Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
10/30/14 Figure 9.2 Light energy ECOSYSTEM Photosynthesis in chloroplasts Cap 9 CO2 + H2O Cellular respiration in mitochondria Organic + O2 molecules Dra. Millie Gonzalez Biol 1101 ATP ATP powers most cellular work Heat energy Figure 9.UN01 Figure 9.UN02 becomes oxidized (loses electron) becomes reduced (gains electron) becomes oxidized becomes reduced 1 10/30/14 Figure 9.3 Figure 9.UN03 Products Reactants becomes oxidized Energy becomes reduced becomes oxidized becomes reduced Methane (reducing agent) Oxygen (oxidizing agent) Carbon dioxide Water Figure 9.4 Figure 9.UN04 NADH NAD+ Dehydrogenase Reduction of (from food) Nicotinamide (oxidized form) NAD+ Oxidation of NADH Nicotinamide (reduced form) Dehydrogenase 2 10/30/14 Figure 9.5 Figure 9.UN05 H2 + 1/2 O2 2H 1/ 2 + O2 (from food via NADH) Controlled release of energy for synthesis of ATP Free energy, G spor tran tron ain ch Explosive release of heat and light energy Elec Free energy, G 2 H+ + 2 e- 1. Glycolysis (color-coded teal throughout the chapter) 2. Pyruvate oxidation and the citric acid cycle (color-coded salmon) ATP ATP ATP t 2 e1/ 2 2 H+ H 2O O2 3. Oxidative phosphorylation: electron transport and chemiosmosis (color-coded violet) H 2O (a) Uncontrolled reaction (b) Cellular respiration Figure 9.6-1 Figure 9.6-2 Electrons carried via NADH Electrons carried via NADH Glycolysis Glycolysis Glucose Glucose Pyruvate MITOCHONDRION CYTOSOL Pyruvate Electrons carried via NADH and FADH2 Pyruvate oxidation Citric acid cycle Acetyl CoA MITOCHONDRION CYTOSOL ATP ATP ATP Substrate-level phosphorylation Substrate-level phosphorylation Substrate-level phosphorylation 3 10/30/14 Figure 9.6-3 Figure 9.7 Electrons carried via NADH and FADH2 Electrons carried via NADH Pyruvate oxidation Glycolysis Glucose Pyruvate Acetyl CoA Enzyme ADP P Substrate MITOCHONDRION CYTOSOL Enzyme Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle ATP Product ATP ATP ATP Substrate-level phosphorylation Substrate-level phosphorylation Oxidative phosphorylation Figure 9.8 Figure 9.9-1 Energy Investment Phase Glucose 2 ADP + 2 P 2 ATP used Glycolysis: Energy Investment Phase Glucose 2 NAD+ + 4 e- + 4 H+ Glucose 6-phosphate ADP Energy Payoff Phase 4 ADP + 4 P ATP 4 ATP formed Hexokinase 1 2 NADH + 2 H+ 2 Pyruvate + 2 H2O Net Glucose 4 ATP formed - 2 ATP used 2 NAD+ + 4 e- + 4 H+ 2 Pyruvate + 2 H2O 2 ATP 2 NADH + 2 H+ 4 10/30/14 Figure 9.9-2 Figure 9.9-3 Glycolysis: Energy Investment Phase Glucose ATP Glucose 6-phosphate Glycolysis: Energy Investment Phase Glucose Fructose 6-phosphate ATP ADP Hexokinase 1 Glucose 6-phosphate Fructose 6-phosphate ATP Phosphoglucoisomerase Hexokinase 1 2 Figure 9.9-4 Fructose 1,6-bisphosphate ADP ADP Phosphoglucoisomerase Phosphofructokinase 2 3 Figure 9.9-5 Glycolysis: Energy Investment Phase Glucose ATP Glucose 6-phosphate Fructose 6-phosphate ATP Hexokinase 1 Fructose 1,6-bisphosphate Glycolysis: Energy Payoff Phase ADP ADP Phosphoglucoisomerase Phosphofructokinase 2 3 2 NADH 2 NAD+ Aldolase Dihydroxyacetone phosphate Triose phosphate dehydrogenase Glyceraldehyde 3-phosphate 6 Isomerase 5 + 2 H+ 4 2Pi 1,3-Bisphosphoglycerate To step 6 5 10/30/14 Figure 9.9-6 Figure 9.9-7 Glycolysis: Energy Payoff Phase 2 NADH + 2 H+ 2 NAD+ Triose phosphate dehydrogenase 2 ADP 1,3-Bisphosphoglycerate 2 ATP 2 NADH Triose phosphate dehydrogenase 3-Phosphoglycerate 7 + 2 H+ 2 NAD+ 2 Phosphoglycerokinase 2Pi 6 Glycolysis: Energy Payoff Phase 2 ATP 2 1,3-Bisphosphoglycerate 6 8 2-Phosphoglycerate Figure 9.9-9 2 ATP 2 NADH Triose phosphate dehydrogenase Phosphoglyceromutase 3-Phosphoglycerate 7 Glycolysis: Energy Payoff Phase 2 NAD+ 2 Phosphoglycerokinase 2Pi 6 Figure 9.9-8 2 ADP + 2 H+ 2 ADP 2 H2O 2 2 1,3-Bisphosphoglycerate 7 3-Phosphoglycerate 8 2 NADH 2 Enolase Phosphoglyceromutase Phosphoglycerokinase 2Pi Glycolysis: Energy Payoff Phase 2-Phosphoglycerate 2 ATP 9 Phosphoenolpyruvate (PEP) 2 NAD+ Triose phosphate dehydrogenase 6 + 2 H+ 2 ADP 2 1,3-Bisphosphoglycerate 7 3-Phosphoglycerate 8 2 ADP 2 Enolase Phosphoglyceromutase Phosphoglycerokinase 2Pi 2 ATP 2 H2O 2 2-Phosphoglycerate Pyruvate kinase 9 Phosphoenolpyruvate (PEP) 10 Pyruvate 6 10/30/14 Figure 9.9a Figure 9.9b Glycolysis: Energy Investment Phase Glucose ATP ATP Fructose 6-phosphate Glycolysis: Energy Investment Phase Phosphofructokinase Fructose 6-phosphate Glucose 6-phosphate ADP 1 Aldolase 3 Phosphoglucoisomerase Hexokinase Fructose 1,6-bisphosphate ADP Dihydroxyacetone phosphate 2 Glyceraldehyde 3-phosphate Isomerase Figure 9.9c 4 To step 6 5 Figure 9.9d Glycolysis: Energy Payoff Phase Glycolysis: Energy Payoff Phase 2 ATP 2 NADH 2 NAD+ 2 ADP + 2 H+ 2 ATP 2 H2O 2 2 2 2 2 ADP 2 2 Triose phosphate dehydrogenase 6 Phosphoglyceromutase Phosphoglycerokinase 2Pi 1,3-Bisphosphoglycerate 7 3-Phosphoglycerate 3-Phosphoglycerate 8 Pyruvate kinase Enolase 2-Phosphoglycerate 9 Phosphoenolpyruvate (PEP) 10 Pyruvate 7 10/30/14 Figure 9.10 Figure 9.11 Pyruvate CO2 NAD+ CoA MITOCHONDRION NADH + H+ CYTOSOL CO2 Coenzyme A Acetyl CoA CoA CoA 3 1 2 Pyruvate NADH NAD+ + H+ Citric acid cycle Acetyl CoA 2 CO2 FADH2 3 NAD+ 3 NADH FAD Transport protein + 3 H+ ADP + P i ATP Figure 9.12-1 Figure 9.12-2 Acetyl CoA Acetyl CoA CoA-SH CoA-SH 1 Oxaloacetate Citrate Citric acid cycle H 2O 1 Oxaloacetate 2 Citrate Isocitrate Citric acid cycle 8 10/30/14 Figure 9.12-3 Figure 9.12-4 Acetyl CoA Acetyl CoA CoA-SH CoA-SH H 2O 1 Oxaloacetate H 2O 1 Oxaloacetate 2 Citrate 2 Citrate Isocitrate Isocitrate NAD+ Citric acid cycle NAD+ Citric acid cycle NADH 3 + H+ CO2 NADH 3 + H+ CO2 CoA-SH α-Ketoglutarate α-Ketoglutarate 4 CO2 NAD+ NADH + H+ Succinyl CoA Figure 9.12-5 Figure 9.12-6 Acetyl CoA Acetyl CoA CoA-SH CoA-SH H 2O 1 Oxaloacetate H 2O 1 Oxaloacetate 2 Citrate 2 Citrate Isocitrate Isocitrate NAD+ Citric acid cycle NAD+ Citric acid cycle NADH 3 + H+ CO2 CoA-SH α-Ketoglutarate 6 5 NAD+ Succinate NADH Pi GTP ADP GDP α-Ketoglutarate 4 CoA-SH Succinyl CoA + H+ CO2 + H+ CO2 Fumarate CoA-SH NADH 3 4 CoA-SH 5 FADH2 NAD+ FAD Succinate GTP GDP CO2 NADH Pi Succinyl CoA + H+ ADP ATP ATP 9 10/30/14 Figure 9.12-7 Figure 9.12-8 Acetyl CoA Acetyl CoA CoA-SH CoA-SH NADH H 2O 1 Oxaloacetate 8 2 Malate H 2O 1 + H+ NAD+ Oxaloacetate 2 Malate Citrate Citrate Isocitrate Isocitrate NAD+ Citric acid cycle 7 H 2O NAD+ + H+ H 2O CO2 Fumarate Citric acid cycle NADH 3 7 CoA-SH α-Ketoglutarate 6 6 5 FADH2 NAD+ FAD Succinate 5 NAD+ FAD Succinate + H+ Succinyl CoA 4 CoA-SH FADH2 CO2 NADH Pi GTP GDP α-Ketoglutarate 4 CoA-SH + H+ CO2 Fumarate CoA-SH NADH 3 + H+ Succinyl CoA GTP GDP ADP CO2 NADH Pi ADP ATP ATP Figure 9.12a Figure 9.12b Isocitrate Acetyl CoA NAD+ CoA-SH NADH 3 + H+ CO2 H 2O 1 CoA-SH α-Ketoglutarate 4 Oxaloacetate 2 NAD+ Citrate CO2 NADH Isocitrate Succinyl CoA + H+ 10 10/30/14 Figure 9.12c Figure 9.12d NADH + H+ Fumarate NAD+ 6 8 Oxaloacetate CoA-SH Malate 5 FADH2 FAD Succinate Pi Succinyl CoA GTP GDP H 2O 7 ADP Fumarate ATP Figure 9.13 Figure 9.14 NADH INTERMEMBRANE SPACE 50 2 e- NAD+ H+ FADH2 Free energy (G) relative to O2 (kcal/mol) 2 e- 40 I FMN Fe•S Fe•S II Q Stator Rotor III Cyt b 30 Multiprotein complexes FAD Fe•S Cyt c1 IV Cyt c Cyt a 20 10 0 Cyt a3 Internal rod 2 e- (originally from NADH or FADH2) Catalytic knob ADP + Pi 2 H+ + 1/2 O2 H 2O ATP MITOCHONDRIAL MATRIX 11 10/30/14 Figure 9.15 Figure 9.16 H+ Protein complex of electron carriers H+ Cyt c Q I Glycolysis Glucose III 2 H+ + 1/2O2 FADH2 FAD 2 Pyruvate MITOCHONDRION 2 NADH or 2 FADH2 2 NADH IV II NADH Electron shuttles span membrane H+ H+ 2 NADH Pyruvate oxidation 2 Acetyl CoA 6 NADH Citric acid cycle ATP synthase H 2O NAD+ ADP + P i (carrying electrons from food) Maximum per glucose: H+ 1 Electron transport chain + 2 ATP + 2 ATP ATP 2 Chemiosmosis 2 FADH2 Oxidative phosphorylation: electron transport and chemiosmosis + about 26 or 28 ATP About 30 or 32 ATP CYTOSOL Oxidative phosphorylation Figure 9.17 Figure 9.17a 2 ADP + 2 P i 2 ADP + 2 P i Glucose 2 ADP + 2 P i 2 ATP Glycolysis 2 ATP 2 ATP Glycolysis Glucose Glycolysis Glucose 2 Pyruvate 2 Pyruvate 2 NAD + 2 Ethanol (a) Alcohol fermentation 2 NADH + 2 H+ 2 NAD 2 CO2 2 Acetaldehyde + 2 NADH + 2 H+ 2 NAD 2 Pyruvate + 2 NADH + 2H+ 2 CO2 2 Lactate (b) Lactic acid fermentation 2 Ethanol 2 Acetaldehyde (a) Alcohol fermentation 12 10/30/14 Figure 9.17b Figure 9.18 2 ADP + 2 P i Glucose 2 ATP CYTOSOL Glycolysis Pyruvate Glycolysis Glucose 2 NAD No O2 present: Fermentation 2 NADH + 2H+ + O2 present: Aerobic cellular respiration MITOCHONDRION Ethanol, lactate, or other products 2 Pyruvate Acetyl CoA Citric acid cycle 2 Lactate (b) Lactic acid fermentation Figure 9.19 Proteins Amino acids Carbohydrates Sugars Figure 9.20 Glucose Fats Glycerol Glycolysis Fructose 6-phosphate Fatty acids - Glycolysis Glucose AMP Stimulates + Phosphofructokinase Fructose 1,6-bisphosphate Inhibits Inhibits Glyceraldehyde 3- P NH3 Pyruvate Pyruvate Acetyl CoA ATP Citrate Acetyl CoA Citric acid cycle Oxidative phosphorylation Citric acid cycle Oxidative phosphorylation 13 10/30/14 Figure 9.UN06 Figure 9.UN07 Outputs Inputs Inputs Outputs 2 Pyruvate Glycolysis 2 Pyruvate + 2 Glucose 2 Oxaloacetate + 2 NADH ATP Figure 9.UN08 2 Acetyl CoA Citric acid cycle 2 ATP 8 6 CO2 2 FADH2 NADH Figure 9.UN09 H+ INTERMEMBRANE SPACE H+ INTERMEMBRANE SPACE H+ H+ Cyt c Protein complex of electron carriers IV Q I II FADH2 NAD+ NADH (carrying electrons from food) FAD ATP synthase MITOCHONDRIAL MATRIX III 2 H+ + 1/2 O2 H 2O ADP + P i H+ ATP MITOCHONDRIAL MATRIX 14 10/30/14 Figure 9.UN11 pH difference across membrane Figure 9.UN10 Time 15