Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lesson 78 – Polar Form of Complex Numbers HL2 Math - Santowski 11/16/15 Relationships Among x, y, r, and x r cos y r sin r x2 y2 y tan , if x 0 x 11/16/15 Polar Form of a Complex Number The expression r (cos i sin ) is called the polar form (or trigonometric form) of the complex number x + yi. The expression cos + i sin is sometimes abbreviated cis . Using this notation r (cos i sin ) is written r cis . 11/16/15 Example Express 2(cos 120 + i sin 120) in rectangular form. 11/16/15 Example Express 2(cos 120 + i sin 120) in rectangular form. 1 cos120 2 3 sin120 2 1 3 2(cos120 i sin120 ) 2 , i 2 2 1 i 3 Notice that the real part is negative and the imaginary part is positive, this is consistent with 120 degrees being a quadrant II angle. 11/16/15 Converting from Rectangular to Polar Form Step 1 Sketch a graph of the number x + yi in the complex plane. Step 2 Find r by using the equation r x 2 y 2 . Step 3 Find by using the equation tan xy , x 0 choosing the quadrant indicated in Step 1. 11/16/15 Example Example: Find trigonometric notation for 1 i. 11/16/15 Example Example: Find trigonometric notation for 1 i. First, find r. r a b 2 1 2 sin 2 2 5 4 2 r (1) 2 (1) 2 r 2 Thus, 1 i 2 cos 1 2 cos 2 2 5 5 5 i sin or 2 cis 4 4 4 11/16/15 Product of Complex Numbers Find the product of 4(cos50 i sin 50 ) and 2(cos10 i sin10 ). 11/16/15 Product Theorem If r1 cos1 i sin 1 and r2 cos 2 i sin 2 , are any two complex numbers, then r1 cos1 i sin 1 r2 cos 2 i sin 2 r1r2 cos 1 2 i sin 1 2 . In compact form, this is written r1 cis 1 r2 cis 2 r1r2 cis 1 2 . 11/16/15 Example: Product Find the product of 4(cos50 i sin 50 ) and 2(cos10 i sin10 ). 11/16/15 Example: Product Find the product of 4(cos50 i sin 50 ) and 2(cos10 i sin10 ). 4(cos50 isin50 ) 2(cos10 isin10 ) 4 2 cos(50 10 ) isin(50 10 ) 8(cos60 isin 60 ) 1 3 8 i 2 2 4 4i 3 11/16/15 Quotient of Complex Numbers Find the quotient. 16(cos 70 i sin 70 ) and 4(cos 40 i sin 40 ) 11/16/15 Quotient Theorem If r1 cos1 i sin 1 and r2 cos 2 i sin 2 are any two complex numbers, where r2 cos 2 i sin 2 , r2 0, then r1 cos1 i sin 1 r2 cos 2 i sin 2 r1 cos 1 2 i sin 1 2 . r2 In compact form, this is written r1 cis 1 r1 cis 1 2 r2 cis 2 r2 11/16/15 Example: Quotient Find the quotient. 16(cos 70 i sin 70 ) and 4(cos 40 i sin 40 ) 11/16/15 Example: Quotient Find the quotient. 16(cos 70 i sin 70 ) and 4(cos 40 i sin 40 ) 16(cos70 isin 70 ) 16 = cos(70 40 ) isin(70 40 ) 4 4(cos 40 isin 40 ) 4cos30 isin 30 3 1 4 i 2 2 2 3 2i 11/16/15 If z 4 cos 40 o isin40 o and w 6 cos120 o isin120 o , find: (a) zw (b) z w If z 4 cos40 isin40 and w 6 cos120 isin120 , o o find: (a) zw o (b) z w o zw 4 cos 40 i sin 40 6 cos120 i sin120 4 6 cos 40 120 i sin 40 120 multiply the moduli add the arguments (the i sine term will have same argument) 24 cos160 i sin160 24 0 .93969 0 .34202 i 22 . 55 8 . 21i If you want the answer in rectangular coordinates simply compute the trig functions and multiply the 24 through. 4 cos 40 isin40 z w 6 cos120 o isin120 o o o 4 o o o o cos 40 120 isin 40 120 6 divide the moduli subtract the arguments 2 cos 80o isin 80o 3 2 o o cos 280 isin 280 3 In rectangular coordinates: In polar form we want an angle between 0 and 360° so add 360° to the -80° 2 0 .1736 0 .9848i 0 .12 0 .66i 3 divide Example z1 z2 Where z1 3 2 3 2i 6 cos 45 i sin 45 z2 2 3 2i 4 cos 30 i sin 30 Rectangular form Trig form divide Example z1 z2 Where z1 3 2 3 2i 6 cos 45 i sin 45 z2 2 3 2i 4 cos 30 i sin 30 Rectangular form Trig form 3 2 3 2i 2 3 2i 6 cos 45 i sin 45 4 cos30 i sin 30 3 2 3 2i 2 3 2i 2 3 2 i 2 3 2 i 6 6 6 2i 6 6i 6 2i 2 12 4i 2 6 6 6 2i 6 6i 6 2 12 4 6 6 6 2 16 6 6 cos 45 30 i sin 45 30 4 3 cos15 i sin15 2 6 6 2 i 16 6 6 6 2 1 16 15 tan 6 6 6 2 216 72 12 72 216 72 12 72 16 r 2 6 6 6 2 6 6 6 2 r 16 16 256 r 576 9 3 256 4 2 2 DeMoivre’s Theorem Taking Complex Numbers to Higher Powers z r cos i sin z 2 ?? r cos i sin r cos i sin r cos 2i cos sin i sin 2 2 2 r 2 cos 2 sin 2 i 2sin cos r 2 cos 2 i sin 2 z 2 r 2 cos 2 i sin 2 z r cos i sin z 2 r cos i sin r cos i sin r cos 2i cos sin i sin 2 2 2 r 2 cos 2 sin 2 i 2sin cos r 2 cos 2 i sin 2 z 2 r 2 cos 2 i sin 2 Nice What about 3 z ? z r cos i sin , z 2 r 2 cos 2 i sin 2 z 3 z z 2 r 2 cos 2 i sin 2 r cos i sin r 2 cos 2 2i cos sin i 2 sin r cos sin i 2sin cos 2 2 2 r cos 2 i sin 2 2 z 2 r 2 cos 2 i sin 2 r 3 cos 2 i sin 2 cos i sin r 3 cos 2 cos i cos 2 sin i sin 2 cos i 2 sin 2 sin r 3 cos 2 cos sin 2 sin i cos 2 sin i sin 2 cos r 3 cos 2 cos sin 2 sin i sin 2 cos cos 2 sin r 3 cos 2 i sin 2 r 3 cos3 i sin 3 z 3 r 3 cos3 i sin 3 Hooray!! We saw… z 2 r 2 cos 2 i sin 2 and z 3 r 3 cos3 i sin 3 Similarly…. z 4 r 4 cos 4 i sin 4 z 5 r 5 cos5 i sin 5 z n r n cos n i sin n We saw… z 2 r 2 cos 2 i sin 2 and z 3 r 3 cos3 i sin 3 Similarly…. 4 4 z r cos 4 i sin 4 z 5 r 5 cos5 i sin 5 z n r n cos n i sin n Hooray DeMoivre and his incredible theorem Powers of Complex Numbers This is horrible in rectangular form. a bi a bi a bi a bi ... a bi n The best way to expand one of these is using Pascal’s triangle and binomial expansion. You’d need to use an i-chart to simplify. It’s much nicer in trig form. You just raise the r to the power and multiply theta by the exponent. z r cos i sin z n r n cos n i sin n Example z 5 cos 20 i sin 20 z 3 53 cos 3 20 i sin 3 20 z 3 125 cos 60 i sin 60 De Moivre’s Theorem If r1 cos1 i sin 1 is a complex number, and if n is any real number, then r cos1 i sin 1 r n cos n i sin n . n In compact form, this is written n r cis r cis n . n 11/16/15 Example: Find (1 i)5 and express the result in rectangular form. 11/16/15 Example: Find (1 i)5 and express the result in rectangular form. First, find trigonometric notation for 1 i 1 i 2 cos 225 i sin 225 Theorem 1 i 5 2 cos 225 i sin 225 5 2 cos(5 225 ) i sin(5 225 ) 5 4 2 cos1125 i sin1125 2 2 4 2 i 2 2 4 4i 11/16/15 Example Let z 1. i Find z 10 11/16/15 Example 11/16/15 Further Examples 11/16/15 nth Roots For a positive integer n, the complex number a + bi is an nth root of the complex number x + yi if a bi n x yi. 11/16/15 nth Root Theorem If n is any positive integer, r is a positive real number, and is in degrees, then the nonzero complex number r(cos + i sin ) has exactly n distinct nth roots, given by where n r cos i sin or 360 k n n r cis , 360 k or = , k 0,1,2,..., n 1. n n 11/16/15 Example: Square Roots Find the square roots of 1 3i 11/16/15 Example: Square Roots Find the square roots of 1 Polar notation: 1 3i 3i 2cos60 isin60 60 60 360 360 2 cos60 isin60 2 cos k isin k 2 2 2 2 2 cos 30 k 180 isin 30 k 180 1 2 1 2 For k = 0, root is For k = 1, root is 2 cos 210 isin 210 2 cos30 isin30 11/16/15 Example: Fourth Root Find all fourth roots of 8 8i 3. 11/16/15 Example: Fourth Root Find all fourth roots of 8 8i rectangular form. Write in polar form. 3. Write the roots in 8 8i 3 16 cis 120 Here r = 16 and = 120. The fourth roots of this number have absolute value 4 16 2. 120 360 k 30 90 k 4 4 11/16/15 Example: Fourth Root continued There are four fourth roots, let k = 0, 1, 2 and 3. k 0 30 90 0 30 k 1 30 90 1 120 k 2 30 90 2 210 k 3 30 90 3 300 Using these angles, the fourth roots are 2 cis 30 , 2 cis 120 , 2 cis 210 , 2 cis 300 11/16/15 Example: Fourth Root continued Written in rectangular form 3i 1 i 3 3 i 1 i 3 The graphs of the roots are all on a circle that has center at the origin and radius 2. 11/16/15 Find the complex fifth roots of 11/16/15 Find the complex fifth roots of The five complex roots are: for k = 0, 1, 2, 3,4 . 11/16/15 11/16/15 Example Find all the complex fifth roots of 32 11/16/15 32 0i 2 2 32 0 r a b 2 tan 1 2 0 32 tan 1 0 322 32 0 32 cos 0 i sin 0 5 0 360k 0 360k 32 cos i sin 5 5 5 5 2 cos 72k i sin 72k 11/16/15 2 cos 72k i sin 72k k 0 2 cos 0 i sin 0 2 1 0i k 1 2 cos 72 i sin 72 .62 1.90i k 2 2 cos 144 i sin 144 1.62 1.18i k 3 2 cos 216 i sin 216 1.62 1.18i k 4 2 cos 288 i sin 288 .62 1.90i 2 11/16/15 Example Find 3 i You may assume it is the principle root you are seeking unless specifically stated otherwise. First express i as a complex number in standard form. Then change to polar form b tan a 1 tan 0 r a 2 b2 1 tan 0 1 0i r 1 90 1 cos 90 i sin 90 11/16/15 1 cos 90 i sin 90 Since we are looking for the cube root, use DeMoivre’s Theorem 1 and raise it to the power 3 1 1 1 cos 90 i sin 90 3 3 1 3 1 cos 30 i sin 30 3 1 1 i 3 1 i 2 2 2 2 11/16/15 Example: Find the 4th root of 2 i 2 i 1 4 Change to polar form 5 cos 153.4 i sin 153.4 Apply DeMoivre’s Theorem 1 1 5 cos 153.4 i sin 153.4 4 4 1 4 1.22 cos 38.4 i sin 38.4 .96 .76i 11/16/15