŖřǯȱȱ Department of Fish and Game, Division of Commercial Fisheries, Regional Information ȱŚŖřȬŖřǰȱǰȱǯȱŘŘȱǯ ǰȱǯǯǯǰȱǰȱǯǯȱǰȱǯǯǰȱĴǰȱǯǯǰȱ ǰȱǯǯȱǭȱĴǰȱ ǯǯŘŖŗŖǯȱȱ¢ȱȱȱ ȱȱȱȱȱȱȱȱǯȱ Nature Geoscience ř, 110-113. ǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱ£ǰȱǯȱǭȱ ǰȱǯȱŘŖŖŜǯȱȱȱȱ ȱȱȱȱȱȱ¢DZȱȱȱȱȱȱȱ Region. ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȬȱǯȱĴDZȦȦ ǯ gulfofmaine.org/council/publications/cross-border-indicators-of-climate-change.pdf ǰȱǯǰȱǰȱǯǯȱǭȱǰȱǯȱŘŖŖśǯȱ ȱȱ ȱȱ¢ȱ ȱȱ ȱȱȱ¢ȱȱȱȱȱ¡ǯȱ¢ȱȱĴ řŘǰȱŗŞŜŗŖǯ ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŗǯȱŘŖȬ¢ȱȬȱȱȱȱǯȱ Annals of Glaciology řřǰȱŚŚŚȬŚŚŞǯ ǰȱǯǰȱǰȱǯȱǭȱãǰȱ ǯǯȱŘŖŗŖǯȱěȱȱȱęȱȱ ȱȱȱ development of the spider crab Hyas araneusȱȱěȱȱǻśŚǚȱǯȱŝşǚǼǯȱMarine Ecology Progress Series Śŗŝ, 159-170. ǰȱǯǰȱǰȱǯǯǰȱǰȱǯȱǭȱãǰȱ ǯǯȱŘŖŖşǯȱȱȱȱȱętion on thermal tolerance of the spider crab Hyas araneus. 6, 2207-2215. ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯȱȱǰȱǯȱŘŖŗŗǯȱȱȱ ȱ¢ȱȱȱȱȱȱȱǯȱJournal of Food ProtectionȱŝŚǻşǼDZŗŚśŗȬŗŚŜŗǯ ǰȱǯǰȱǰȱǯǯǰȱǭȱǰȱǯǯǰȱŘŖŗŖǯȱȱȱȱȱȱȱ ecosystems. Journal of Marine Systems ŝşǰȱŘśŞȬŘŜŜǯ ǰȱǯǯǰȱǭȱě¢ǰȱǯǯȱŘŖŖŚǯȱȱȱȱȱȱDZȱȱȱȱȱ ecosystems increasing? ȱ¢ ŘǰȱśŚŘȬśŚŝǯ References £¢ǰȱǯǯǰȱȱǯǯȱ¢ǯȱŘŖŗŖǯȱȱȱȱȱȱȱȱȱ ȱŘŖŗŖȱȱǯȱȱȱȱȱǯǯȱȱȱȱǯȱȱ ȱǰȱǰȱǯǯȱȱȱȱŗŝŜşǯ Wassmann, P. 2011. Arctic marine ecosystems an era of rapid change. Progress in Oceanography şŖ, 1-17. ǰȱǯǰȱǰȱǯǯǰȱÇǰȱǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱȱȱ Arctic marine ecosystem. ȱȱ¢ ŗŝǰȱŗŘřśƺŗŘŚşǯ ¢Ĵǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱǰȱ ǯǰȱǰȱǯǯǰȱ ǰȱǯǯȱǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱ ¢ǰȱǯǯǰȱǰȱ F.T. & Williams, S.L. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences USA ŗŖŜǰŗŘřŝŝȬŗŘřŞŗǯ ǰȱǯǰȱ ǰȱǯǰȱ¢ǰȱǯȱȱǰȱ ȬȱǻŘŖŖśǼȱȱȱȱ¢ȱǰȱ ǰȱȱ¢ȱȱȱȱǯȱȱřŖşDZŗŞŚŚȬŗŞŚŜǯ ǰȱǯǰȱ ǰȱǯǰȱ¢ǰȱǯǰȱȱǰȱ ǯȱŘŖŖśǯȱȱȱȱ¢ȱǰȱ ǰȱȱ¢ȱȱȱ ȱǯȱScience řŖşǻśŝŚŘǼDZŗŞŚŚȬŗŞŚŜǯ ǰȱǯǰȱ ǰȱǯǰȱ ǰȱǯǰȱǭȱǰȱǯȱŘŖŗŗǯȱVibrioȱȱȱǰȱŗşşŞȬ 2007. Epidemiology and Infection ŗřşǰȱśşŗȬśşŞǯ ǰȱǰȱȱȱǯȱŘŖŖşǯȱȃȱ¢ȱȱȱȱȱǰȱǯȄȱȱŜŘȱǻřǼDZȱ 295-300. ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱȱȱȱ ȱȱȱȱ¢ȱȱȱ ǯȱJournal of Experimental Marine ¢ȱȱ¢ ŚŖŖǰȱŝȬŗŜǯ ǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱȱȱȱ ȱȱȱȱȱȱȱȱǯȱJournal of Experimental ȱ¢ȱȱ¢ ŚŖŖǰȱŘŜŚȬŘŝŗǯ ǰȱǯǰȱǰȱǯǯǰȱ¢ǰȱǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱ¢ǰȱǯǯȱŘŖŗŖǯȱ ȱȱȱȱȱȱȱȱȱDZȱȱȱȱȱ ȱǯȱ¢ȱĴȱŗřǰȱŜŞśȬŜşŚǯ ǰȱǯǰȱǰȱǯǰȱǰȱ ǯǰȱǭȱȱ¢ǰȱǯȱŘŖŖŝǯȱDisaster response and risk management ȱȱęȱǯȱRome: FAO. Wethey, D.S. 2002. Biogeography, competition, and microclimate: the barnacle Chthamalus fragilis ȱ ȱǯȱȱȱȱ¢ ŚŘǰȱŞŝŘȬŞŞŖǯ ¢ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖŞǯȱȱȱȱȱȱȱȱ ȱȱȱȱȱ£ǯȱHydrobiologia ŜŖŜ, 139-151. ¢ǰȱǯǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŗǯȱȱ ȱȱȱȱDZȱěȱȱ¡ȱȱȱȱȱǯȱ ȱȱ¡ȱȱ¢ȱȱ¢ ŚŖŖǰȱŗřŘȬŗŚŚǯ ȱ ȱȱȱȱ¢ǰȱȱȱȱȱȱ¢ȱȱȱ ǻ¢ȱŗşǰȱŘŖŗŖǼǰȱȱȱĴDZȦȦ ǯ ǯȦęȦȦȱȏǯ pdf ǰȱǯǰȱ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŘǯȱ¢ȱȱěȱ¢ȱȱȱ value of marine spatial planning for multiple ocean uses. Proceedings of the National Academy of Sciences USA. ŗŖşǰȱŚŜşŜȬŚŝŖŗǯ ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱ ǰȱǯȱŘŖŖŝǯȱȱȱ ȱ¢ȱȱȱ changing arctic climate. ȱȱĴ ŘǰȱŚǯ 247 248 OCEANS AND MARINE RESOURCES IN A CHANGING CLIMATE ǰȱǯǰȱǭȱǰȱǯǯǯȱŘŖŖŞǯȱȱȱȱȱȱęȱȱȱ biodiversity: What can animal physiology tell us? ȱȱ¡ȱȱ¢ȱȱ Ecology řŜŜǰȱŗŞŝȬŗşŝǯ ěǰȱǯȱȱǯȱȱǻŘŖŖşǼǯȱȃȱȱȱśŖȱ¢ȱȱ¢ȱǯȄȱȱence Series: Earth and Environmental Science 6ǻřǼDZȱŖřŘŖŖŚǯ ¡ǰȱǯǯǰȱǭȱǰȱǯǯȱŘŖŖśǯȱȱ¢ȱȱȱȱȱȱȱ Pathogen. Environmental Health and Preventive Medicine ŗŖǰȱŘŜřȬŘŝŘǰȱ ǰȱǯǰȱǭȱǰȱǯȱŘŖŖŝǯȱȱǰȱȬȱǰȱȱȱǯȱ Frontiers in Ecology and the Environment śǰȱŚŝśȬŚŞŘǯ ǰȱǯǰȱǭȱĴǰȱǯȱŘŖŗŖǯȱȱȱȱȱȱȱDZȱŗşŜŖȱȱŘŖŖŞǯȱȱ Current Population ReportsǰǰȱǯǯDZȱȱȱǯ ǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱ ȱȱȱȱȱȱ ȱȱȱȱ States. Fisheries řŚǰȱśśśȬśśŞ ǰȱǯǰȱǭȱǰȱǯǯǰȱŘŖŖŚǯȱȱȱȱȱȱȱȱȱ ecosystem. Ecology ŞśǰȱŘŗŖŖȬŘŗŖŜǯ ęǰȱǯǯǰȱǭȱ¢ǰȱǯǯȱŘŖŖřǯȱȱȱȱȱDZȱ ȱȱ ǯȱ Journal of Neuroendocrinology ŗśǰȱŝŗŗȬŝŘŚǯ ȱǯȱŘŖŖŜǯȱȱȱȱȱȱȱ2 emission policies ȱ¢ǯȱȱȱ¢ȱȱŘŞǻŘǼDZȱŗŖśȬŗŘřǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱȱǰȱǯȱŘŖŖřǯȱAt Risk: Natural Hazards, People’s Vulnerability, and Disasters. Second Edition. London: Routledge. ǰȱǯǯȱǭȱǰȱǯǯȱŗşŞşǯȱ ¢ȱȱȱ¢ȱȱȱȱ in the Indian River Lagoon System, Florida. Copeia ŗşŞşȱŜşŜȬŝŖřǯ ǰȱǯǯǰȱ¢ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǯȱǭȱǰȱǯǯȱŘŖŗŖǯȱȱȱ ȱȱȱȱȱȱȱ¢ȱǰȱȱȱȂȱǯȱ ȱȱ¢ ŗŜ, 1923-1935. Wolf, S.G., Sydeman, W.J., ǰȱǯǯǰȱǰ C.L. Tershy, ǯǯ & Croll, D.A. 2009. Range ȱȱȱȱȱȱ¢ȱȱȱȱȂȱ. Ecology şŖ, ŝŚŘ-753. ǰȱǯǯȱŘŖŖŚǯȱȱȱȱDZȱȱ¢ȱȱ ¢ȱȱȱȱȱ ¢ȱȱȱȱǯ ȱǯǯȱǰȱǯǰȱ¢ǰȱǯǰȱ ǰȱǯȱǭȱǰȱǯȱŘŖŖŜǯȱ ȱȱȱȱȱ ȱȱȱȱȱǯȱȱAvoiding Dangerous Climate Change , ǯȬǯȱȱȱǯȱǻǯǼǯȱǰȱǯǯDZȱȱ¢ȱȱ ȱǯǯǰȱǰȱǰȱǭȱǰȱǯǯȱŘŖŖřǯȱȱ ȱȱȱȱ stability. Philosophical Transactions of the Royal Society A řŜŗǰȱŗşŜŗȬŗşŝś ĴǰȱǯǯǰȱęǰȱǯǯȱǭȱǰȱǯǯȱŘŖŖŞǯȱ¢ȱĴȱȱȱȱ ȱȱȱ ȱȱȱȬȱȬ¢ȱǯȱProceedings of the National Academy of Sciences USA ŗŖśǰȱŗŞŞŚŞȬŗŞŞśřǯ ȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱě¢ǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱǰȱǯǯǯǰȱĵǰȱ ǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱ £ǰȱǯǯȱǭȱǰȱǯȱŘŖŖŜǯȱ Impacts of biodiversity loss on ocean ecosystem services. Science řŗŚǰȱŝŞŝȬŝşŖǯ ǯǯǯȦȦĚ Yamane, L., & Gilman, S.E. 2009. Opposite responses by an intertidal predator to increasing ȱȱȱǯȱMarine Ecology Progress Series řşřǰȱŘŝȬřŜǯ References ȱȱȱȱŗşşŞǯȱYear of the Oceans – Coastal Tourism. National Oceanic & Atmospheric ȱǻǼǰȱǯǯȱȱȱǯȱĴDZȦȦ ǯ¢şŞǯǯȦ¢Ȧ ȦȏȏřŗŜǯȱǻȱ¢ȱŗşǰȱŘŖŗŘǼǯ ǰȱǯǰȱǯȱǯȱĜǰȱȱǯȱǻŘŖŗŖǼǯȱȃȱ¢ȱȱȱȱȱȱ ¢Ȭȱ¢ȱ ǯȄȱȱȱȱŘřǻŗŝǼDZȱŚśŞśȬŚŜŖŝǯ ǰȱǯǯǰȱǯȱǰȱȱǯǯȱȱǻŘŖŗŗǼȱȱȱȱ ȱȱȱ ȱǯȱ ȱȱŘŚǰȱŘŖŗŗǰȱȱ ǯ¡ǯǯ ǰȱǯǰȱ ĵǰȱǯȱǭȱǰȱǯǯȱŘŖŖşǯȱȱ Ȭȱ¡ȱȱȱȱȱȱ climate change on tourism related climate resources. Climatic Change şś, 551-573. Zacherl, D., Gaines, S.D. & Lonhart, S.I. 2003. The limits to biogeographical distributions: insights ȱȱ ȱȱ¡ȱȱȱȱǰȱKelletia kelletiiȱǻǰȱŗŞśŘǼǯȱJournal ȱ¢ řŖǰȱşŗřȬşŘŚǯ ǰȱǯǯǰȱãǰȱǯǰȱǰȱǯǯǰȱǰȱǯǰȱ ǰȱǯǯǰȱ¢ǰȱǯǯǰȱǰȱǯǰȱǰȱ ǯǰȱĜǰȱǯǰȱǰȱǯǯǰȱǰȱ ǯȱǭȱǰȱǯȱŘŖŖśǯȱȱęȱȱȱȱ during the Paleocene-Eocene thermal maximum. Science řŖŞǰȱŗŜŗŗȬŗŜŗśǯ ǰȱǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯȱǭȱ ǰȱǯȱŘŖŗŗǯȱȱȱȱ selection and dispersal helps explain genetic structure in intertidal mussels. Oecologia ŗŜś, şŚŝȬşśŞǯ ȱǰȱ¢ȱǰȱȱǰȱ ȱǯȱǻŘŖŖŞǼǯȱȱȱȱȱȱȱȱȱ ȱȱȱŘŖŖŝǵȱ¢ȱȱĴȱřśDZŗŗśŖśǯ ǰȱǯȱȱǯȱǯȱŘŖŖŖǯȱȱĴȱȱȱȱȱȱȱȱ ȱȱȱȱ¢ȱ¢ǯȱȱȱȱȱǰȱśŝǰȱŚřŞȬŚśŗǯ ǰȱǯȱȱǯȱǯȱŘŖŖřǯȱȬȱȱȱȱȱȱȱǯȱ ȱǰȱŜśǰȱŗŖřȬŗŘŗǯ ǰȱǯȱȱǯȱǯȱŘŖŖŜǯȱȱȱȱȱȱȱDZȱȬȱ ȱ ȱěǵȱȱȱ¢ǰȱŜŞǰȱŗŞŚȬŘŖŚǯ ǰȱǯǰȱǯȱǰȱǯȱ£ǰȱȱǯȱǯȱŗşşŗǯȱȱ¢ȱȱȱ ȱ¢ȱȱȱȱ¢ǰȱǯȱȱ¢ǰȱŗŖşǰȱřŘŗȬřřŚǯ ¢ǰȱǯǯǰȱǭȱ ǰȱǯǯȱŘŖŗŖǯȱěȱȱ ȱȱȱ¡ȱȱȱȱ of early life history stages of red abalone (Haliotis rufescens). ȱȱęȱ Řş, ŚŘşȬŚřşǯ ǰȱǯǰȱǯǯȱǰȱǯȱ¢ǰȱǯȱǰȱǯǯȱǰȱȱǯȱŘŖŖşǯȱȱ dissemination of Leptospira interrogans serovar Pomona during seasonal migration of California sea lions. Veterinary Microbiology 137: 105-110. 249 Oceans and Marine Resources in a Changing Climate ȱ ęȱ ȱȱȱȱȱȱȱȱȱȱȱ ęȱ ȱ ȱ ¢ǰȱ ǰȱ ȱ ȱ ȱ ȱ ȱȱȱȱ¢ȱȱǯǯȱǯȱȱȱȱȱ of technical inputs for the third National Climate Assessment (NCA) ȱȱȱȱȱȱǯǯȱȱȱȱǰȱ ȱȱȱěȱȱȱȱȱȱȱȱȱęȱ impacts on ocean ecosystems across sectors. Cover design: Maureen Gately ȱDZ Livia Kent Washington | Covelo | London www.islandpress.org All Island Press books are printed on recycled, acid-free paper.