Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
6.6 DeMoivre’s Theorem I. Trigonometric Form of Complex Numbers A.) The standard form of the complex number z a bi is very similar to the component form of a vector v ai bj. If we look at the trigonometric form of v, we can see v v cos i sin j B.) If we graph the complex z = a + bi on the complex plane, we can see the similarities with the polar plane. P (a, b) z = a + bi r b θ a C.) If we let a r cos and b r sin then, z a bi r cos r sin i where r z a b , 2 2 b tan and i 1 a D.) Def. – The trigonometric form of a complex number z is given by z r cos i sin or z rcis Where r is the MODULUS of z and θ is the ARGUMENT of z. E.) Ex.1 - Find the trig form of the following: 1 3 2.) i 2 2 1.) 2i r 0 2 2 2 2 2 tan 0 2 z 0 2i 1 r (cos i sin ) 2 cos i sin 2 2 2cis 2 2 3 1 r 1 2 2 5 tan 1 3 3 1 3 z i 2 2 r (cos i sin ) 2 5 5 1 cos i sin 3 3 5 cis 3 II. Products and Quotients A.) Let z1 r1 cos. 1 i sin 1 and z2 r2 cos2 i sin 2 Mult.Div. - z1 z2 r1 r2 cos 1 2 i sin 1 2 z1 r1 cos 1 2 i sin 1 2 z2 r2 DERIVE THESE!!!! B.) Ex. 2 – Given z1 5 cos15 . i sin15 & z2 2 cos105 i sin105 z1 find z1 z2 and z2 z1 z2 5 2 cos 120 i sin 120 1 3 10 i 2 2 5 5 3i z1 5 cos 90 i sin 90 z2 2 5 0 i 2 5 i 2 III. Powers of Complex Numbers A.) DeMoivre’s (di-’mȯi-vərz) Theorem – If z = r(cosθ + i sinθ) and n is a positive integer, then, z r (cos i sin ) r n cos n i sin n n n Why??? – Let’s look at z2- z zz 2 z 2 r cos i sin r cos i sin z 2 r 2 cos i sin cos i sin z 2 r 2 cos 2 2i cos sin i 2 sin 2 z 2 r 2 cos 2 1 sin 2 i 2 cos sin z r cos 2 i sin 2 2 2 3 B.) Ex. 3 – Find 1 i 3 by “Foiling” 1 i 3 1 i 3 1 i 3 1 2i 3 3 1 i 3 2 2i 3 1 i 3 2 6 8 C.) Ex. 4– Now find 1 i 3 DeMoivre’s Theorem r2 3 using 3 z 2 cos i sin 3 3 3 3 z 2 cos 3 i sin 3 3 3 3 3 z 8 cos i sin 3 z 8(1 0) 8 3 D.) Ex. 5 –Use DeMoivre’s Theorem to simplify 10 3 3 i 2 2 2 3 6 r 2 = 2 4 2 10 6 10 10 z i sin cos 4 4 2 10 6 5 10 z 10 cos 2 2 5 5 i sin 2 5 6 z10 10 i 2 IV. nth Roots of Complex Numbers A.) Roots of Complex Numbers – v = a + bi is an nth root of z iff vn = z . If z = 1, then v is an nth ROOT OF UNITY. B.) If z r cos i sin , then the n distinct complex numbers n + 2 k + 2 k r cos isin n n Where k = 0, 1, 2, …, n-1 are the nth roots of the complex number z. th C.) Ex. 6- Find the 4 roots of z 16cis . 2 2 4 z1 16cis 4 4 z3 4 16cis 2 4 9 z3 2cis 8 z1 2cis 8 2 z2 4 16cis 2 4 5 z2 2cis 8 6 z4 4 16cis 2 4 13 z4 2cis 8 V. Finding Cube Roots A.) Ex. 7 - Find the cube roots of -1. z 3 1 z 1 0 3 ( z 1) z 2 z 1 0 1 1 4(1)(1) z 1 or z 2(1) 1 3 1 3 z 1, i, i 2 2 2 2 Now.... Plot these points on the complex plane. What do you notice about them? z 1 0i z 1 cos i sin 1 3 z1 cos i sin i 3 3 2 2 3 3 z2 cos i sin 1 0i 3 3 5 5 1 3 z3 cos i sin i 3 3 2 2 Equidistant from the origin and equally spaced about the origin. 1 z1 z2 2 -1 z3 VI. Roots of Unity A.) Any complex root of the number 1 is also known as a ROOT OF UNITY. B.) Ex. 8 - Find the 6 roots of unity. z 1 0i cis0 0 z1 cis 6 1 0 2 z2 cis 6 cis 0 4 z3 cis 6 2 cis 3 3 1 3 i 2 2 1 3 i 2 2 0 6 z4 cis 6 cis 0 8 z5 cis 6 4 cis 3 0 10 z6 cis 6 5 cis 3 1 1 3 i 2 2 1 3 i 2 2