Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ECE 109 Midterm SOLUTION Name: _ _ _ _ _ _ _ __ May 8, 2013 PID: - - - - - - - - - - - - - - - - PROBLEM 1- ECE109 Midterm 1. Let A and B be events that satisfy P(A)=0.4 P(A U B))= 0.8. P(AnB))=0.3 Evaluate: ( i) P(B) ( ii) P(Ac) (iii) P(AnBc) (iv)P(Acn Be) An answer not supported by appropriate reasoning will not receive credit. P(AUB) (L') 11 o.e ~- t ) P(A) + PlB)- P(AnB) =. u +-P(S)- o.3 = o-4- P( A') = l - Pl f\ -:; f(A') :: PC A-B) == = 0 .7 ( ii) P(Ac) = 0 .6 o. 7 o. b P(AJ- PtAnB) fl " ( i) P(B) = P( B)= \\ =.. 0.4- o-3 p(A()f3') - ,, =7' ) '' P(A') ::: I - o.II t p(AnB') tl II - I- P( AUB) l\ (iii)P(AnBc)= D. I =7P{Anec)=o.l SOLUTION Name: _ _ _ _ _ _ _ _ __ PID: _ _ _ _ _ _ _ _ _ __ PROBLEM 2- ECE109 Midterm 2. A random variable takes on the values {-1, -2, 1, 2} with the probabilities P(X=-2)= 1 6 , P(X=-1)= , 3 1 P(X=1)= , 3 1 P(X=2)= 1 6 . 2 Evaluate E[X] and E[1/X]. An answer not supported by appropriate reasoning will not receive credit. k 'X Itt ( -2. 2 3 -I I 2 t -x~ 4 -- I -I 113 I I '/ 3 + -2I y~,. I 2. Pflt-= PCX~Xp) ...... 116 '/6 E[Xj : EL'/tj ~ 2 I E[X ] ~ 1. E[l/X] = 0 SOLUTION Name: _ _ _ _ _ _ _ _ _ __ PID: - - - - - - - - - - - - - - - - - - - PROBLEM 3- ECE109 Midterm 3. In a course on probability 80% ofthe students passed. Ofthe students who passed, only 1% did no homework, while 12% of the students who failed did no homework. What is the probability that a student who did no homework passed the course? An answer not supported by appropriate reasoning will not receive credit. PC fGLd) = o.:z_ PC pa.~c;) = o. e P(v.ob-1w/f-o.,l )= P( Vl~ t{W / pa~') = o.o1 :. PC po~~)~ ~o Hw) o,l2.. P(t~o HW} ~ p(po~s) p( ¥\(.) l-tW) p(v." Hw} pa~7) Tot&( I Pro b_ -7 P( Jlo Hw) _ P( vw Hw) p()~'?). p[ po~?) -r PC VlO HwI fo.,J). f (~()(/) TN2of'()m 0 . 0 ,)( o.e + o.tzx. o. 2 -_, IP(passl no HW) ~ () • ').. !7 0, 03'2.. Name: SOLUTION PROBLEM 4- ECE109 Midterm 4. A game is played as follows: A fair (unbiased) coin is tossed and the player must guess whether each toss is a head or a tail The game continues as long as the player guesses correctly; it ends at the first wrong guess. If the game has lasted longer than n plays (tosses), what is the probability that it will last longer than n + m plays where m 0!: 0. rJfJ P(NP >r1) = LP(NP:p) Jrt.:,..+l ~ {r±)k ~= ,.+, - - :: &)n P(last longer than n + m playsjlasted longer than n plays)= (k) ~ ECE 109 Final Exam SOLUTION Name: - - - - - - - - June 12, 2013 PID: _ _ _ _ _ _ __ PROBLEM 1- ECE109 Final Exam I I 1. Two events A and B satisfy P (Be A c)= 1. Evaluate P(A B). An answer not supported by appropriate reasoning will not receive credit. p ( B' IN)= P(B enA") ;n-1. =) P(B"nA') P[A') PC scnAc.) " P{A') = 1- P(AU8) = 1- PCA)-PCB)+P(Ane) p( ,4 c) 1- P[A)- =- 1 - p((i ) PCB)+ P(An9) = t- PCA) {V p[A n B) ~ PC 8) .- IP(AIB)~ 1 P(A I B) =- P{Anr3l = 1. PC f3 J Name: SOLUTION --------------------- PID: ---------------------- PROBLEM 2- ECE109 Final Exam 2. Let X be a Poisson random variable CoS nn- = 1 ( 2 ;..,n e-A, n = 0,1, ... P(X=n)= { n! 0 ~ ' Determine the mean and variance of Y = cos(1tX). An answer not supported by appr:/riate reasoning will not receive credit. £:: ( C ~S ~>11 J "- 5_ V\::.0 CC$>11f _} ~- rll :: {;-0 V\o .. e} f01 -~ n! - 2,A e =e _ t"rt +€ n) ~ c~~t +(-·)~ = n<O. € t~rr f-1 )n Name: SOLUTION ------------------------ PID: __________________________ PROBLEM 3 - ECE109 Final Exam 3. The random variables X andY have the joint probability 2 n-2 _ _ _ { P(X- n, Y- m) - p q O, , 1 s m s n -l,n ~ 2 h . ot erwzse Where p + q = 1 and 0 < p < 1. Evaluate the marginal probabilities of X and Y. You must specify the allowable range of values X andY can have. An answer not supported by appropriate reasoning will not receive credit. ~ P(A ~ ~ ) 'L FtX:= V1) Y= W)) - "=- ~~ ~ p2~~-2. u L ~::-ob P('t:~) ( = ) P(X=n)= \.Vl-1 Range ofn = 2.. > pl.t£IT tt-l. P1J' ""-1 P(Y=m)= Range ofm = ~ 1 Name: SOLUTION ----------------- PID: _ _ _ _ _ _ _ _ __ PROBLEM 4- ECE109 Final Exam 4. The random variables X and Y have the joint density f X,Y (x ,y )= { 2, 0, 0 :s y :s x :s l h . ot erwzse. Evaluate the covariance of X and Y. I Cov[X,Y] ~ ~~ SOLUTION Name: _ _ _ _ _ _ _ _ __ PID: _ _ _ _ _ _ _ _ __ PROBLEM 5- ECE109 Final Exam 5. The random variables X andY are independent with densities fx(x) = A.e-A.x 'x c::: 0 o, x<O { f _ { y(y)- o, yc:::O A.y' 0 A.e , y< . Evaluate the probability density of Z =X+ Y. You must indicate the allowable values of Z for this density. An answer not supported by appropriate reasoning will not receive credit. - 2:+x(~-;kcr>otr V"tU ?t- ho. v..Q ~-1¥ ~0 0..-A) u -g t-N"' .[:2[}) l == T~VI ~ ;~I r !It not ,s- lf-})f£("'f)dq : r <o h r1 ) = c:> tfr rt -r»t i )rJ.3 l 11- ~0 u o.d y'-o Name: SOLUTION -------------------- PID: _ _ _ _ _ _ _ _ _ ___ PROBLEM 6- ECE109 Final Exam 6. The random variable X has the probability density A.?xe-AX, X~ 0 f (x)- { x 0 x<O. ' Evaluate the mean and variance of X. [HINT: You may find the characteristic function helpful.] An answer not supported by appropriate reasoning will not receive credit. ~x (1L) " E[ e'"IAX J = ~.ol~x { lt( :~) t~} r)-.J. (. ~ )2.. ~I ~}- .i u IE[X] ~ Var[X] = 2./>. 2/"' :L- ~--- T-Atrcd U: o Ill U~v l F" rt~ttcJl as Po.~ t.t, w~Th ~.::.4-- Name: SOLUTION ------------------- PID: - - - - - - - - - - - - - - - - - PROBLEM 7- ECE109 Final Exam 7. The random variables X and A have the joint density >1 >0 - ae -ax ,x_,a_ f x 'A (x,a) - { 0 , otherwise For a fixed value of A= <lo• evaluate the probability P(X > Xo IA = <lo), with Xo > 1 and <lo > 0. An answer not supported by appropriate reasoning will not receive credit. DO P( g: >;t a I Ae (j. rJ) ;;; ~ f.X: IA.~~ IA=do) ol.,x ~(} {~~A (X; o<o~ _ f,Pr ((/(rJ ) (:)() F.~~ 11y pex >"1 I.A::,(") :: 0 l o<a ed-o()l.cl~ 'J.o - o<o("Xo-1) = e, 'Xo > 1_ Name: SOLUTION --------------------- PID: - - - - - - - - - - - - - - - - PROBLEM 8- ECE109 Final Exam 8. The random variables Xk, k = 1,2, ... are independent with probabilities P(Xk~n)~ (A.,)" e-At,n-0,1,... n! .[!XII (1<) Ak = (1 I 2) · "" "Joe 0.¥ e-~~ ro k and .. ,r..u~ ()() :: .e_!P-( .e i-J - 1) Evaluate the characteristic function ofXk. Now consider the sum Evaluate the probabilities P(Z = n). [HINT: You may find the characteristic function useful in determining P(Z = n).] ~ ~(i-) Jo_::;/ - _, i;--:a.--fv--om u c;~fo [ f" v- ~ vla~' l P(Z = n) = ~ e} -l 1-\:: O, IJ • ·' ECE 109 Midterm May 7, 2012 Solution PID: PROBLEM 1-ECE109 Midterm 1. A communication channel transmits binary signals. The input to this channel is either a zero or one with the probabilities P(ln=1)=315 P(ln=0)=215. During transmission errors may occur. The probability that the output is a "0" when a "1" has been sent is P( Out = 0 jln = 1) = 1I 3. The probability that the output is a "1" when a "0" has been sent is P(Out = 1jln = 0) = 1/3. Evaluate the following: ( i) The probability that the output is a "1." (ii) The probability that the input is a "1" given that the output is observed to be a "1." Ananswer not supported by appropriate reasoning will ~ot receive credit. :: P( 0 ut- =' }t~ =CJ) P( I ~ o ) 1 ::: + p(Out= tl Lll'o c: t) P(I,,., = I) -= ( ~) . ( -?) +- ( l - ~) ( -- ( i) P( Out= I)= 8/ I J (ii) P(Jn = ljOut = 1) = 3/+ } ) Solution Name:~~~~------- PID: PROBLEM 2- ECE109 Midterm 2. The spaceS= {1, 2, 3, 4, 5, 6, 7, 8} is an equiprobable space. That is, each elementary event has probability 1/8. Consider the three events: C={1,3,5,7} B={1,3,4,6}; A={1,4,7,8}; Determine if: ( i) A and B are independent ( ii) A and C are independent (iii) A, B, and Care independent. An answer not supported by appropriate reasoning will not receive credit. I I PCA)= 2: AnB =f1)4j An C =~I) P(AtlB):: 7i AnB()C : ~ 11 \ PC)= 2 1, fJ(Anc)=t P(AnBtlC)= ~ p[A fl B) = Pl A) P( S) P(AAc) = ( P(S)= 2 PCA)P[c) A avrrl g A a'Ad c a.~ O.V'(> l "'ckf-R w~t -.~dife"'htAt P(An a!) C)= PCA)Pl~)P[c) A) Bo...,..J c av-p L~J.ep.eVIkll{t- ( i) A and B independent? ( ii) A and C independent? (iii) A, B, and C independent? No No No Solution PID: PROBLEM 3- ECE109 Midterm 3. A random variable X takes the values {-1, 0, 1, 2} with the probabilities P(X=-1)= 5 12 , P(X=0)= 1 4 , P(X=l)= 1 4 , P(X=2)= 1 12 . Evaluate (i) E[X] and (ii) E[X\ An answer not supported by appropriate reasoning will not receive credit. ~,-,1). P(&:. ::. ~):::. ) 'J4 J { '/4 J jQ,_::.- { kl.-:o la.~L 1/tl} 2. S(XJ _ 2_ ~ k~-l P( X:=-~) kz.:::- :z... = (-t )( fi) t- (o)(~)t{t )(~)~ )(T2) :.0 ~ 2 ~ ~"l. P{X:~ h) ~ (-1) {, 2 ) la.:.-1 ;:: 1 ( i) I E[X] = 2 (ii) E[X ] = 0 1 ":l..L ') ":1..1_) 1....' +-(o)~(;; +( 1)~t(2)( 12.) 2 Solution Name:~~~~~-------------- PID:~-----------------------PROBLEM 4- ECE109 Midterm 4. A sequence of independent trials (success or failure) continues until a success occurs. The probability of success on a trial is 113. What is the probability that three or more trials are required before there is a success? That is, if X is the number of trials until a success occurs, find P(X;;?. 3). r An answer not supported by appropriate reasoning will not receive credit. p :. '0-., P(X = Vl) V'O ~- 0 1- p f S tiCGQ ~ ~ =· pro b. a f f ~ ...- I ) "'= f-a.. I"~ L J2., -·. V1-l foulvt'€S ~~ Q VI P(X;;?. 3) = Ill t"lfJ rrL td SOLUTION ECE 109 Final Exam. June 13, 2012 Name: ________________________ PID: ------------------------ PROBLEM 1- ECE109 Final Exam 1. Consider the random variable X which is uniformly distributed on [-A, A] fx(x) = { 1 --, -AsxsA 2A . otherwzse 0 ' Evaluate the probability that lXI is greater than 1/10 of its maximum value P(IXI >A I 10). An answer not supported by appropriate reasoning will not receive credit. p(I X\ >Ajto) == 5{.z: ( J..r -- dA ) d.;>< y.) I-xl >Aflo » A/to <I'X) ~A A J_ It )c4 Aj1o - t(A- ~)= '1/to SOLUTION PID: _ _ _ _ _ _ _ _ _ _ __ PROBLEM 2- ECE109 Final Exam 2. The time to failure of a computer's hard drive is denoted by T. Let P(T > t) = e -A.t. What is the probability that T exceeds its mean value P(T > E[T])? An answer not supported by appropriate reasoning will not receive credit. Fr(t):: 1- P( T >t) fT I-t) = J fr{-t) = ~ == I- /)-r.t-t:-- 7 i- ~ o >. .e-H) t <:o 0; tL.O 00 - )A+i>-:Jto ~- {)() P( T > ELTJ) = p(T>-})- _, - -e I P(T > E[T]) ~ --1 e - t.t- ) H? olt Y;.. SOLUTION Name: ---------------------PID: ------------------------ PROBLEM 3- ECE109 Final Exam 3. The random variables X andY have the joint probabilities 2 n-2 P(X = n, Y = m) = { P q 0, ' 1s m <n . otherwlse Evaluate ( i) P(Y = m) ( ii) E[Y] p ( i) P(Y = m) = ( ii) E[Y] = ljf { Pcu-WI-J) 0 ) W\ ~I oi'-~11' vvt~ O<p<l and p+q=l. SOLUTION PID: _ _ _ _ _ _ _ _ _ _ __ PROBLEM 4- ECE109 Final Exam 4. The cumulative joint distribution of the random variables X andY is given by F ( X,Y x,y~o )- { 1-e-ax-e-aY+e-a(x+y) x, Y o, ' otherwise with a> 0. Are X andY independent? An answer not supported by appropriate reasoning will not receive credit. P i:= 'i(<t) -:: '~J'~(<IJ;"j) fx- (I') f<;?:l"'f) "t = ,_ear ) { = C) -!lll<) (I --ioY)JJ e-ar -t--€ -a~ { } I --€ 0 -C<('tf;) ) ) C) t (A.V\,) I X and Y independent? A fA.VIJ F.rC~<J F~ L}') :l ().'(\(! t'Vt.ckp.e,vtthHt =. No f hP V'v.ltS-{> C l..ea r-ly fx> T C~<' ~) :tJ ~0 SOLUTION PID: PROBLEM 5- ECE109 Final Exam 5. The random variables X andY are independent with densities fx(x) = { ;..,e-AX' X 2: 0 0, x<O f ( ) = { f-lC -f-ly' y 2: 0 YY 0, y<O. Evaluate P(X > Y). An answer not supported by appropriate reasoning will not receive credi PC X > )'") IP(X>Y)~ 1- = ~ "- SOLUTION PID: ~-----~-~· -~--·~~ --- PROBLEM 6- ECE109 Final Exam 6. The random variables X and Yare independent and uniformly distributed on [0, 1] fx(x) = { 1, 0 s x s 1 0, otherwise Evaluate the density ofZ =X- Y. fy(y) = { 1, 0 s y s 1 0, otherwise. -l~~L./ c/Dcvrlv -c. I An answer not supported by appropriate reasoning will not receive credit. V"VSf sa:h~ f.y (J ~l St wr,ltu~.er;~~ f= I . ().'otJ ()f1 - +-r6' f: ~~- t-1]1 )-l!:i61 0) oThav-'wt ¥ SOLUTION PID: PROBLEM 7- ECE109 Final Exam 7. The random variables A and B are independent with densities fB(f3) = { 3 I {34, f3 t:d 0 otherwise. fA( a) = { 1/3, 0 s as 3 0, otherwise ' Consider the new random variables X= A+ BandY= A- B. Evaluate the covariance of X andY. An answer not supported by appropriate reasoning will not receive credit. Cov (K") ~J:: E[XYJ - ,;:Lg-J EL~J = (Are)(A-8)] -(~lAJ+ELBJ)(£Lil]-ELt3]) El - E L A:1 - t L8 :2J - ( El PU) 2 +{EL8J) 2. _ V(). rLAJ - VetrLf?J s [Aj = 3 H- D< do<= i () 3 E:L A'J= ~ Vu-r[A] - El Pl J -(ELAJ) 2 -z J?x'do<- 3 ="2f 00 ()(() ~ [ 13] = ) 3 f~ =-%::I V o.rlBJ I Cov[X, Y]~ (34- ElB?J = f 3{3~ :::3 = E LtrzJ- ( £L BJ)~ =- Q =3 I t (3 Name: SOLUTION --------------------- PID: _____________________ PROBLEM 8- ECE109 Final Exam 8. Let X be a Binomial random variable _ O, 1, ... , n, _ m ) -_ ( m n ) p m( 1-p)n-m , mP (X- O<p<1. ( i) Obtain a closed-form expression for the characteristic function <l>x(u). ( ii) Evaluate the mean and variance ofX. An answer not supported by appropriate reasoning will not receive credit. h - ~g:(-z-t):::. £l.fl~uXJ = 2_ --e"u~P(X== WI) = { ( W\::: B 1VI OWltC:d ~) WI ( ::.Q p~;~)~Ct-P)V\-W7 0 ( '- p +-- r-e'/Yl Svm f-V'o t1, , ' I) ~i.e ~ v~l 11 fo r»tJIO'~ - Vl t:- IK'J =- p (f:Ji-,~l"Jtl/wo =ft/( i'..p{) (l-pt- r/) .,_,) r 7A,::; iJ = V1p +VI(Vt-l)p "\j_·f( ~ 2.. (ii) E[X]= (1- P -t-p-e~u)VJ Vl f Var[X]= >' {•-•)fe''")(i-p~p e~) u-=.o VaV'[KJ ~ £:L%~-(f:liJ)2_ (i) <I>x(u)= 2 V), P( [- p)