Download 5.1 Fundamental Trig Identities

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
6.6 DeMoivre’s Theorem
I. Trigonometric Form of Complex
Numbers
A.) The standard form of the complex number z  a  bi
is very similar to the component form of a vector
v  ai  bj. If we look at the trigonometric form of v,
we can see
v  v  cos i  sin  j 
B.) If we graph the complex z = a + bi on the
complex plane, we can see the similarities with the
polar plane.
P (a, b)
z = a + bi
r
b
θ
a
C.) If we let a  r cos and b  r sin  then,
z  a  bi  r cos   r sin   i
where
r  z  a b ,
2
2
b
tan   and i  1
a
D.) Def. – The trigonometric form of a complex number z
is given by z  r cos   i sin 


or
z  rcis
Where r is the MODULUS of z and θ is the ARGUMENT
of z.
E.) Ex.1 - Find the trig form of the following:
1
3
2.) 
i
2 2
1.) 2i
r  0 2 2
2
2
2 
  tan   
0 2
z  0  2i
1
 r (cos   i sin  )



 2  cos  i sin 
2
2

 2cis

2
2
3
1 
r      
  1
2  2 
5
  tan 1  3 
3
1
3
z 
i
2 2
 r (cos   i sin  )
2


5
5 

 1 cos
 i sin

3
3


5
 cis
3
II. Products and Quotients
A.) Let z1  r1  cos. 1  i sin 1  and z2  r2  cos2  i sin 2 
Mult.Div. -
z1  z2  r1  r2  cos 1  2   i sin 1  2  
z1 r1
  cos 1   2   i sin 1   2  
z2 r2
DERIVE THESE!!!!
B.) Ex. 2 – Given z1  5  cos15
.   i sin15  &
z2  2  cos105  i sin105 
z1
find z1  z2 and
z2
z1  z2   5  2   cos 120   i sin 120  
 1
3 
 10   
i 
 2 2 
 5  5 3i
z1 5
  cos 90  i sin  90 
z2 2
5
 0  i
2
5
 i
2
III. Powers of Complex Numbers
A.) DeMoivre’s (di-’mȯi-vərz) Theorem –
If z = r(cosθ + i sinθ) and n is a positive integer, then,
z   r (cos   i sin  )  r n  cos n  i sin n 
n
n
Why??? – Let’s look at z2-
z  zz
2
z 2  r  cos  i sin    r  cos  i sin  
z 2  r 2  cos  i sin   cos  i sin  
z 2  r 2  cos 2   2i cos  sin   i 2 sin 2  
z 2  r 2  cos 2    1 sin 2    i  2 cos  sin  
z  r  cos 2  i sin 2 
2
2


3
B.) Ex. 3 – Find 1  i 3 by “Foiling”



 1 i 3 1 i 3 1 i 3


 1  2i 3  3 1  i 3


 2  2i 3 1  i 3
 2  6
 8




C.) Ex. 4– Now find 1  i 3
DeMoivre’s Theorem

r2

3
using

3
 

 
z   2  cos  i sin  
3
3 
 
3
3

 
  
z  2  cos 3    i sin 3   
3
 3 

3
3
z  8  cos   i sin  
3
z  8(1  0)  8
3
D.) Ex. 5 –Use DeMoivre’s Theorem to simplify
10
 3
3
i


2 
 2
2
 3
6

r  2 

 =
2
4
 2 
10
 6 
10
10 
z  
 i sin
  cos

4
4 
 2  
10
6 
 5
10
z  10  cos 
2 
 2
5

 5  
  i sin   

 2 
5
6
z10  10  i 
2
IV. nth Roots of Complex Numbers
A.) Roots of Complex Numbers –
v = a + bi is an nth root of z iff vn = z .
If z = 1, then v is an nth ROOT OF UNITY.
B.) If z  r  cos  i sin   , then the n distinct complex
numbers
n
 + 2 k
 + 2 k 

r  cos
 isin

n
n


Where k = 0, 1, 2, …, n-1 are the nth roots of
the complex number z.



th
C.) Ex. 6- Find the 4 roots of z  16cis   .
2





 
2
4
z1  16cis  
4
 
 4

z3  4 16cis  2
 4

 9 
z3  2cis 

8


 
z1  2cis  
8

 2

z2  4 16cis  2
 4

 5 
z2  2cis  
 8 










 6

z4  4 16cis  2
 4

 13 
z4  2cis 

 8 





V. Finding Cube Roots
A.) Ex. 7 - Find the cube roots of -1.
z 3  1
z 1  0
3
( z  1)  z 2  z  1  0
1  1  4(1)(1)
z  1 or z 
2(1)
1
3 1
3
z  1, 
i, 
i
2 2
2 2
Now....
Plot these points on the complex
plane. What do you notice
about them?
z  1  0i
z  1 cos   i sin  


1
3
z1  cos  i sin  
i
3
3 2 2
3
3
z2  cos
 i sin
 1  0i
3
3
5
5 1
3
z3  cos
 i sin
 
i
3
3 2 2
Equidistant from the origin and
equally spaced about the
origin.
1
z1
z2
2
-1
z3
VI. Roots of Unity
A.) Any complex root of the number 1 is also known
as a ROOT OF UNITY.
B.) Ex. 8 - Find the 6 roots of unity.
z  1 0i  cis0
0
z1  cis
6
1
0  2
z2  cis
6
 cis
0  4
z3  cis
6
2
 cis
3

3
1
3
 
i
2 2
1
3
 
i
2 2
0  6
z4  cis
6
 cis
0  8
z5  cis
6
4
 cis
3
0  10
z6  cis
6
5
 cis
3
 1
1
3
 
i
2 2
1
3
 
i
2 2
Related documents