Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Model Validation • RegSEM waveform fit: model 3 + Baffin Bay 6.0 event Model Validation • RegSEM waveform fit: model 3 + Oklahoma 5.6 event 5 x 10 -9 EGAK Z x 10 BORG SFJD HOPS FFC 0 -2 -5 500 2 x 10 1000 -8 -1 Waveform Correlation Z-component MTDJ 1500 500 FFC Z x 10 1000 -8 1500 FFC T 2 1 0 EGAK T 2 0 EGAK -8 0 0 -2 -2 200 400 600 800 1000 x 10 -8 200 400 600 800 1000 x 10 1 1 0 0 -1 -1 200 400 600 800 1000 -8 HOPS T 200 400 600 800 1000 Isotropic Vs • Craton and WUS separated by the Rocky Mountain Front (RMF) • Transition zone depth: slow craton; fast WUS; subducted JdF slab Radial Anisotropy (ξ) • Sutures: VSv>VSh Shear Wave Splitting • Shear wave splits to the fast and slow symmetry axis in the anisotropic medium http://garnero.asu.edu/research_images/images_all.html • Integrated effect of the medium (δt and ψ) • Spread sensitivity along ray path ψ http://garnero.asu.edu/research_images/images_all.html Region Long and Becker, EPSL, 2010 Shear Wave Splitting Shear Wave Splitting Laminated Mantle Don L. Anderson’s nomenclature (2011) Region B: • • • • • Seismic Lid & Low Velocity Layer G-discontinuity L-discontinuity “the most heterogeneous & anisotropic region of the mantel” Anderson, J. of Petrology 2011 Laminated Mantle Local Tomography Crust + Shallow upper Mantle A+B Regional Tomography Upper mantle B+C Global Tomography Full mantle B+C+D and core Anderson, J. of Petrology 2011 Laminated Mantle Mantle discontinuities Region B: Moho; G-discon. (ocean); Hales discon.(continents); L- discon. (220 km); Lithosphere-asthenosphere-boundary Region C: 410-km discon.; 520-km discon.; 660-km discon. Region D: D’’-discon. Regional Tomography Anderson, J. of Petrology 2011 “2-Layer” SKS Model • Lithosphere or asthenosphere origin of the SKS Silver and Chan 1996; Vinnik et al 1989 • Apparent SKS fitting from 3D model • 2-layer model prediction: lithosphere layer and asthenosphere layer “2-Layer” Model at HRV Surface wave and local SKS modeling results (Levin et al. 1999) agree well: Top: east-west direction (N100E) Bottom: plate motion direction (N50E) Western US upper mantle (2010 Model) • Sharp transition from craton to WUS along the RMF • Subducted JdF in the transition zone • Depth dependent anisotropy field explains the “swirl” SKS splitting pattern • Deep anisotropy associated with the stagnant slab? Depth Dependent Anisotropy in WUS • Excellent ray azimuthal coverage from the TA Isotropic Vs • • • • • Fast Craton and its Boundary wrt. the western US Fast Vs 100-200 km under Great Plains Slow Ridges (<100 km) “Neutral” CP in Vs “Neutral” CA Coast Ranges • Slow B&R (~250 km) Isotropic Vs • Fast Vs (250-400 km) under Oregon: Correlating with the subducted JdF slab: van der Lee and Nolet 1997; Burdick et al. 2009; Obrebski et al. 2010; Schmandt and Humphreys 2010 Shallow depth azimuthal anisotropy • Rapid anisotropy pattern change across the RMF • Large amplitude, shallow depth (<150 km), NA/JdF Absolute Plate Motion (APM) parallel Intermediate Depth Azimuthal Anisotropy • Intermediate depth (~150), E-W under B&R, N-S along the RMF, E-W under SRP Deep Azimuthal Anisotropy • Large amplitude, Pacific APM parallel • Deep (>250 km) E-W direction under Washington and Oregon Anisotropy and SKS in WUS • Circular pattern of the SKS splitting (Savage and Sheehan, 2000) Circular pattern of the SKS splitting Schutt and Humphreys, Pure and Applied Geophysics, 1998 Savage and Sheehan, JGR, 2000 Circular pattern of the SKS splitting NA-SWS-1.1, Liu, G-Cubed 2009 Eakin et al., EPSL, 2010 Proposed Interpretations from others • Savage and Sheehan (2000): Active upwelling • Zandt and Humphreys (2008): Passive edge/toroidal flow • West et al (2009): Lithospheric drip + associated mantle flow Savage and Sheehan Models Plume model Model 3 Mantle Upwelling Savage and Sheehan 2000 Zandt and Humphreys model Zandt and Humphreys, Geology, 2008 Slab Rollback + Slab window Passive edge/toroidal Flow West et al. model Center of the circular pattern Low Volcanism Low Heat flow Large Vp variation Small Splitting Time Downward Drip + mantle flow West et al., Nature Geo., 2009 Berkeley Model • Circular Pattern Predicted by 3D model Anisotropy and SKS in WUS • • More than “one-layer” of anisotropic domain is needed. Deep east-west direction beneath Oregon Deep anisotropy & Subducted slab • Fast Vs (250-400 km) under Oregon: Origin of the deep anisotropy Isotropic Vs Origin of the deep anisotropy Anisotropy direction Isotropic Vs Origin of the deep anisotropy Anisotropy direction Isotropic Vs Slab Stagnant Slab • Frozen-in/structural anisotropy in the stagnant/flattened slab Schmid et al., EPSL, 2002; Fukao, Annu. Rev. Earth Planet. Sci. 2009 Depth dependent anisotropy in the WUS 1. Shallower than 150 km NE-SW plate shear 2. At 150 km circular flow due to slab rollback 3. At > 350 km east-west frozen-in/structural anisotropy in the stagnant/flattened slab Pacific Plate Plate shear NA Plate Plate shear Slab Rollback Frozen-in fabric 660 km Stagnant slab Modified from Fukao, Annu. Rev. Earth Planet. Sci. 2009 Global Stagnant Slab in Transition Zone • SEMum2.2 Vs model (French et al 2011 AGU) Future Directions • Higher frequencies: better vertical resolution in the lithosphere • Numerical approach: Spectral Element Method and Adjoint methods • Other regions: East Asia and Middle East • Global detection of the LAB and MLD • Plunging symmetry axis: geodynamic implications • Anisotropy detecting with SKS and receiver functions Laminated Mantle Mantle discontinuities Region B: Moho; G-discon.; Hales discon.; L- discon. (or 220-km); Lithosphere-asthenosphere-boundary (LAB) Region C: 410-km discon.; 520-km discon.; 660-km discon. Region D: D’’-discon. Anderson, J. of Petrology 2011 Region B in the continents Xenolith data suggest depleted (i.e. high velocity) layer goes down to 150-175 km range: Lee et al. 2011; Fischer et al. 2010; Eaton et al. 2008 Fischer et al., Annu. Rev. Earth Planet. Sci. 2010; Lee et al., Annu. Rev. Earth Planet. Sci. 2011 Romanowicz, Science 2009 North American Regional Inversion • Rich tectonic history of the continent • USArray Transportable Array (TA) of EarthScope • Better inversion technique inherited from global inversion NA Continent Formation Hoffman, P. F. (1988) United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia, Annu. Rev. Earth Planet. Sci., 16(1), 543-603 Karlstrom 1988 Condie et al. 1992 Thomas 2006 … Whitmeyer & Karlstrom 2007 http://csmres.jmu.edu/Geollab/Whitmeyer/web/documents/WK2007A2.ppt NA Assembly Processes Whitmeyer & Karlstrom 2007 • Collision of Archean blocks • Accretion of juvenile terranes • Rifting along margins http://csmres.jmu.edu/Geollab/Whitmeyer/web/documents/WK2007A2.ppt NA Continent Assembly & Evolution Whitmeyer & Karlstrom 2007 • Collision of Archean blocks • Accretion of juvenile terranes • Rifting along margins http://csmres.jmu.edu/Geollab/Whitmeyer/web/documents/WK2007A2.ppt NA Continent Assembly & Evolution Whitmeyer & Karlstrom 2007 • Collision of Archean blocks • Accretion of juvenile terranes • Rifting along margins http://csmres.jmu.edu/Geollab/Whitmeyer/web/documents/WK2007A2.ppt USArray of EarthScope: Ubiquitous Coverage of the Continent “A network of seismometers deployed across the U.S. to record earthquakes and provide high-resolution images of the continent's structure and the Earth's deep interior.” http://www.earthscope.org/observatories/usarray NA Station Coverage • IRIS DMC • Canadian Geological Survey; GEOSCOPE • >20years • >2000 Stations • Most dense broadband coverage Anisotropy layering: craton wide feature Continuous lines: % Fo (Mg) from Griffin et al. 2004 Grey: Fo%93 black: Fo%92 Surface wave and receiver function MLD LAB MLD • LAB in the WUS • MLD in the craton • Nearly same depth (gray bar)! LAB or MLD • Kumar et al SRL in press http://www.solid-earth-discuss.net/4/1/2012/sed-4-1-2012-print.pdf VelocityLABmatters MLD Surface wave model Yuan et al 2011 • In WUS: LAB on top of asthenosphere • In Craton: MLD in the middle of high Vs lid • Need to consider velocity!