Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Unit 4 TRIANGLE FUN ••I Ican canuse usethe theangle anglesum sum theorem theorem • I can the exterior angle • I can the exterior angle theorem theorem Learning Targets Lesson 4-1 sum angles 180° 30° m∠1 = 28° m∠1 = 120° 58° 32° 32° m∠1 = 56° m∠2 = 56° m∠3 = 74° 58° exterior not remote interior exterior angle sum remote interior angles m∠1 = m∠A + m∠B m∠1 = 115° 2x + 95 = 145 2x = 50 x = 25 140° 40° 75° 115° 65° 55° 55° 70° 125° 55° 95° ASSIGNMENT: 4-1Worksheet 4.2 Congruent Triangles Learning Target: • I can name and label corresponding parts of congruent triangles. Instruction Naming Triangles Triangles are named by their ______________. vertices ABC A B C size shape Angle Measure Betweenness Collinearity Distance m∠A =m∠J AB = JK m∠B = m∠K BC = KL m∠C = m∠L AC = JL ABC JKL Match up the letters in the same “position” AND look at the ‘tick marks’ in the picture! Match the congruent pieces! Warm Up • I can recognize and use the SSS, SAS, ASA, AAS, and HL Postulates to see if triangles are the same. Lesson 4.3 CAN’T USE!!! 40 40 50 50 CAN’T USE!!! 6 40° 40° SAS ∆DNV ≅ ∆BCX SSS ∆TRS ≅ ∆SUT HL ∆JKL ≅ ∆MNP AAS ∆NJK ≅ ∆LMK Your turn! Try e-h! SAS ∆CDA ≅ ∆BDA ASA ∆RST ≅ ∆UVT AAS ∆RUT ≅ ∆RST SAS ∆FJH ≅ ∆GHJ A M R W G MG ≅ AC C D X G Y Z YZ ≅ DK K D A E B C ∠B ≅ ∠E or ∠C ≅ ∠F F ASSIGNMENT: “Swimming through triangles” worksheet, both sides (Pages 3 – 4) Warm Up PROOFS! Lesson 4.4 Given Given TS ≅ TS ∆RST ≅ ∆UTS Reflexive SSS Given Given ∠RSU ≅ ∠TSU US ≅ US ∆RSU ≅ ∆TSU Def’n of angle bisector Reflexive SAS Your Turn… Given Given BD ≅ BD ∆ABD ≅ ∆CBD ∠A ≅ ∠C Reflexive SSS CPCTC Given Given DF ≅ DF ∠EDF ≅ ∠GFD ∆EDF ≅ ∆GFD DG ≅ FE Reflexive AIA ≅↔ || lines AAS CPCTC Given Given BC ≅ BC ∆BAC ≅ ∆BDC ∠A ≅ ∠D Reflexive HL CPCTC Your Turn… BC || AD BC ≅ AD BD ≅ BD ∠CBD ≅ ∠ADB ∆ABD ≅ ∆CDB Given Given Reflexive AIA ≅↔ || lines SAS Your Turn… ∠D ≅ ∠F GE bisects ∠DEF GE ≅ GE ∠DEG ≅ ∠FEG ∆DEG ≅ ∆FEG DE ≅ FE Given Given Reflexive Def. of angle bisector AAS CPCTC Group Activity Please put your tables into groups of 4 (push 2 tables together!) We will rotate through 4 stations to fill out proofs You will have approximately 4 minutes per station. Work quickly but accurately! Warm Up 4.5 Isosceles and Equilateral Triangles Learning Targets • I can use properties of isosceles triangles. • I can use properties of equilateral triangles. Vertex angle 2 congruent sides opposite 2 congruent sides Base angles 2 sides opposite congruent congruent FX ≅ OX Small triangle: Use 3 letters to name the angles! ∠SRT ≅ ∠STR ∠I ≅ ∠N SV ≅ ST 40 + 2x + 2x = 180 40 + 4x = 180 4x = 140 x = 35 2x + 6 = 3x – 6 6=x–6 12 = x L 2x + 1 3x – 2 N M 2x + 1 = 3x – 2 1=x–2 5x – 2 x=3 equiangular 60 6x = 60 x = 10 6x – 5 = 5x – 5 = -1x 5 =x F 2x – 2 2x – 2 x+5 = x+5 x–2=5 x=7 H 3x – 9 G Isosceles So base angles are congruent! CD ≅ CG DE ≅ GF ∠CDE ≅ ∠CGF ∆CDE ≅ ∆CGF CE ≅ CF Given Given ITT SAS CPCTC Warm Up 4.6 Constructing Triangles Use the construction instructions to work through the constructions at your table. Please raise your hand if you need assistance!