Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lesson 78 – Polar Form of Complex Numbers HL2 Math - Santowski 11/16/15 Relationships Among x, y, r, and   x  r cos y  r sin  r  x2  y2 y tan   , if x  0 x 11/16/15 Polar Form of a Complex Number  The expression r (cos  i sin  ) is called the polar form (or trigonometric form) of the complex number x + yi. The expression cos  + i sin  is sometimes abbreviated cis . Using this notation r (cos  i sin  ) is written r cis  . 11/16/15 Example  Express 2(cos 120 + i sin 120) in rectangular form. 11/16/15 Example  Express 2(cos 120 + i sin 120) in rectangular form. 1 cos120   2 3 sin120  2  1 3 2(cos120  i sin120 )  2   , i   2 2   1  i 3  Notice that the real part is negative and the imaginary part is positive, this is consistent with 120 degrees being a quadrant II angle. 11/16/15 Converting from Rectangular to Polar Form  Step 1 Sketch a graph of the number x + yi in the complex plane.  Step 2 Find r by using the equation r  x 2  y 2 .  Step 3 Find  by using the equation tan   xy , x  0 choosing the quadrant indicated in Step 1. 11/16/15 Example  Example: Find trigonometric notation for 1  i. 11/16/15 Example  Example: Find trigonometric notation for 1  i.  First, find r. r  a b 2 1  2 sin    2 2 5  4 2 r  (1) 2  (1) 2 r 2  Thus, 1  i  2  cos  1  2 cos   2 2 5 5  5  i sin or 2 cis  4 4  4 11/16/15 Product of Complex Numbers  Find the product of 4(cos50  i sin 50 ) and 2(cos10  i sin10 ). 11/16/15 Product Theorem  If r1   cos1  i sin 1  and r2  cos 2  i sin  2  , are any two complex numbers, then  r1  cos1  i sin 1     r2  cos 2  i sin  2   r1r2 cos 1   2   i sin 1   2   .  In compact form, this is written  r1 cis 1  r2 cis 2   r1r2 cis 1  2 . 11/16/15 Example: Product  Find the product of 4(cos50  i sin 50 ) and 2(cos10  i sin10 ). 11/16/15 Example: Product  Find the product of 4(cos50  i sin 50 ) and 2(cos10  i sin10 ).  4(cos50  isin50 )    2(cos10  isin10 )       4  2 cos(50  10 )  isin(50  10 )   8(cos60  isin 60 ) 1 3  8  i  2  2  4  4i 3 11/16/15 Quotient of Complex Numbers  Find the quotient. 16(cos 70  i sin 70 ) and 4(cos 40  i sin 40 ) 11/16/15 Quotient Theorem  If r1   cos1  i sin 1  and r2  cos 2  i sin  2  are any two complex numbers, where r2  cos 2  i sin  2  , r2  0, then r1  cos1  i sin 1  r2  cos 2  i sin  2  r1  cos 1   2   i sin 1   2   . r2 In compact form, this is written r1 cis 1 r1  cis 1   2  r2 cis  2 r2 11/16/15 Example: Quotient  Find the quotient. 16(cos 70  i sin 70 ) and 4(cos 40  i sin 40 ) 11/16/15 Example: Quotient  Find the quotient. 16(cos 70  i sin 70 ) and 4(cos 40  i sin 40 )  16(cos70  isin 70 ) 16 = cos(70  40 )  isin(70  40 ) 4 4(cos 40  isin 40 )   4cos30  isin 30  3 1   4  i  2 2   2 3  2i 11/16/15     If z  4 cos 40 o  isin40 o and w  6 cos120 o  isin120 o , find: (a) zw (b) z w     If z  4 cos40 isin40 and w  6 cos120 isin120 , o o find: (a) zw o (b) z w    o  zw   4 cos 40  i sin 40   6 cos120  i sin120        4  6 cos 40 120  i sin 40 120 multiply the moduli  add the arguments (the i sine term will have same argument)  24  cos160   i sin160    24  0 .93969  0 .34202 i    22 . 55  8 . 21i If you want the answer in rectangular coordinates simply compute the trig functions and multiply the 24 through.     4 cos 40  isin40 z  w 6 cos120 o  isin120 o   o  o   4 o o o o  cos 40 120  isin 40 120 6 divide the moduli    subtract the arguments      2  cos 80o isin 80o 3      2 o o  cos 280 isin 280 3 In rectangular coordinates: In polar form we want an angle between 0 and 360° so add 360° to the -80° 2  0 .1736  0 .9848i   0 .12  0 .66i 3 divide Example z1 z2 Where z1  3 2  3 2i  6  cos 45  i sin 45 z2  2 3  2i  4  cos 30  i sin 30  Rectangular form Trig form divide Example z1 z2 Where z1  3 2  3 2i  6  cos 45  i sin 45 z2  2 3  2i  4  cos 30  i sin 30  Rectangular form Trig form 3 2  3 2i 2 3  2i 6  cos 45  i sin 45 4  cos30  i sin 30   3 2  3 2i   2 3  2i     2 3  2 i 2 3  2 i    6 6  6 2i  6 6i  6 2i 2 12  4i 2 6 6  6 2i  6 6i  6 2 12  4 6 6 6 2 16   6 6 cos  45  30   i sin  45  30    4 3  cos15  i sin15 2  6 6 2 i 16      6 6 6 2    1  16   15   tan  6 6 6 2    216  72 12  72  216  72 12  72 16   r   2    6 6 6 2   6 6 6 2     r  16 16         256 r 576 9 3   256 4 2 2 DeMoivre’s Theorem Taking Complex Numbers to Higher Powers z  r  cos  i sin   z 2  ?? r  cos  i sin   r  cos  i sin    r  cos   2i cos sin   i sin   2 2 2  r 2  cos 2   sin 2   i 2sin  cos   r 2  cos 2  i sin 2  z 2  r 2  cos 2  i sin 2  z  r  cos  i sin   z 2  r  cos  i sin   r  cos  i sin    r  cos   2i cos sin   i sin   2 2 2  r 2  cos 2   sin 2   i 2sin  cos   r 2  cos 2  i sin 2  z 2  r 2  cos 2  i sin 2  Nice  What about 3 z ? z  r  cos  i sin   , z 2  r 2  cos 2  i sin 2  z 3  z  z 2  r 2  cos 2  i sin 2  r  cos  i sin    r 2  cos 2   2i cos sin   i 2 sin    r  cos   sin   i 2sin  cos  2 2 2  r  cos 2  i sin 2  2 z 2  r 2  cos 2  i sin 2  r 3  cos 2  i sin 2  cos  i sin    r 3  cos 2 cos  i cos 2 sin   i sin 2 cos  i 2 sin 2 sin    r 3  cos 2 cos  sin 2 sin   i cos 2 sin   i sin 2 cos   r 3 cos 2 cos  sin 2 sin   i  sin 2 cos  cos 2 sin     r 3 cos  2     i  sin  2       r 3  cos3  i sin 3  z 3  r 3  cos3  i sin 3   Hooray!!  We saw… z 2  r 2  cos 2  i sin 2  and z 3  r 3  cos3  i sin 3  Similarly…. z 4  r 4  cos 4  i sin 4  z 5  r 5  cos5  i sin 5  z n  r n  cos n  i sin n  We saw… z 2  r 2  cos 2  i sin 2  and z 3  r 3  cos3  i sin 3  Similarly…. 4 4 z  r  cos 4  i sin 4  z 5  r 5  cos5  i sin 5  z n  r n  cos n  i sin n  Hooray DeMoivre and his incredible theorem Powers of Complex Numbers This is horrible in rectangular form.  a  bi   a  bi  a  bi  a  bi  ...  a  bi  n The best way to expand one of these is using Pascal’s triangle and binomial expansion. You’d need to use an i-chart to simplify. It’s much nicer in trig form. You just raise the r to the power and multiply theta by the exponent. z  r  cos   i sin   z n  r n  cos n  i sin n  Example z  5  cos 20  i sin 20  z 3  53  cos 3  20  i sin 3  20  z 3  125  cos 60  i sin 60  De Moivre’s Theorem  If r1   cos1  i sin 1  is a complex number, and if n is any real number, then  r  cos1  i sin 1   r n  cos n  i sin n . n  In compact form, this is written n r cis   r  cis n .   n 11/16/15 Example: Find (1  i)5 and express the result in rectangular form. 11/16/15 Example: Find (1  i)5 and express the result in rectangular form.  First, find trigonometric notation for 1  i 1  i  2  cos 225  i sin 225  Theorem  1  i   5   2  cos 225  i sin 225   5  2  cos(5  225 )  i sin(5  225 ) 5  4 2  cos1125  i sin1125   2 2  4 2 i  2   2  4  4i 11/16/15  Example  Let z  1.  i Find z 10  11/16/15 Example 11/16/15 Further Examples 11/16/15 nth Roots  For a positive integer n, the complex number a + bi is an nth root of the complex number x + yi if  a  bi  n  x  yi. 11/16/15 nth Root Theorem  If n is any positive integer, r is a positive real number, and  is in degrees, then the nonzero complex number r(cos  + i sin ) has exactly n distinct nth roots, given by  where  n r  cos  i sin   or   360  k n n r cis  ,  360  k or  =  , k  0,1,2,..., n  1. n n 11/16/15 Example: Square Roots  Find the square roots of 1  3i 11/16/15 Example: Square Roots  Find the square roots of 1  Polar notation: 1  3i  3i  2cos60  isin60   60  60 360  360    2 cos60  isin60   2 cos   k   isin   k       2 2 2 2       2 cos 30  k 180  isin 30  k 180    1 2 1 2   For k = 0, root is  For k = 1, root is      2 cos 210  isin 210 2 cos30  isin30 11/16/15 Example: Fourth Root  Find all fourth roots of 8  8i 3. 11/16/15 Example: Fourth Root  Find all fourth roots of 8  8i rectangular form.  Write in polar form. 3. Write the roots in 8  8i 3  16 cis 120  Here r = 16 and  = 120. The fourth roots of this number have absolute value 4 16  2. 120 360  k    30  90  k 4 4 11/16/15 Example: Fourth Root continued  There are four fourth roots, let k = 0, 1, 2 and 3. k 0   30  90  0  30 k 1   30  90  1  120 k 2   30  90  2  210 k 3   30  90  3  300  Using these angles, the fourth roots are 2 cis 30 , 2 cis 120 , 2 cis 210 , 2 cis 300 11/16/15 Example: Fourth Root continued  Written in rectangular form 3i 1  i 3  3 i 1 i 3  The graphs of the roots are all on a circle that has center at the origin and radius 2. 11/16/15 Find the complex fifth roots of 11/16/15 Find the complex fifth roots of The five complex roots are: for k = 0, 1, 2, 3,4 . 11/16/15 11/16/15 Example  Find all the complex fifth roots of 32 11/16/15 32  0i 2 2  32  0 r  a b 2   tan 1 2 0 32   tan 1 0  322  32  0 32 cos  0   i sin  0   5   0 360k   0 360k   32 cos     i sin    5  5  5  5 2 cos  72k   i sin  72k   11/16/15 2 cos  72k   i sin  72k   k 0 2 cos  0   i sin  0    2 1  0i  k 1 2 cos  72   i sin  72    .62  1.90i k 2 2 cos 144   i sin 144    1.62 1.18i k 3 2 cos  216   i sin  216    1.62 1.18i k 4 2 cos  288  i sin  288    .62 1.90i 2 11/16/15 Example Find 3 i You may assume it is the principle root you are seeking unless specifically stated otherwise. First express i as a complex number in standard form. Then change to polar form b tan   a 1 tan   0 r  a 2  b2 1   tan 0 1 0i r 1   90 1 cos  90   i sin  90   11/16/15 1 cos  90   i sin  90   Since we are looking for the cube root, use DeMoivre’s Theorem 1 and raise it to the power 3  1  1  1 cos  90   i sin  90    3   3 1 3 1 cos  30   i sin  30    3 1 1  i   3  1 i 2 2 2  2 11/16/15 Example: Find the 4th root of 2  i  2  i  1 4 Change to polar form 5 cos 153.4   i sin 153.4   Apply DeMoivre’s Theorem  1  1 5 cos   153.4   i sin   153.4  4  4  1 4 1.22 cos  38.4   i sin  38.4   .96  .76i 11/16/15