Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
STATISTIK DESKRIPTIF: UKURAN KECENDERUNGAN MEMUSAT Rohani Ahmad Tarmizi - EDU5950 1 UKURAN KECENDERUNGAN MEMUSAT Teknik penggambaran data telah memberi kita satu cara memperihal data dalam bentuk jadual frekuensi, carta palang atau pai, histogram, poligon frekuensi, dan jadual silang. Analisis ini menjelaskan pola taburan skorskor ataupun frekuensi bagi kategori-kategori tertentu. Ia memberi gambaran yang menyeluruh tetapi tidak menunjukkan sesuatu tumpuan atau kecenderungan. Ia juga tidak merupakan bentuk yang ringkas. Oleh itu bagi mendapatkan gambaran yang ringkas serta kecenderungan kepada sesuatu nilai/kategori, maka UKURAN KECENDERUNGAN MEMUSAT boleh digunakan. Ukuran ini merupakan ukuran tumpuan bagi sesuatu taburan. Ia boleh mengambil ukuran tumpuan sebagai skor/nilai (data kuantitatif) ataupun kategori (data kualitatif). TIGA JENIS UKURAN KECENDERUNGAN MEMUSAT MOD MEDIAN/PENENGAH MIN/PURATA MOD MOD –ukuran skor/nilai/kategori yang paling kerap dalam sesuatu taburan, yang juga menunjukkan skor/nilai/kategori yang lazim (“typical”). Mod bagi data kategorikal – adalah kategori yang terkerap (sekolah menengah biasa) Maklumat Demografi Pengetua Latar Belakang Jantina Kumpulan Etnik Frekuensi %Frekuensi Lelaki 119 68.4 Perempuan 55 31.6 Melayu 121 69.5 Cina 42 24.1 India 4 2.3 7 4.0 Bacelor 12 7.1 Diploma 29 17.2 STPM 55 32.5 SPM 70 41.4 SRP 3 1.18 Bumiputra Sabah/Sarawak Pencapaian Akademik Jadual 1: Taburan Responden Guru Kanan Berdasarkan Umur Umur Frekuensi Peratus 25-30 tahun 6 2.8 31-36 tahun 9 4.3 37-42 tahun 68 32.2 43-48 tahun 91 43.1 49-54 tahun 33 15.6 Lebih 55 tahun 4 2.0 Jumlah 211 100 Jadual 30: Taburan Responden Guru Kanan Berdasarkan Kaum Kaum Frekuensi Peratus Melayu 154 73.0 Cina 41 19.4 India 14 6.6 Lain-lain 2 1.0 211 100 Jumlah MOD Set A:91 68 85 75 75 77 90 80 95 mod adalah 75 (unimod) Set B:60 80 80 75 75 67 90 80 75 mod adalah 75 dan 80 (dwimod) Set C: 70 70 84 84 80 80 20 20 56 56 taburan ini tidak mempunyai mod. Kes 1: 30 35 28 42 45 36 40 41 48 Kes 2: 30 30 34 35 28 45 45 45 40 41 46 48 MEDIAN Median adalah skor yang di tengah-tengah sesuatu taburan. Ia merupakan skor di mana terletaknya 50% skorskor di bawahnya dan 50% skor-skor di atasnya. Median dapat ditentukan dengan menyusun skorskor mengikut aturan menurun atau menaik dan skor di tengah di kenal pasti. Kes 1: 30 35 28 42 45 36 40 41 48 Kes 2: 30 30 34 35 28 45 45 45 40 41 46 48 Kes 1: 30 35 28 42 45 36 40 41 48 28 30 35 36 40 41 42 45 48 28 30 35 36 40 41 42 45 48 Skor ke (n+1)/2 Kes2: Kes 2: 30 30 34 35 28 45 45 45 40 41 46 48 Skor ke 12/2- skor ke 6, skor ke-7 28 30 30 34 35 40 41 45 45 45 46 48 Purata kedua-dua skor – [ 40 + 41 ] = 40.5 Purata bagi skor ke n/2 dan skor ke n/2 + 1 MIN Min adalah ukuran pukul rata dengan itu mulamula lagi dipanggil purata. Ia ditentukan dengan mengambil jumlah kesemua skor-skor dalam taburan dan dibahagikan dengan bilangan skor-skor. Ia sangat kerap digunakan untuk data kuantitatif seperti IQ, kecergasan fizikal, tahap kebimbangan, tahap pengetahuan.. Min juga boleh digunakan untuk membuat perbandingan antara dua atau lebih set data yang diperoleh. MIN Kes 1: 30 35 28 42 45 36 40 41 48 345/9 = 38.3333 38.33 Kes 2: 30 30 34 35 28 45 45 45 40 41 46 48 467/12 = 38.9166 38.92 UKURAN KECENDERUNGAN MEMUSAT BAGI TABURAN BERKUMPUL MOD – KATEGORI YANG PALING KERAP MEDIAN – SKOR TENGAH MIN – SKOR PURATA An instructor recorded the average number of absences for his students in one semester. For a random sample the data are: 2 4 2 0 40 2 4 3 6 Calculate the mean, the median, and the mode Mean: 63 x x 7 n = 9 x 63 x 9 n Median: Sort data in order 0 2 2 2 3 4 4 6 40 The middle value is 3, so the median is 3. Mode: The mode is 2 since it occurs the most. 15 An instructor recorded the average number of absences for his students in one semester. For a random sample the data are: 2 4 3 0 10 2 5 4 6 Which is the most appropriate measure of central tendency? Mean: The average value is 4 Median: The middle value is 3, so the median is 4. Mode: The mode is 2 and 4 since it occurs the most. 16 Measures of central tendency and its location in a distribution Shapes of Distributions Symmetric 1 2 3 4 5 6 Uniform 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 mean = median Skewed right 1 2 3 4 5 6 7 8 Mean > median Skewed left 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 Mean < median 17 KEPENCONGAN Data yang digambarkan boleh dianggarkan bentuk taburannya dengan mengguna skor-skor min, median dan mod. Bagi taburan yang mana min=median=mod maka taburan ini dipanggil normal. Bagi taburan yang mana min>median>mod maka taburannya dipanggil pencong ke kanan atau positif. Bagi taburan yang mana min<median<mod maka taburannya dipanggil pencong kiri atau negatif. Jenis data: ► Data mentah – skala ordinal /sela/nisbah 5 7 8 6 9 5 7 3 6 7 8 8 ► Data berkumpul (secara individu) X f 25 6 28 9 30 34 38 43 45 12 17 15 8 4 ► Data berkumpul (berselang) Group f 21-30 31-40 41-50 27 32 12 X 25 28 30 34 38 43 45 Group 21-30 31-40 41-50 f 6 9 12 17 15 8 4 f 27 32 12 19 Raw / Individual Data 5 7 8 6 9 5 7 3 6 7 8 8 20 Individual Grouped Data X 25 28 30 34 38 43 45 f 6 9 12 17 15 8 4 fX 21 Grouped Data Group 21-30 31-40 41-50 f 27 32 12 22 Measures of Central Tendency Mode: The value with the highest frequency Median: The point at which an equal number of values fall above and fall below it. Mean: The sum of all data values divided by the number of values x For a population: For a sample: N x x n fx x n 23 Activity I - Calculating MCT Calculate mode, median, and mean for the three data sets 1. RAW SCORES ♠ Mode -The value with the highest frequency (4) is 7 Mode = 7 ♠ Median - Data must be arranged in an array ML = (15+1) / 2 = 8 i.e. Median is the average of the 8th values Median = 7 ♠ Mean X= = ΣX n 96 15 = 6.4 Data set: 3 7 4 7 5 7 5 8 6 8 6 8 6 9 7 24 Activity II - Calculating MCT 2. GROUPED Frequency distribution ♠ Mode – The value with the highest frequency (17) is 34 Mode = 34 Data set: ♠ Median Md = (71+1) / 2 = 36 The 36th value is corresponding to 34 Md = 34 ΣfX X= ♠ Mean = n 2434 71 = 34.282 X 25 28 30 34 38 43 45 f 25 9 12 17 15 8 4 cf 6 15 27 44 59 67 71 Total 25 Activity III - GROUPED Frequency distribution Mean – Calculated based on class mid-point (m) → n = 71 Σfm = 2370.5 X= = Σfm n 2370.5 71 = 33.387 Data set: Group 21 – 30 31 – 40 41 – 50 Total f 27 32 12 71 cf 27 59 71 71 m 25.5 35.5 45.5 26 Data set: …Cont. Group 21 – 30 31 – 40 41 – 50 f ♠ Median Md = (71+1) / 2 = 36 The value 36th is located in the 31 – 40 class → L = 30.5 i = 10 F = 27 f = 32 27 32 12 71 cf 27 59 71 71 m 25.5 35.5 45.5 md n Md = L + i Md = 30.5 + 10 F 2 = 30.5 + 10 (0.2656) = 30.5 + 2.656 = 33.156 f md 71 2 27 32 27 WORKED EXAMPLE 1: Calculating Measures of Central Tendency Calculate mode, median and mean for the data sets 1. Raw data ♠ Mode – The value with the high frequency (4) is 14 Mode = 14 Data set: 10 10 11 12 ♠ Median – Data must be arranged in array ML = (21+1) / 2 = 11 i.e. median is the average of the 11th value Md = 15 ♠ Mean X = ΣX n = 333 21 12 14 14 14 14 15 15 17 17 18 19 19 20 20 20 21 21 = 15.857 28 WORKED EXAMPLE 2: Calculating Measures of Central Tendency 2. Frequency distribution ♠ Mode – The value with the highest frequency (21) is 78 Mode = 78 ♠ Median ML = (68+1) / 2 = 34.5 The 36th value is corresponding to 78 Md = 78 ♠ Mean ΣfX X= = n 5377 68 = 79.074 Data set: X X 65 65 74 74 78 78 86 86 93 93 Total f 10 13 21 15 9 68 cf 10 23 44 59 68 29 X 65 74 f 10 13 cf 10 23 f.X 650 962 78 86 93 Total 21 15 9 68 44 59 68 1638 1290 837 5377 30 WORKED EXAMPLE 3: Calculating Measures of Central Tendency Data set: 3. Grouped Frequency distribution ♠ Modal class – class 51-75 Group f 26 – 50 15 51 – 75 23 ♠ Median 76 – 100 17 ML = (55+1) / 2 = 28 Total 55 The value 28th is located in the 51 – 75 class → L = 51 i = 25 F = 15 fmd = 23 n Md = L + i Md = 51+25 F 2 f md 55 2 cf 15 38 55 m 38 63 88 = 51 + 25 (0.5435) = 51 + 13.587 = 64.587 15 23 31 …Cont. ♠ Mean – Calculated based on class mid-point (m) Σfm = 3515 → n = 55 X= = Σfm n 3515 55 = 63.909 Group Midpoint Frequency F . Xmidpt 26-50 38 15 570 51-75 63 23 1449 76-100 88 17 1496 55 3515 32 WORKED EXAMPLE 4: Calculating Measures of Central Tendency Minutes Spent on the Phone 102 71 103 105 109 124 104 116 97 99 108 112 85 107 105 86 118 122 67 99 103 82 87 95 87 100 78 125 101 92 33 Calculate the mean, the median, and the mode of this grouped data Class f Midpoints f x Midpoint 67 - 78 3 72.5 217.5 79 - 90 5 84.5 422.5 91 - 102 8 96.5 772.0 103 -114 9 108.5 976.5 115 -126 5 120.5 602.5 fx x n = 2991 = 99.7 30 34 Grouped frequency distribution ♠ Locate the median class that contains the ML ♠ Then calculate median using the formula Md = L + i where: L i n F f md n 2 F fmd lower boundary of the class with median class interval number of cases (sample size) cumulative frequency before the median class frequency of the class with median 35 Calculate the mean, the data median, and the mode of this grouped Class f Midpoints Cumulative f 67 - 78 3 72.5 3 79 - 90 5 84.5 8 91 - 102 8 96.5 16 103 -114 9 108.5 25 115 -126 5 120.5 30 L= 90.5 I = 12 n= 30 F=8 fmd = 8 36 MIN BAGI DATA BERKUMPUL Min masih lagi jumlah semua skor dan dibahagikan dengan bilangan skor-skor. Oleh itu, bagi setiap skor/kelas yang berkumpul maka perlu ditentukan jumlah pada skor/kelas tersebut, kemudian jumlahkan kesemua skor-skor tersebut dan dibahagikan dengan jumlah bilangan bagi taburan tersebut. MIN BAGI DATA BERKUMPUL L1: Tentukan nilai-nilai titik-tengah bagi sela/kelas - X titik-tengah L2: Kirakan jumlah skor bagi setiap – f x X titik-tengah L3: Jumlahkan semua nilai f x X titik-tengah L4: Bahagikan jumlah tersebut dengan skor dalam taburan. setiap sela/kelas bilangan LATIHAN PENGIRAAN MIN (DATA BERKUMPUL) KELAS FREKUENSI TITIK TENGAH 5-9 2 7 10-14 11 12 15-19 26 17 20-24 17 22 25-29 8 27 30-34 6 32 PENGIRAAN MIN DATA BERKUMPUL KELAS FREKUEN TITIK SI TGH FREK X TITIK TENGAH 5-9 2 7 2X7=14 10-14 11 12 11X12=132 15-19 26 17 26X17=442 20-24 17 22 17X22=374 25-29 8 27 8X27=216 30-34 6 32 6X32=192 70 1370 MEDIAN BAGI DATA BERKUMPUL ATAU SEKUNDER L1: Tentukan bilangan skor dan bahagi dengan 2 – L2: Tentukan kelas yang mengandungi median – L3: Tentukan had bawah sebenar (sempadan kelas) bagi kelas tersebut: L4: Tentukan F –nilai frekuensi bagi kelas sebelum terdapat median L5: Tentukan fm – bilangan skor dalam kelas yang terdapat median L6: Tentukan n bilangan skor dalam taburan L7: Tentukan saiz atau sela kelas L8: Masukkan nilai-nilai yang didapati dalam formula LATIHAN PENGIRAAN MEDIAN (DATA BERKUMPUL) KELAS FREKUENSI 5-9 2 FREK. KUMULATIF 2 10-14 11 13 15-19 26 39 20-24 17 56 25-29 8 64 30-34 6 70 Use of Mode Relevant for raw and frequency distribution data. Mode corresponds to value with the highest frequency. For raw data, count frequency for each value – where mode is the value with the highest frequency. For frequency distribution data, locate the value the highest frequency. Mode is not susceptible to extreme values. A data can have one (unimodal), two (bimodal) or multiple modes. 43 Use of Median Relevant for raw and frequency distribution data. Median corresponds to the middle value in the distribution. Median is not susceptible to extreme values. Median is useful for skewed distribution or distribution with extreme scores. Median does change in value when there exist extreme scores, unlikely mean, which will be affected by extreme scores. 44 Use of Mean The most frequently used MCT However it is very much susceptible to the presence of extreme values Mean is used when the distribution is normal. Mean is also used in calculation of the statistic. ex. t-test Formula: Raw data X= ΣX n Frequency Distribution X= ΣfX n Grouped Freq. distribution X= Σfm n 45 Descriptive Statistics The closing prices for two stocks were recorded on ten successive Fridays. Calculate the mean, the median and the mode for each. Stock A 46 56 57 58 61 63 63 67 77 77 Stock B 33 42 48 52 57 67 67 77 82 90 46 Descriptive Statistics The closing prices for two stocks were recorded on ten successive Fridays. Calculate the mean, the median and the mode for each. Stock A 56 56 57 58 61 63 63 67 67 67 Stock B 33 42 48 52 57 67 67 77 82 90 47 Measures of Central Tendency and Variability Both these measures allow description of a distribution as a whole in a quantitative (numerical) manner. MEASURES OF CENTRAL TENDENCY indicate central measurement representing the distribution of data - MEAN, MEDIAN ,MODE. MEASURES OF VARIABILITY indicate the extent to which scores are different from each other, are dispersed, or spread out - RANGE, MEAN DEVIATION, VARIANCE, STANDARD DEVIATION. 48