Download 11 . R(t)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
‫‪Probability Distributions‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫‪1‬‬
‫پارامترهای ارزیابی قابلیت اطمینان توسط تابع توزیع احتمال توصیف‬
‫می شوند‬
‫زمان از کار افتادن یک قطعه از سیستم از تابع توزیع احتمال پیروی‬
‫می کند‬
‫عدم امکان محاسبه تعیین توزیع احتمال بر اساس دانش از هندسه‬
‫قطعه یا سیستم در عمل‬
‫ارتباط بین توابع توزیع احتمال و قابلیت اطمینان چگونه است؟‬
‫اصطالحات توزیع ها کدامند و نقش آنها در ارزیابی قابلیت اطمینان‬
‫چیست؟‬
Probability Distributions
Probability Distributions describe the random behavior of a system
or a component from a set of data.
In some applications only one value (mean value) is sufficient.
e.g. previous examples, long-term reliability evaluation
In other applications the entire distribution is required.
e.g. short-term or time-dependent evaluation, simulation methods
Probability Density Function, f(x) - plot of Prob. vs. Random Variable x
(Cumulative) Probability Distribution Function, F(x)
For continuous distribution, F(x) = ∫f(x).dx
Discrete distribution, F(x) = ∑f(x)
f(x) = dF(x)
dx
2
‫‪Probability Distributions‬‬
‫• انواع توزیع های آماری‪:‬‬
‫– ناپیوسته (دوجمله ای و پواسون)‬
‫– پیوسته (نرمال‪ ،‬نمایی‪ ،‬ویبال‪ ،‬گاما و ریالی)‬
‫• اصطالحات توزیعها‪:‬‬
‫– چگالی احتمال‪ ،‬تابع توزیع تجمعی‬
‫– مقدار انتظاری یا میانگین‪ ،‬واریانس و یا انحراف معیار‬
‫‪3‬‬
‫‪Probability Distributions‬‬
‫• ویژگی تابع ازکار افتادن‬
‫– در لحظه صفر‪ ،‬احتمال شکست سیستم برابر صفر است و در‬
‫زمان بینهایت این احتمال یک است‪.‬‬
‫– این ویژگی تابع توزیع فراوانی تجمعی است‬
‫– تابع توزیع فراوانی تجمعی به نام توزیع فراوانی از کارافتادن‬
‫شناخته شده است و با )‪ Q(t‬نشان داده می شود‪.‬‬
‫– اگر احتمال بقا را )‪ R(t‬در نظر بگیریم‪R(t)=1.-Q(t):‬‬
‫– تابع چگالی احتمال مشتق تابع فراوانی تجمعی است‬
‫)‪f(t) = dQ(t‬‬
‫‪dt‬‬
‫‪4‬‬
Probability Distributions in Reliability Evaluation
Q(t) = f(t)dt
Probability, f(x)
0

0.3
R(t) =  f(t)dt
0.2
t
0.1
0.0
5.97 5.98 5.99 6.00 6.01 6.02 6.03
f(t) = dQ(t)
dt
Cum. Probability, F(x)
t
0.4
Length (m), x
1.0
0.8
0.6
0.4
0.2
0.0
5.97 5.98 5.99 6.00 6.01 6.02 6.03
Length (m), x
In reliability evaluation, the random variable is usually time (t)
Failure Density Function, f(t)
(Cumulative) Failure Distribution Function, Q(t)
Probability of Failure
Survivor Function R(t) = 1 – Q(t)
Probability of Success
5
Probability Distributions
)Hazard Rate( ‫• آهنگ وقوع خطر‬
‫– تعداد از کار افتادگی در واحد زمان به تعداد عضوهای در‬
‫معرض از کار افتادن‬
Hazard Rate, l(t) = f(t) / R(t) =
# of failures per unit time
# of components exposed to failure
6
‫تابعهای کلی قابلیت اطمینان‬
‫• تعیین رابطه بین توابع مختلف بدون در نظر گرفتن شکل‬
‫تابع ریاضی آنها‬
‫– تعداد عضوهای معیوب شده در مدت زمان ‪Nf(t) =t‬‬
‫– تعداد عضوهای سالم در مدت زمان ‪Ns (t) = t‬‬
‫– ‪Ns (t)+ Nf(t)= N0‬‬
‫– قابلیت اطمینان تا زمان معین ‪t‬‬
‫) ‪N f (t‬‬
‫) ‪N s (t ) N 0  N f (t‬‬
‫‪R(t ) ‬‬
‫‪‬‬
‫‪ 1‬‬
‫‪N0‬‬
‫‪N0‬‬
‫‪N0‬‬
‫ـ برای از کار افتادن‪:‬‬
‫‪7‬‬
‫) ‪N f (t‬‬
‫‪N0‬‬
‫‪Q(t ) ‬‬
‫تابعهای کلی قابلیت اطمینان‬
dt  0
dR(t )
dQ(t )
1 dN f (t )


dt
dt
N 0 dt
1 dN f (t )
f (t ) 
N 0 dt
:‫• در بیان آهنگ وقوع خطر داریم‬
l (t ) 

1 dN f (t ) N 0
1 dN f (t )
.

.
.
N s (t )
dt
N 0 N s (t )
dt
N0
1 dN f (t )
1
f (t )
.
.

. f (t ) 
N s (t ) N 0
dt
R(t )
R(t )
f (t )
l (t ) 
R(t )
dR(t ) dQ(t )

dt
dt
1 dR(t )
 l (t )  
R(t ) dt
f 
8
‫تابعهای کلی قابلیت اطمینان‬

R (t )
1
t
1
dR(t )    l (t ).dt
0
R(t )
t
 ln R(t )    l (t ).dt
0
t
 R(t )  exp[   l (t ).dt ]
0
l (t )  cte  l  R(t )  e lt
9
Example using Discrete Distribution
Total number of samples = N0
Number of failures at time t = Nf(t)
Number of survivors at time t = Ns(t) = N0 - Nf(t)
Number of failures in interval Dt = DNf (t)
Failure Density Function, f(t) = DNf (t) / N0
Failure Distribution Function, Q(t) = Nf (t) / N0 (Probability of Failure)
Survivor Function R(t) = Ns (t) / N0
(Probability of Success)
Hazard Rate, l(t) = f(t) / R(t)
10
11
12
Example: Plots of Q(t) and R(t)
1
R(t)
...
0.8
0
0.8
...
0.4
0.2
1
Q(t)
0.6
0
5
10
15
Time Interval
0.6
0.4
0.2
0
0
5
10
Time Interval
15
13
Example: Plots of f(t) and l(t)
0.5
l(t)
...
0.4
0.3
0.2
0.1
0.14
0
0.12
0
5
10
15
Time Interval
...
0.1
0.08
f(t)
0.06
0.04
0.02
0
0
5
10
Time Interval
15
14
Bathtub Curve
Region 2
Region 3
Hazard rate
Region 1
De-bugging
Normal operating
Or useful life
Wear out
or Fatigue
Operating Life
Typical Electric Component Hazard Rate as a Function of Age
15
Time Dependent Reliability
t
Reliability of a component for a time period t is
R(t) = e
  λ(t)dt
0
where l(t) is the hazard rate.
Proof:
l(t) = # of failures per unit time
# of components exposed to
d Nf (t)
dt
=
failure Ns (t)
Dividing numerator and denominator by N0 (total # of samples),
l(t) =
dQ(t)
dt
R(t)
d(1 - R(t))
1 dR(t)
dt

 
R(t) dt
R(t)
R
t
t
1
dR(t)    λ(t)dt or ln R(t)    λ(t)dt
or 
R(t)
1
0
0
t
R(t) = e
  λ(t)dt
0
If l(t) is constant (during useful life),
R(t) = e
 λt
16
Application of Probability Distributions
in Reliability Assessment
- Poisson Distribution
-Useful life of system components
-Obtain expected value and distributions of failure probability
-Standby & spares
- Exponential Distribution
-Useful life of system components
-Most widely used probability distribution
- Normal Distribution
-Most widely used probability distribution in statistics, quality (6-s)
-Reliability assessment during wear-out life of components
-Uncertainty considerations (e.g. forecast uncertainty)
- Weibull Distribution
-Can be shaped to fit collected data
-e.g wind power, repair duration
17
‫‪Poisson Distribution‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫برای بیان احتمال وقوع تعداد معینی از یک رخداد در یک فاصله‬
‫زمانی‪ ،‬مشروط بر اینکه آهنگ وقوع خطر در آن فاصله زمانی ثابت‬
‫باشد‬
‫وقوع رخداد تصادفی است‬
‫ویژگی خاص در پواسون شمارش وقوع رخدادها است نه عدم وقوع آن‬
‫(برخالف توزیع دوجمله ای)‬
‫در بسیاری از موارد می توان تنها وقوع رخدادها را بر شمرد‪ .‬مثالً ‪:‬‬
‫– تعداد دفعات رعد و برق در یک دوره زمانی‬
‫– تعداد دفعات زنگ تلفن در یک فاصله زمانی‬
‫– تعداد خطاهای سیستم‬
‫‪18‬‬
Poisson Distribution
Can be used to evaluate the probability of an isolated event occurring a
specific number of times in a given time interval,
e.g. # of faults, # of lightning strokes time interval
Requirements:
-Events must be random
-Hazard rate must be constant
Only applies to the useful life
period of a system component
Expression for Poisson Distribution: Px(t) =
(lt ) x e  λt
x!
Px(t): probability of event occurring x times in time t
: constant hazard rate (known as failure rate)
Expected value of Poisson distribution, E(x) = m = lt
 λt
(lt)0 e λt
Probability of zero failures in time t, P0(t) = R(t) =
= e
0!
19
‫‪Poisson Distribution‬‬
‫• کاربرد تابع توزیع پواسون‪:‬‬
‫– در صورت شکست ناشی از وقوع عیب‪ ،‬مدت زمان تعمیر و‬
‫تعویض آن عضو در مقایسه با مدت زمان میانگین برای از کار‬
‫افتادن سیستم ناچیز باشد‬
‫– در غیر اینصورت باید از شیوه های دیگری استفاده گردد‬
‫‪20‬‬
Poisson Distribution Example
If the average number of cable faults per year per 10 km of cable is 0.05,
evaluate the probabilities of 0, 1, 2, .. faults occurring in
(a) 20 year period
(b) 40 year period
Failure Rate, l = 0.05 f/yr
(a) For a 20 year period, t = 20 yr
Px(t) =
Expected # of failures, E(x) = lt = 0.05 x 20 = 1.0
# of failures
Probability
0
0.36788
1
0.36788
2
0.18394
3
0.06131
4
0.01533
Failure Distribution Function
Failure Density Function
1
probability
0.4
probability
(1) x e 1
x!
0.3
0.2
0.1
0.8
0.6
0.4
0.2
0
0
0
1
2
# of failures
3
4
0
1
2
# of failures
3
421
Poisson Distribution Example
(b) For a 40 year period, t = 40 yr
Expected # of failures, E(x) = lt = 0.05 x 40 = 2.0
# of failures
Probability
0
0.13534
1
0.27067
2
0.27067
0.4
1
20-year
3
0.18045
4
0.09022
20-year
0.8
probability
0.3
probability
Px(t) =
40-year
40-year
0.2
(2) x e 2
x!
0.6
0.4
0.1
0.2
0
0
0
1
2
3
# of failures
Failure Density Functions
4
0
1
2
3
4
# of failures
Failure Distribution Functions
22
‫‪Poisson Distribution‬‬
‫• توزیع پواسون بعنوان تقریب مناسبی برای محاسبات توزیع‬
‫دوجمله ای استفاده می شود‬
‫• اگر در توزیع دوجمله ای‪ ،‬تعداد آزمایشها نسبت به تعداد‬
‫حادثه مورد نظر خیلی بزرگ باشد می توان این تقریب ارا‬
‫استفاده کرد‬
‫‪23‬‬
Exponential Distribution
Most widely used probability distribution in reliability assessment.
Requirements:
-Events must be random
-Hazard rate must be constant
R(t) = e
 λt
Q(t) = 1 - e
 λt
Only applies to the useful life
period of a system component
- lt
dQ(t) d(1 - e )
l e  λt
f(t) =
=
=
dt
dt
l
Mean or Expected value of f(x)

R(t)
0.37l
E(x) = x.f(x)dx

f(t)
Q(t)

Mean Time to Failure, MTTF = t.f(t)dt = 1/l
0
0
t
1/l
time
24
Example: Exponential Distribution
Find the mean time to failure of a component which has a failure rate
of 2 failures per year. Calculate its reliability for different mission times,
e.g. 10, 1000, 10000 hours.
MTTF = 1/l = ½ = 0.5 yrs = 0.5 x 8760 = 4380 hrs
R(t) = e
 λt
R(10)=0.997719, R(1000)=0.795877, R(10000)=0.101967
1.0
0.8
Rt)
0.6
0.4
0.2f/yr
0.2
1f/yr
2f/yr
0.0
0
2
4
6
time in 1000 hrs
8
10
25
‫‪Failure Probability in a Time Interval‬‬
‫– اگر احتمال خرابی از لحظه صفر ارزیابی شود؛ احتمال سلفی‬
‫(‪ )priori probability‬نامیده می شود‬
‫– اگر قطعه ای در مدت زمان ‪ T‬سالم بوده باشد ‪ ،‬احتمال اینکه در بازه ‪ T‬تا ‪T+t‬‬
‫خراب شود‪ ،‬به احتمال از کار افتادن خلفی (‪(A Posteriori Probability‬‬
‫موسوم است‪.‬‬
‫– برای ارزیابی احتمال خلفی‪ ،‬باید شرط سالم بودن قطعه در بازه زمانی )‪ (0,T‬را‬
‫در نظر گرفت‬
‫‪26‬‬
Failure Probability in a Time Interval
A priori probability of failure in time interval t,
Q(t) = 1 - e
 λt
A Priori Probability:
probability calculated by logically examining existing information
A Posteriori Probability:
conditional probability that is assigned after relevant information
is taken into account.
The probability of failure in the next interval t actually depends conditionally
upon its behavior preceding that interval.
e.g. it cannot fail in that interval if it already failed prior to that interval
It is, therefore, required to determine (a posteriori) probability of a
component failing in an interval t given that it has survived prior to that
interval.
27
A Posteriori Probability
Probability of component failing during t given that
it has survived up to T, Qc(t)
Tt
P(A  B)
P(A|B) =
=
P(B)
 f(t)dt
 f(t)dt
T

T
But, f(t) = l e
 λt
Event
A: failure during t (shaded area)
B: surviving up to T (colored area)
T t

Q (t) =

c
λe-λt dt
- λT
- λ(T  t)
e

e
 λt
T
e


= a priori probability Q(t)
1

- λT
e
λe-λt dt
T
Reliability evaluation in the useful life of a component is, therefore, relatively
simple as exponential distribution is applicable.
In the wear-out phase, conditional probability must be used.
28
Exponential Distribution Applications
Series Systems
1
2
Parallel Systems
1
2
R s  R 1R 2
 e  λ 1t  e  λ 2 t
e
-(λ 1  λ 2 )t
R s  R1  R 2  R1R 2
R S  e λ1t  e λ 2t  e -(λ1  λ 2 )t
λ it

e
-
29
Normal Distribution
• Most widely used probability distribution in statistics.
• Applicable in reliability assessment of components in the
wear-out phase.
• The Normal probability density function f(x) is perfectly
symmetrical about its mean value m.

1
e
f(x) =
 2
(x μ) 2
2σ 2
Mean m: location parameter
Std. Dev (spread about mean) : scale parameter
30
Normal Distribution

Probability value between x1 and x2 (shaded area) =
F(x) =

x2
x1
1
e
 2

x2
x1
f(x)dx
(x μ) 2
2σ 2
dx
Let z = (x – m) / 
1
e
Then f(z) =
2
Probability F(z) =
z2

2

z2
z1
for which m = 0 &   1
1
e
2

z2
2
dz
The area under the normal prob. density function f(z)
between z=0 and z=z1 can obtained from a table.
Table gives the area to the right of the mean, z=0.
31
Normal Distribution: Example
What is the probability of electric lamps failing in the first 700 burning
hours, if the average life is 1000 burning hours with a standard deviation of
200 hours? Assume that the failure density function is a normal
distribution.
m = 1000 hr &  = 200 hr
z = (x – m) / 
For x = 700,
z = (700 – 1000) / 200 = -1.5
From the Table:
F(z) = 0.4332 for z = 1.5
Area up to 700 hours = 0.5 – 0.4332 = 0.0668
which is the probability of failing in the first 700 burning hours.
32
Weibull Distribution
No specific characteristic shape, and can be shaped to represent many
distributions using different values of shaping parameters, b and a.
β.t β-1 ( α )β
Failure Density Function, f(t) = β e
α
t
where, t ≥ 0, b > 0, a > 0

t
R(t )   f (t )dt  exp[ ( ) b ]
a
t
Q(t )  1  R(t )
l (t ) 
f (t )
R(t )
b  1  f (t ) 
1
a
t
1
exp(  )  l (t ) 
b  2  f (t ) 
a
2t
a
2
exp( 
a
t2
a
2
)  l (t ) 
2t
a2
33
Other Distribution
•
•
•
•
The Gamma Distribution
The Rayleigh Distribution
The Lognormal Distribution
The Rectangular (or Uniform) Distribution
34
Related documents