Download τ*- GENERALIZED SEMICLOSED SETS IN TOPOLOGICAL

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Surface (topology) wikipedia , lookup

Fundamental group wikipedia , lookup

Sheaf (mathematics) wikipedia , lookup

Continuous function wikipedia , lookup

3-manifold wikipedia , lookup

Brouwer fixed-point theorem wikipedia , lookup

Grothendieck topology wikipedia , lookup

General topology wikipedia , lookup

Transcript
ISSN: 2277-9655
Impact Factor: 4.116
[Selvi* et al., 5(8): August, 2016]
ICโ„ข Value: 3.00
IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY
ฯ„*- GENERALIZED SEMICLOSED SETS IN TOPOLOGICAL SPACES
R. Selvi*, C. Aruna
* Sri Parasakthi College for Women, Courtallam โ€“ 627802
Research Scholar, Research centre of mathematics, Sri Parasakthi College for Women, Courtallam627802
DOI: 10.5281/zenodo.60107
ABSTRACT
In this paper, we introduce a new class of sets called ๐œ โˆ— -generalized semiclosed sets and ๐œ โˆ— -generalized semiopen
sets in topological spaces and study some of their properties.
KEYWORDS: ๐œ โˆ— โˆ’ ๐‘”๐‘  ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set, ๐œ โˆ— โˆ’ ๐‘”๐‘  ๐‘œ๐‘๐‘’๐‘› set
INTRODUCTION
In 1970, Levine[6] introduced the concept of generalized closed sets as a generalization of closed sets in topological
spaces. Using generalized closed sets, Dunham[5] introduced the concept of the closure operator c1* and a new
topology ๐œ โˆ— and studied some of their properties. S.P.Arya[2], P.Bhattacharyya and B.K.Lahiri[3], J.Dontchev[4],
H.Maki, R.Devi and K.Balachandran[9], [10], P.Sundaram and A.Pushpalatha[12], A.S.Mashhour, M.E.Abd E1Monsof and S.N.E1-Deeb[11], D.Andrijevic[1] and S.M.Maheshwari and P.C.Jain[9], Ivan Reilly [13],
A.Pushpalatha, S.Eswaran and P.RajaRubi [14] introduced and investigated generalized semi closed sets, semi
generalized closed sets, generalized semi preclosed sets, ๐›ผ โˆ’generalized closed sets, generalized- ๐›ผ closed sets,
strongly generalized closed sets, preclosed sets, semi-preclosed sets and ๐›ผ โˆ’closed sets, generalized preclosed sets
and ๐œ โˆ— -generalized closed sets respectively. In this paper, we obtain a new generalization of preclosed sets in the
weaker topological space(X, ๐œ โˆ— ).
Throughout this paper X and Y are topological spaces on which no separation axioms are assumed unless otherwise
explicitly stated. For a subset A of a topological space X, int(A), ๐‘๐‘™(๐ด), ๐‘๐‘™ โˆ— (A), ๐‘ ๐‘๐‘™(๐ด), ๐‘ ๐‘๐‘๐‘™(๐ด), ๐‘๐‘™๐›ผ (๐ด), ๐‘๐‘™๐‘ (๐ด) and
๐ด๐‘ denote the interior, closure, ๐‘๐‘™๐‘œ๐‘ ๐‘ข๐‘Ÿ๐‘’ โˆ— , semi-closure, semi-preclosure, ๐›ผ-closure, preclosure and complement of A
respectively.
PRELIMINARIES
We recall the following definitions
Definition: 2.1
A subset A of a topological space (X , ๐œ) is called
(i) Generalized closed (briefly g-closed)[6] if cl(A)โŠ†G whenever AโŠ†G and G is open in X
(ii) Semi-generalized closed(briefly sg-closed)[3] if scl(A)โŠ†G whenever AโŠ†G and G is semi
open in X.
(iii) Generalized semi-closed (briefly gs-closed)[2] if scl(A)โŠ†G whenever AโŠ†G and G is
open in X.
(iv) ฮฑ- closed[8] if cl(int(cl(A))) โŠ† A
(v) ฮฑ-generalized closed (briefly ฮฑg-closed)[9] if ๐‘๐‘™๐›ผ (A) โŠ† G whenever AโŠ†G and G is open
in X.
(vi) Generalized ฮฑ-closed (briefly gฮฑ-closed)[10] if spcl(A) โŠ† G whenever AโŠ†G and G is
open in X.
http: // www.ijesrt.com
© International Journal of Engineering Sciences & Research Technology
[621]
ISSN: 2277-9655
Impact Factor: 4.116
[Selvi* et al., 5(8): August, 2016]
ICโ„ข Value: 3.00
(vii) Generalized semi-preclosed (briefly gsp-closed)[2] if scl(A) โŠ† G whenever A โŠ† G and G
is open in X.
(viii) Strongly generalized closed (briefly strongly g-closed)[12] if ๐‘๐‘™(๐ด) โŠ† ๐บ whenever
๐ด โŠ† ๐บ and G is g-open in X.
(ix) Preclosed[11] if ๐‘๐‘™(๐‘–๐‘›๐‘ก(๐ด)) โŠ† ๐ด
(x) Semi-closed[7] if ๐‘–๐‘›๐‘ก(๐‘๐‘™(๐ด)) โŠ† ๐ด
(xi) Semi-preclosed (briefly sp-closed)[1] if ๐‘–๐‘›๐‘ก(๐‘๐‘™(๐‘–๐‘›๐‘ก(๐ด))) โŠ† ๐ด.
(xii) Generalized preclosed (briefly gp-closed)[13] if ๐‘๐‘™๐‘ ๐ด โŠ† ๐บ whenever ๐ด โŠ† ๐บ and G is
open.
The complements of the above mentioned sets are called their respective open sets.
Definition: 2.2
For the subset A of a topological X, the generalized closure operator ๐‘๐‘™ โˆ— [5] is defined by the intersection of all g-closed
sets containing A.
Definition: 2.3
For the subset A of a topological X, the topology ๐œ โˆ— is defined by ๐œ โˆ— = {๐บ: ๐‘๐‘™ โˆ— (๐บ ๐‘ ) = ๐บ ๐‘ }.
Definition: 2.4
For the subset A of a topological X,
(i) the semi-closure of A(๐‘๐‘Ÿ๐‘–๐‘’๐‘“๐‘™๐‘ฆ ๐‘ ๐‘๐‘™(๐ด))[7] is defined as the intersection of all semi-closed
sets containing A.
(ii) the semi-Pre closure of A(๐‘๐‘Ÿ๐‘–๐‘’๐‘“๐‘™๐‘ฆ ๐‘ ๐‘๐‘๐‘™(๐ด))[1] is defined as the intersection of all semipreclosed sets containing A.
(iii) the ๐›ผ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘ข๐‘Ÿ๐‘’ of A (๐‘๐‘Ÿ๐‘–๐‘’๐‘“๐‘™๐‘ฆ ๐‘๐‘™๐›ผ (๐ด))[8] is defined as the intersection of all ๐›ผ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘
sets containing A.
(iv) the preclosure of A, denoted by ๐‘๐‘™๐‘ (๐ด)[13], is the smallest preclosed set containing A.
Definition: 2.5
A subset A of a topological space X is called ๐œ โˆ— generalized closed set (๐‘๐‘Ÿ๐‘–๐‘’๐‘“๐‘™๐‘ฆ ๐œ โˆ— โˆ’ ๐‘”๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘)[14] if ๐‘๐‘™ โˆ— (๐ด) โŠ† ๐บ
whenever ๐ด โŠ† ๐บ and G is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘›. The complement of ๐œ โˆ— โˆ’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’๐‘‘ closed set is called the ๐œ โˆ— โˆ’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’๐‘‘
open set (๐‘๐‘Ÿ๐‘–๐‘’๐‘“๐‘™๐‘ฆ ๐œ โˆ— โˆ’ ๐‘”๐‘œ๐‘๐‘’๐‘›).
Definition: 2.6
A subset A of a topological space X is called ๐œ โˆ— โˆ’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’๐‘‘ preclosed (๐‘๐‘Ÿ๐‘–๐‘’๐‘“๐‘™๐‘ฆ ๐œ โˆ— โˆ’ ๐‘”๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘)[15] if
๐‘๐‘™ โˆ— (๐‘๐‘™๐‘ (๐ด)) โŠ† ๐บ whenever ๐ด โŠ† ๐บ and G is ๐œ โˆ— โˆ’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’๐‘‘ open. The complement of ๐œ โˆ— โˆ’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’๐‘‘ preclosed
set is called the ๐œ โˆ— โˆ’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’๐‘‘ preopen set (briefly ๐œ โˆ— โˆ’ ๐‘”๐‘ โˆ’ ๐‘œ๐‘๐‘’๐‘›).
๐‰โˆ— โˆ’ ๐‘ฎ๐’†๐’๐’†๐’“๐’‚๐’๐’Š๐’›๐’†๐’… SEMICLOSED SETS IN TOPOLOGICAL SPACES
In this section, we introduce the concept of ๐œ โˆ— - generalized semiclosed sets in topological spaces.
Definition: 3.1
A subset A of a topological space X is called ๐œ โˆ— โˆ’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’๐‘‘ semiclosed (๐‘๐‘Ÿ๐‘–๐‘’๐‘“๐‘™๐‘ฆ ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘) if ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ†
๐บ whenever ๐ด โŠ† ๐บ and G is ๐œ โˆ— โˆ’ ๐‘œpen. The complement of ๐œ โˆ— โˆ’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’๐‘‘ semiclosed set is called the ๐œ โˆ— โˆ’
๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™๐‘–๐‘ง๐‘’๐‘‘ semiopen set (briefly ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘œ๐‘๐‘’๐‘›).
Example: 3.2
Let ๐‘‹ = {๐‘Ž, ๐‘, ๐‘} and let ๐œ = {๐œ™, ๐‘‹, {๐‘Ž}, {๐‘Ž, ๐‘}, {๐‘}, {๐‘Ž, ๐‘}}. Here (X, ๐œ โˆ— ) is ๐œ โˆ— -generalized semiclosed
Theorem: 3.3
Every closed set in X is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
Proof:
Let A be a closed set. Let ๐ด โŠ† ๐บ. Since A is closed, ๐‘๐‘™(๐ด) = ๐ด โŠ† ๐บ. But ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ† ๐‘๐‘™(๐ด). Thus, we have
๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ† ๐บ whenever ๐ด โŠ† ๐บ and G is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘›. Therefore A is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
Theorem: 3.4
Every ๐œ โˆ— โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in X is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
Proof:
http: // www.ijesrt.com
© International Journal of Engineering Sciences & Research Technology
[622]
ISSN: 2277-9655
Impact Factor: 4.116
[Selvi* et al., 5(8): August, 2016]
ICโ„ข Value: 3.00
Let A be a ๐œ โˆ— โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set. Let ๐ด โŠ† ๐บ where G is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘› Since A is ๐œ โˆ— โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘, ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) = ๐ด โŠ† ๐บ. Thus,
we have ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ† ๐บ whenever ๐ด โŠ† ๐บ and G is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘›. Therefore A is ๐œ โˆ— โˆ’ ๐‘”๐‘  closed.
Theorem: 3.5
Every g-closed set in X is a ๐œ โˆ— โ€“gsclosed set but not conversely.
Proof:
Let A be a g-closed set. Assume that ๐ด โŠ† ๐บ, G is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘› in X. Then ๐‘๐‘™(๐ด) โŠ† ๐บ, Since A is g-closed. But
๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ† ๐‘๐‘™(๐ด). Therefore ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ† ๐บ. Hence A is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
The converse of the above theorem need not be true as seen from the following example.
Example: 3.6
Consider the topological space ๐‘‹ = {๐‘Ž, ๐‘, ๐‘} with topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž}, {๐‘Ž, ๐‘}, {๐‘}, {๐‘Ž, ๐‘}}. Then, the set {a,c} is ๐œ โˆ— โˆ’
๐‘”๐‘-closed but not ๐‘”-closed.
Remark: 3.7
The following example shows that ๐œ โˆ— โˆ’ ๐‘”๐‘ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets are independent from sp-closed, sg-closed set, ๐›ผ โˆ’
๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ ๐‘ ๐‘’๐‘ก, preclosed set, gs-closed set, gsp-closed set, ๐›ผ๐‘” โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set and g๐›ผ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set.
Example: 3.8
Let ๐‘‹ = {๐‘Ž, ๐‘, ๐‘} and ๐‘Œ = {๐‘Ž, ๐‘, ๐‘, ๐‘‘} be the topological spaces.
(i) Consider the topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž}}. Then the sets {๐‘Ž}, {๐‘Ž, ๐‘} ๐‘Ž๐‘›๐‘‘ {๐‘Ž, ๐‘} are ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not
sp-closed.
(ii) Consider the topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž, ๐‘}}. Then the sets {๐‘Ž} and {๐‘} are sp-closed but not
๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’
๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
(iii) Consider the topology ๐œ = {๐‘‹, ๐œ™}. Then the sets {๐‘Ž}, {๐‘}, {๐‘}, {๐‘Ž, ๐‘}, {๐‘, ๐‘}๐‘Ž๐‘›๐‘‘ {๐‘Ž, ๐‘} are
๐œโˆ— โˆ’
๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not sg-closed.
(iv) Consider the topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž}, {๐‘}, {๐‘Ž, ๐‘}}. Then the sets {๐‘Ž}๐‘Ž๐‘›๐‘‘ {๐‘} are sg-closed
but not ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
(v) Consider the topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž}}. Then the sets {๐‘Ž}, {๐‘}, {๐‘}, {๐‘Ž, ๐‘}๐‘Ž๐‘›๐‘‘ {๐‘Ž, ๐‘} are
๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not ๐›ผ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
(vi) Consider the topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž}, {๐‘Ž, ๐‘}}. Then the set {๐‘} is ๐›ผ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not
๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
โˆ—
(vii) Consider the topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž}}. Then the sets {๐‘Ž} {๐‘Ž, ๐‘} ๐‘Ž๐‘›๐‘‘ {๐‘Ž, ๐‘} are ๐œ โˆ’ ๐‘”๐‘  โˆ’
๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but
not preclosed.
(viii) Consider the topology ๐œ = {๐‘‹, ๐œ™, {๐‘}, {๐‘Ž, ๐‘}}. Then the set {๐‘Ž} is pre-closed but not
๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’
๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
(ix) Consider the topology ๐œ = {๐‘‹, ๐œ™}. Then the sets {๐‘Ž}, {๐‘}, {๐‘}, {๐‘Ž, ๐‘}, {๐‘, ๐‘} ๐‘Ž๐‘›๐‘‘ {๐‘Ž, ๐‘} are
๐œโˆ— โˆ’
๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not gs-closed.
(x) Consider the topology ๐œ = {๐‘Œ, ๐œ™, {๐‘Ž}, {๐‘Ž, ๐‘, ๐‘}, {๐‘Ž, ๐‘, ๐‘‘}}. Then the sets {๐‘} {๐‘, ๐‘} ๐‘Ž๐‘›๐‘‘ {๐‘, ๐‘‘}
are ๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’closed.
(xi) Consider the topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž}, {๐‘}, {๐‘Ž, ๐‘}}. Then the sets {๐‘}๐‘Ž๐‘›๐‘‘ {๐‘Ž, ๐‘} are ๐‘”๐‘ ๐‘ โˆ’
๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but
not ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’closed.
(xii) Consider the topology ๐œ = {๐‘Œ, ๐œ™, {๐‘Ž}}. Then the set {๐‘Ž} is ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not gspclosed.
(xiii) Consider the topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž}}. Then the set {๐‘Ž} is ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not ๐›ผgclosed.
(xiv)Consider the topology ๐œ = {๐‘Œ, ๐œ™, {๐‘Ž}, {๐‘Ž, ๐‘, ๐‘}, {๐‘Ž, ๐‘, ๐‘‘}}. Then the set
{๐‘}, {๐‘, ๐‘}, {๐‘, ๐‘‘} ๐‘Ž๐‘Ÿ๐‘’ ๐›ผ๐‘” โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
(xv) Consider the topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž}, {๐‘}, {๐‘Ž, ๐‘}, {๐‘Ž, ๐‘}}. Then the set {๐‘} is ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’
๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not g๐›ผ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
(xvi)Consider the topology ๐œ = {๐‘Œ, ๐œ™, {๐‘Ž}, {๐‘Ž, ๐‘, ๐‘}, {๐‘Ž, ๐‘, ๐‘‘}}. Then the set {๐‘}, {๐‘, ๐‘}๐‘Ž๐‘›๐‘‘ {๐‘, ๐‘‘}
are ๐‘”๐›ผ โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ but not ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
Theorem: 3.9
For any two sets A and B ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด โˆช ๐ต)) = ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆช ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต))
http: // www.ijesrt.com
© International Journal of Engineering Sciences & Research Technology
[623]
ISSN: 2277-9655
Impact Factor: 4.116
[Selvi* et al., 5(8): August, 2016]
ICโ„ข Value: 3.00
Proof:
Since AโŠ† ๐ด โˆช ๐ต, we have ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ† ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด โˆช ๐ต)) and Since ๐ต โŠ† ๐ด โˆช ๐ต, we have ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)) โŠ†
๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด โˆช ๐ต)). Therefore ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆช ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)) โŠ† ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด โˆช ๐ต)). Also, ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) and ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)) are
the closed sets. Therefore ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆช ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)) is also a closed set. Again, AโŠ† ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) and BโŠ†
๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)), Implies โˆช ๐ต โŠ† ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆช ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)). Thus, ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆช ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)) is a closed set containing
๐ด โˆช ๐ต. Since ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด โˆช ๐ต)) is the smallest closed set containing ๐ด โˆช ๐ต. We have ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด โˆช ๐ต)) โŠ† ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆช
๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)). Thus, ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด โˆช ๐ต)) = ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆช ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต))
Theorem: 3.10
Union of two ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ sets in X is a ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ ๐‘ ๐‘’๐‘ก ๐‘–๐‘› ๐‘‹.
Proof:
Let A and B be two ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ ๐‘ ๐‘’๐‘ก๐‘ . Let ๐ด โˆช ๐ต โŠ† ๐บ, where G is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘›. Since A and B are ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’
๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ ๐‘ ๐‘’๐‘ก๐‘ , ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆช ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)) โŠ† ๐บ. But by theorem 3.9 ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆช ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)) = ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด โˆช
๐ต)). Therefore ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด โˆช ๐ต)) โŠ† ๐บ. Hence ๐ด โˆช ๐ต is a ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set.
Theorem: 3.11
A subset A of X is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ if and only if ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด contains no non-empty ๐œ โˆ— โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in X.
Proof:
Let A be a ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set. Suppose that F is a non-empty ๐œ โˆ— โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ subset of ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด. Now, F โŠ†
๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด. Then F โŠ† ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆฉ ๐ด๐‘ , Since ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด = ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆฉ ๐ด๐‘ . Therefore F โŠ†
๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) and F โŠ† ๐ด๐‘ . Since ๐น ๐‘ is a ๐œ โˆ— -open set and A is a ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘, ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ† ๐น ๐‘ . That is ๐น โŠ†
๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆฉ [๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด))]๐‘ = ๐œ™. That is ๐น = ๐œ™, a contradiction. Thus, ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด contain no non-empty
๐œ โˆ— โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in X. Conversely, assume that ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด contains no non-empty ๐œ โˆ— โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set. Let ๐ด โŠ† ๐บ,
G is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘›. Suppose that ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) is not contained in G. then ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆฉ ๐บ ๐‘ is a non-empty ๐œ โˆ— โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘
set of ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด which is a contradiction. Therefore, ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด โŠ† ๐บ and hence A is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘.
Corollary: 3.12
A subset A of X is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ if and only ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด contains no non-empty closed set in X.
Proof:
The proof follows from the theorem 3.11 and the fact that every closed set is ๐œ โˆ— โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in X.
Corollary: 3.13
A subset A of X is ๐œ โˆ— โˆ’ ๐‘”๐‘  โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ if and only if ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด contains no non-empty open set in X.
Proof:
The proof follows from the theorem 3.11 and the fact that every open set is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘› set in X.
Theorem: 3.14
If a subset A of X is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ and ๐ด โŠ† ๐ต โŠ† ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)), then B is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in X.
Proof:
Let A be a ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set such that ๐ด โŠ† ๐ต โŠ† ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)). Let ๐‘ˆ be a ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘› set of X such that BโŠ† ๐‘ˆ. Since
A is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘, we have ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ† ๐‘ˆ .
Now, ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ† ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)) โŠ† ๐‘๐‘™ โˆ— (๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด))) = ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โŠ† ๐‘ˆ.
That is ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ต)) โŠ† ๐‘ˆ, U is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘›.
Therefore B is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in X.
The converse of the above theorem need not be true as seen from the following example.
Example: 3.15
Consider the topological space ๐‘‹ = {๐‘Ž, ๐‘, ๐‘} with topology ๐œ = {๐‘‹, ๐œ™, {๐‘Ž}, {๐‘Ž, ๐‘}}. Then A and B are ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘
sets in (๐‘‹, ๐œ). But ๐ด โŠ† ๐ต is not a subset of ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)).
Theorem: 3.16
Let A be a ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ in (๐‘‹, ๐œ). Then A is ๐‘” โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ if and only if ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘›.
Proof:
http: // www.ijesrt.com
© International Journal of Engineering Sciences & Research Technology
[624]
ISSN: 2277-9655
Impact Factor: 4.116
[Selvi* et al., 5(8): August, 2016]
ICโ„ข Value: 3.00
Suppose A is g-closed in X. Then, ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) = ๐ด and so ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด = ๐œ™ which is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘› in X.
Conversely, suppose ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด is ๐œ โˆ— โˆ’ ๐‘œ๐‘๐‘’๐‘› in X. Since A is ๐œ โˆ— โˆ’ ๐‘”๐‘ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘, by the theorem 3.11,
๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด contains no non-empty ๐œ โˆ— โˆ’ ๐‘๐‘™๐‘œ๐‘ ๐‘’๐‘‘ set in X. Then, ๐‘๐‘™ โˆ— (๐‘ ๐‘๐‘™(๐ด)) โˆ’ ๐ด = ๐œ™. Hence, A is g-closed.
Remark 3.17
From the above discussion, we obtain the following implications.
REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
D.Andrijevic, Semi-preopen sets, Mat.Vesnik, 38 (1986), 24-32.
S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J.Pure Appl.Math., 21(1990), 717-719.
P.Bhattacharyya and B.K.Lahiri, Semi generalized closed sets in topology, Indina J.Math., 29(1987), 375382
J.Dontchev, On generalizing semipreopen sets,Mem, Fac. Sci.Kochi Uni.Ser A,Math.,16(1995), 35-48.
W.Dunham, A new closure operator for non-T1 topologies, Kyungpook Math.J.22(1982),55-60.
N.Levine, Generalized closed sets in topology, Rend.Circ.Mat.Palermo, 19,(2)(1970),89-86.
N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly; 70(1963),36-41.
S.N.Maheswari and P.C.Jain, Some new mappings, Mathematica, Vol.24(47) (1-2)(1982), 53-55.
H.Maki, R.Devi and K.Balachandran, Assicated topologies of generalized ฮฑ-closed sets and ฮฑ-generalized
closed sets, Mem. Fac. Sci. Kochi Univ.(Math).15(1994),51-63.
[10] H.Maki, R.Devi and K.Balachandran, Generalized ฮฑ-closed sets in topology, Bull. Fukuoka Uni., Ed.Part
III,42(1993), 13-21.
[11] A.S.Mashhour, M.E.Abd E1-Monesf and S.N.E1-Deeb, On precontinuous and weak precontinuous
functions, Proc.Math.Phys. Soc.Egypt 53 (1982),47-53.
[12] P.Sundaram, A.Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J.Math.
Sci.(FJMS) 3(4)(2001), 563-575.
[13] Ivan Reilly, Generalized Closed Sets: A survey of recent work, Auckland Univ. 1248, 2002(1-11).
[14] A.Pushpalatha, S.Eswaran and P.RajaRubi, ๐œ โˆ— -generalized closed sets in topological spaces, WCE 2009, July
1-3, 2009, London, U.K.
[15] C.Aruna, R. Selvi, ๐œ โˆ— - generalized preclosed sets in topological spaces e-ISSN: 2320-8163, www.ijtra.com
Volume 4, Issue 4 (July-Aug, 2016), PP. 99-103
http: // www.ijesrt.com
© International Journal of Engineering Sciences & Research Technology
[625]