Download P(A

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ECE 109 Midterm
SOLUTION
Name: _
_ _ _ _ _ _ __
May 8, 2013
PID: - - - - - - - - - - - - - - - -
PROBLEM 1- ECE109 Midterm
1. Let A and B be events that satisfy
P(A)=0.4
P(A U B))= 0.8.
P(AnB))=0.3
Evaluate:
( i) P(B)
( ii) P(Ac)
(iii) P(AnBc)
(iv)P(Acn Be)
An answer not supported by appropriate reasoning will not receive credit.
P(AUB)
(L')
11
o.e
~- t
)
P(A) + PlB)- P(AnB)
=.
u
+-P(S)- o.3
= o-4-
P( A') = l - Pl f\
-:;
f(A') ::
PC A-B)
==
=
0 .7
( ii) P(Ac) =
0 .6
o. 7
o. b
P(AJ- PtAnB)
fl
"
( i) P(B) =
P( B)=
\\
=.. 0.4- o-3
p(A()f3') -
,,
=7'
)
''
P(A')
::: I - o.II t
p(AnB')
tl
II
- I- P( AUB)
l\
(iii)P(AnBc)=
D. I
=7P{Anec)=o.l
SOLUTION
Name: _ _ _ _ _ _ _ _ __
PID: _ _ _ _ _ _ _ _ _ __
PROBLEM 2- ECE109 Midterm
2. A random variable takes on the values {-1, -2, 1, 2} with the probabilities
P(X=-2)=
1
6
,
P(X=-1)=
,
3
1
P(X=1)=
,
3
1
P(X=2)=
1
6
.
2
Evaluate E[X] and E[1/X].
An answer not supported by appropriate reasoning will not receive credit.
k
'X Itt
(
-2.
2
3
-I
I
2
t
-x~
4
--
I
-I
113
I
I
'/ 3
+
-2I
y~,.
I
2.
Pflt-= PCX~Xp)
......
116
'/6
E[Xj :
EL'/tj ~
2
I E[X ]
~
1.
E[l/X] =
0
SOLUTION
Name: _
_ _ _ _ _ _ _ _ __
PID: - - - - - - - - - - - - - - - - - - -
PROBLEM 3- ECE109 Midterm
3. In a course on probability 80% ofthe students passed. Ofthe students who passed, only 1%
did no homework, while 12% of the students who failed did no homework. What is the
probability that a student who did no homework passed the course?
An answer not supported by appropriate reasoning will not receive credit.
PC fGLd) = o.:z_
PC pa.~c;) = o. e
P(v.ob-1w/f-o.,l )=
P( Vl~ t{W / pa~') = o.o1
:. PC po~~)~
~o Hw)
o,l2..
P(t~o HW}
~ p(po~s)
p(
¥\(.)
l-tW)
p(v." Hw} pa~7)
Tot&( I Pro b_ -7 P( Jlo Hw) _ P( vw Hw) p()~'?). p[ po~?)
-r PC VlO HwI fo.,J). f (~()(/)
TN2of'()m
0 . 0 ,)( o.e + o.tzx. o. 2
-_,
IP(passl no
HW)
~
() • ')..
!7
0, 03'2..
Name:
SOLUTION
PROBLEM 4- ECE109 Midterm
4. A game is played as follows: A fair (unbiased) coin is tossed and the player must guess
whether each toss is a head or a tail The game continues as long as the player guesses
correctly; it ends at the first wrong guess. If the game has lasted longer than n plays (tosses),
what is the probability that it will last longer than n + m plays where m 0!: 0.
rJfJ
P(NP >r1) = LP(NP:p)
Jrt.:,..+l
~
{r±)k
~=
,.+,
-
-
:: &)n
P(last longer than n + m playsjlasted longer than n plays)=
(k) ~
ECE 109 Final Exam
SOLUTION
Name: - - - - - - - -
June 12, 2013
PID: _ _ _ _ _ _ __
PROBLEM 1- ECE109 Final Exam
I
I
1. Two events A and B satisfy P (Be A c)= 1. Evaluate P(A B).
An answer not supported by appropriate reasoning will not receive credit.
p ( B' IN)= P(B enA")
;n-1. =) P(B"nA')
P[A')
PC scnAc.)
" P{A')
= 1- P(AU8)
= 1- PCA)-PCB)+P(Ane)
p( ,4 c)
1- P[A)-
=- 1 -
p((i )
PCB)+ P(An9) = t- PCA)
{V
p[A n B) ~ PC 8)
.-
IP(AIB)~ 1
P(A I B)
=-
P{Anr3l = 1.
PC f3 J
Name:
SOLUTION
---------------------
PID: ----------------------
PROBLEM 2- ECE109 Final Exam
2. Let X be a Poisson random variable
CoS nn-
=
1 (
2
;..,n e-A, n = 0,1, ...
P(X=n)= {
n!
0
~
'
Determine the mean and variance of Y = cos(1tX).
An answer not supported by appr:/riate reasoning will not receive credit.
£:: ( C ~S ~>11 J
"-
5_
V\::.0
CC$>11f _} ~-
rll
:: {;-0
V\o ..
e}
f01 -~
n!
- 2,A
e =e
_ t"rt
+€
n)
~ c~~t +(-·)~
=
n<O.
€
t~rr
f-1 )n
Name:
SOLUTION
------------------------
PID: __________________________
PROBLEM 3 - ECE109 Final Exam
3. The random variables X andY have the joint probability
2 n-2
_
_
_
{
P(X- n, Y- m) -
p q
O,
, 1 s m s n -l,n ~ 2
h
.
ot erwzse
Where p + q = 1 and 0 < p < 1. Evaluate the marginal probabilities of X and Y.
You must specify the allowable range of values X andY can have.
An answer not supported by appropriate reasoning will not receive credit.
~
P(A ~ ~ )
'L FtX:= V1) Y= W)) -
"=-
~~
~ p2~~-2.
u
L
~::-ob
P('t:~)
(
=
)
P(X=n)= \.Vl-1
Range ofn =
2..
>
pl.t£IT tt-l.
P1J' ""-1
P(Y=m)=
Range ofm = ~
1
Name:
SOLUTION
-----------------
PID: _ _ _ _ _ _ _ _ __
PROBLEM 4- ECE109 Final Exam
4. The random variables X and Y have the joint density
f
X,Y
(x
,y
)=
{
2,
0,
0 :s y :s x :s l
h
.
ot erwzse.
Evaluate the covariance of X and Y.
I
Cov[X,Y]
~ ~~
SOLUTION
Name: _ _ _ _ _ _ _ _ __
PID: _ _ _ _ _ _ _ _ __
PROBLEM 5- ECE109 Final Exam
5. The random variables X andY are independent with densities
fx(x)
=
A.e-A.x 'x c::: 0
o,
x<O
{
f
_ {
y(y)-
o,
yc:::O
A.y'
0
A.e , y< .
Evaluate the probability density of Z =X+ Y. You must indicate the allowable values of Z
for this density.
An answer not supported by appropriate reasoning will not receive credit.
- 2:+x(~-;kcr>otr
V"tU
?t- ho. v..Q
~-1¥ ~0 0..-A)
u
-g
t-N"'
.[:2[})
l
==
T~VI
~
;~I
r
!It
not ,s-
lf-})f£("'f)dq :
r <o
h r1 ) =
c:>
tfr rt -r»t i )rJ.3
l
11- ~0
u
o.d y'-o
Name:
SOLUTION
--------------------
PID: _ _ _ _ _ _ _ _ _ ___
PROBLEM 6- ECE109 Final Exam
6. The random variable X has the probability density
A.?xe-AX, X~ 0
f (x)- {
x 0
x<O.
'
Evaluate the mean and variance of X. [HINT: You may find the characteristic function
helpful.]
An answer not supported by appropriate reasoning will not receive credit.
~x (1L) "
E[
e'"IAX J = ~.ol~x { lt( :~) t~} r)-.J.
(. ~ )2.. ~I
~}- .i u
IE[X]
~
Var[X]
=
2./>.
2/"' :L-
~---
T-Atrcd U: o Ill
U~v l F" rt~ttcJl as Po.~
t.t,
w~Th
~.::.4--
Name:
SOLUTION
-------------------
PID: - - - - - - - - - - - - - - - - - PROBLEM 7- ECE109 Final Exam
7. The random variables X and A have the joint density
>1
>0
- ae -ax ,x_,a_
f x 'A (x,a) - { 0 , otherwise
For a fixed value of A= <lo• evaluate the probability P(X > Xo IA = <lo), with Xo > 1 and
<lo > 0.
An answer not supported by appropriate reasoning will not receive credit.
DO
P( g: >;t a I Ae (j. rJ) ;;;
~ f.X: IA.~~ IA=do) ol.,x
~(}
{~~A (X; o<o~ _
f,Pr ((/(rJ )
(:)()
F.~~ 11y pex >"1 I.A::,(") ::
0
l o<a ed-o()l.cl~
'J.o
- o<o("Xo-1)
=
e,
'Xo > 1_
Name:
SOLUTION
---------------------
PID: - - - - - - - - - - - - - - - -
PROBLEM 8- ECE109 Final Exam
8. The random variables Xk, k = 1,2, ... are independent with probabilities
P(Xk~n)~ (A.,)"
e-At,n-0,1,...
n!
.[!XII (1<)
Ak = (1 I 2) ·
""
"Joe 0.¥ e-~~
ro
k
and
..
,r..u~
()()
::
.e_!P-( .e i-J -
1)
Evaluate the characteristic function ofXk. Now consider the sum
Evaluate the probabilities P(Z = n). [HINT: You may find the characteristic function useful
in determining P(Z = n).]
~
~(i-)
Jo_::;/
-
_,
i;--:a.--fv--om
u c;~fo [
f" v- ~ vla~'
l
P(Z = n)
=
~
e}
-l
1-\:: O, IJ
• ·'
ECE 109 Midterm
May 7, 2012
Solution
PID:
PROBLEM 1-ECE109 Midterm
1. A communication channel transmits binary signals. The input to this channel is either a zero
or one with the probabilities
P(ln=1)=315
P(ln=0)=215.
During transmission errors may occur. The probability that the output is a "0" when a "1"
has been sent is P( Out = 0 jln = 1) = 1I 3. The probability that the output is a "1" when a "0"
has been sent is P(Out = 1jln = 0) = 1/3.
Evaluate the following:
( i) The probability that the output is a "1."
(ii) The probability that the input is a "1" given that the output is observed to be a "1."
Ananswer not supported by appropriate reasoning will
~ot
receive credit.
:: P( 0 ut- =' }t~ =CJ) P( I ~ o )
1
:::
+ p(Out= tl Lll'o c: t) P(I,,., = I)
-= ( ~) . ( -?) +- ( l - ~) (
--
( i) P( Out= I)=
8/ I J
(ii) P(Jn = ljOut = 1) =
3/+
} )
Solution
Name:~~~~-------
PID:
PROBLEM 2- ECE109 Midterm
2. The spaceS= {1, 2, 3, 4, 5, 6, 7, 8} is an equiprobable space. That is, each elementary
event has probability 1/8. Consider the three events:
C={1,3,5,7}
B={1,3,4,6};
A={1,4,7,8};
Determine if:
( i) A and B are independent
( ii) A and C are independent
(iii) A, B, and Care independent.
An answer not supported by appropriate reasoning will not receive credit.
I
I
PCA)= 2:
AnB =f1)4j
An C =~I)
P(AtlB)::
7i
AnB()C : ~
11
\
PC)= 2
1,
fJ(Anc)=t
P(AnBtlC)= ~
p[A fl B) = Pl A) P( S)
P(AAc) =
(
P(S)= 2
PCA)P[c)
A avrrl g
A
a'Ad
c
a.~
O.V'(>
l
"'ckf-R w~t
-.~dife"'htAt
P(An a!) C)= PCA)Pl~)P[c) A) Bo...,..J c av-p L~J.ep.eVIkll{t-
( i) A and B independent?
( ii) A and C independent?
(iii) A, B, and C independent?
No
No
No
Solution
PID:
PROBLEM 3- ECE109 Midterm
3. A random variable X takes the values {-1, 0, 1, 2} with the probabilities
P(X=-1)=
5
12
,
P(X=0)=
1
4
,
P(X=l)=
1
4
,
P(X=2)=
1
12
.
Evaluate (i) E[X] and (ii) E[X\
An answer not supported by appropriate reasoning will not receive credit.
~,-,1).
P(&:. ::.
~):::.
)
'J4 J
{ '/4 J
jQ,_::.- {
kl.-:o
la.~L
1/tl}
2.
S(XJ _ 2_ ~
k~-l
P( X:=-~)
kz.:::- :z...
= (-t )( fi) t- (o)(~)t{t )(~)~ )(T2)
:.0
~
2
~ ~"l. P{X:~ h) ~ (-1) {, 2 )
la.:.-1
;:: 1
( i)
I
E[X] =
2
(ii) E[X ] =
0
1
":l..L
')
":1..1_)
1....'
+-(o)~(;;
+( 1)~t(2)(
12.)
2
Solution
Name:~~~~~--------------
PID:~-----------------------PROBLEM 4- ECE109 Midterm
4. A sequence of independent trials (success or failure) continues until a success occurs. The
probability of success on a trial is 113. What is the probability that three or more trials are
required before there is a success? That is, if X is the number of trials until a success occurs,
find P(X;;?. 3).
r
An answer not supported by appropriate reasoning will not receive credit.
p :.
'0-.,
P(X = Vl)
V'O
~- 0
1-
p
f
S tiCGQ ~ ~
=· pro b. a f
f ~ ...- I )
"'=
f-a.. I"~
L J2., -·.
V1-l foulvt'€S ~~
Q VI
P(X;;?. 3) =
Ill
t"lfJ
rrL td
SOLUTION
ECE 109 Final Exam.
June 13, 2012
Name: ________________________
PID: ------------------------
PROBLEM 1- ECE109 Final Exam
1. Consider the random variable X which is uniformly distributed on [-A, A]
fx(x) = {
1
--, -AsxsA
2A
.
otherwzse
0
'
Evaluate the probability that
lXI is greater than 1/10 of its maximum value P(IXI >A I 10).
An answer not supported by appropriate reasoning will not receive credit.
p(I X\ >Ajto)
==
5{.z: ( J..r -- dA ) d.;><
y.)
I-xl >Aflo
»
A/to <I'X) ~A
A
J_
It
)c4
Aj1o
-
t(A-
~)=
'1/to
SOLUTION
PID: _ _ _ _ _ _ _ _ _ _ __
PROBLEM 2- ECE109 Final Exam
2. The time to failure of a computer's hard drive is denoted by T. Let P(T > t) =
e -A.t.
What is the probability that T exceeds its mean value P(T > E[T])?
An answer not supported by appropriate reasoning will not receive credit.
Fr(t)::
1- P( T >t)
fT I-t) = J fr{-t) = ~
==
I-
/)-r.t-t:--
7 i- ~ o
>. .e-H) t <:o
0;
tL.O
00
- )A+i>-:Jto
~-
{)()
P( T > ELTJ) = p(T>-})-
_,
- -e
I
P(T > E[T])
~
--1
e
- t.t-
) H? olt
Y;..
SOLUTION
Name: ---------------------PID: ------------------------
PROBLEM 3- ECE109 Final Exam
3. The random variables X andY have the joint probabilities
2 n-2
P(X = n, Y = m) = {
P q
0,
'
1s m <n
.
otherwlse
Evaluate
( i) P(Y = m)
( ii) E[Y]
p
( i) P(Y = m) =
( ii) E[Y] =
ljf
{
Pcu-WI-J)
0
)
W\ ~I
oi'-~11' vvt~
O<p<l and p+q=l.
SOLUTION
PID: _ _ _ _ _ _ _ _ _ _ __
PROBLEM 4- ECE109 Final Exam
4. The cumulative joint distribution of the random variables X andY is given by
F
(
X,Y
x,y~o
)- { 1-e-ax-e-aY+e-a(x+y)
x, Y o,
'
otherwise
with a> 0. Are X andY independent?
An answer not supported by appropriate reasoning will not receive credit.
P
i:=
'i(<t) -:: '~J'~(<IJ;"j)
fx- (I') f<;?:l"'f)
"t
=
,_ear )
{
=
C)
-!lll<) (I --ioY)JJ
e-ar
-t--€
-a~
{
}
I --€
0
-C<('tf;)
)
)
C)
t
(A.V\,)
I
X and Y independent?
A
fA.VIJ
F.rC~<J F~ L}')
:l ().'(\(! t'Vt.ckp.e,vtthHt
=.
No
f
hP V'v.ltS-{>
C l..ea r-ly
fx> T C~<' ~)
:tJ
~0
SOLUTION
PID:
PROBLEM 5- ECE109 Final Exam
5. The random variables X andY are independent with densities
fx(x) = { ;..,e-AX' X 2: 0
0,
x<O
f ( ) = { f-lC -f-ly' y 2: 0
YY
0,
y<O.
Evaluate P(X > Y).
An answer not supported by appropriate reasoning will not receive credi
PC X > )'")
IP(X>Y)~
1-
=
~
"-
SOLUTION
PID:
~-----~-~·
-~--·~~
---
PROBLEM 6- ECE109 Final Exam
6. The random variables X and Yare independent and uniformly distributed on [0, 1]
fx(x) = { 1, 0 s x s 1
0, otherwise
Evaluate the density ofZ =X- Y.
fy(y) = { 1, 0 s y s 1
0, otherwise.
-l~~L./
c/Dcvrlv
-c.
I
An answer not supported by appropriate reasoning will not receive credit.
V"VSf
sa:h~ f.y
(J
~l
St wr,ltu~.er;~~
f= I
.
().'otJ ()f1
-
+-r6'
f:
~~-
t-1]1 )-l!:i61
0)
oThav-'wt ¥
SOLUTION
PID:
PROBLEM 7- ECE109 Final Exam
7. The random variables A and B are independent with densities
fB(f3) = { 3 I {34, f3 t:d
0
otherwise.
fA( a) = { 1/3, 0 s as 3
0,
otherwise
'
Consider the new random variables X= A+ BandY= A- B. Evaluate the covariance of X
andY.
An answer not supported by appropriate reasoning will not receive credit.
Cov (K")
~J::
E[XYJ - ,;:Lg-J EL~J
= (Are)(A-8)] -(~lAJ+ELBJ)(£Lil]-ELt3])
El
- E L A:1 - t L8 :2J - ( El PU)
2
+{EL8J)
2.
_ V(). rLAJ - VetrLf?J
s [Aj =
3
H-
D<
do<=
i
()
3
E:L A'J=
~ Vu-r[A] - El Pl J -(ELAJ)
2
-z
J?x'do<-
3
="2f
00
()(()
~ [ 13] = ) 3 f~ =-%::I
V o.rlBJ
I
Cov[X,
Y]~
(34-
ElB?J = f 3{3~ :::3
= E LtrzJ- ( £L BJ)~ =-
Q
=3
I
t
(3
Name:
SOLUTION
---------------------
PID: _____________________
PROBLEM 8- ECE109 Final Exam
8. Let X be a Binomial random variable
_ O, 1, ... , n,
_ m ) -_ ( m
n ) p m( 1-p)n-m , mP (X-
O<p<1.
( i) Obtain a closed-form expression for the characteristic function <l>x(u).
( ii) Evaluate the mean and variance ofX.
An answer not supported by appropriate reasoning will not receive credit.
h
-
~g:(-z-t):::. £l.fl~uXJ = 2_ --e"u~P(X== WI)
=
{
(
W\:::
B
1VI
OWltC:d
~)
WI
(
::.Q
p~;~)~Ct-P)V\-W7
0
( '- p +-- r-e'/Yl
Svm
f-V'o t1, , ' I) ~i.e ~ v~l
11
fo r»tJIO'~
-
Vl
t:- IK'J =-
p
(f:Ji-,~l"Jtl/wo =ft/( i'..p{) (l-pt- r/) .,_,)
r
7A,::; iJ
= V1p
+VI(Vt-l)p
"\j_·f( ~
2..
(ii) E[X]=
(1- P -t-p-e~u)VJ
Vl
f
Var[X]=
>'
{•-•)fe''")(i-p~p e~)
u-=.o
VaV'[KJ ~ £:L%~-(f:liJ)2_
(i) <I>x(u)=
2
V),
P( [- p)
Related documents