Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
240420: Introduction to Artificial Intelligence Wed 16.00-17.30, 5306, Thu 16.00-17.30, 5406 Instructor: Amarin Deemagarn (อ. อัมริ นทร์ ดีมะการ) Office hours: Mon, Tue and Fri 10.00 – 11:00, or by appointment Office: 1405 Phone: +66 816968415 Email: [email protected] Web site: fivedots.coe.psu.ac.th/~amarin/240420 Check the web site regularly, as assignments and announcements will be posted here. Objectives: 1. Introduce the foundations of Artificial Intelligence (including search, logical induction, and different approaches to automated learning). 2. Demonstrate how these concepts are applied to practical problems, such as game playing, expert systems, planning, language understanding, pattern recognition, and robotics. Prerequisites: The official prerequisite is 240-204. As far as content, the knowledge that you will need coming into this course is (1) the ability to write data-structure level programs, and (2) a good understanding of propositional logic and trees. Course Description (in Thai): การสารวจแนวคิดและการประยุกต์ใช้ปัญญาประดิษฐ์ในด้านหลัก ๆ ภาษาที่ใช้เพื่อสร้างระบบปั ญญาประดิษฐ์ (เช่น ภาษาลิสหรื อโปรลอก) ซอฟต์แวร์เอเจ็นต์สามารถใช้เป็ นแกนรวมในการประยุกต์ใช้เทคนิคของปัญญาประดิษฐ์เพื่อสร้างระบบชาญฉลาด การแทนความรู ้ ตรรกศาสตร์ประพจน์ ขอบข่ายของสถานะและการค้นหาสถานะ การค้นหาโดยใช้ฮิวริ สติก ระบบผูช้ านาญการ แบบจาลองการเรี ยนรู้และการรับรู้ การประมวลผลภาษาธรรมชาติ การคานวณเชิงวิวฒั นาการ และการมองเห็น วิธีการสร้าง แก้ไข หรื อขยายความสามารถของระบบปั ญญาประดิษฐ์หลายระบบ โดยใช้ภาษาโปรแกรมและเครื่ องมือประกอบ (เช่น เชลล์ของระบบผูช้ านาญการ เครื่ องมือสร้างฐานความรู้) Textbook: Required textbook: 1. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall 2003. 2nd Edition. 2. Ben Coppin, Artificial Intelligence Illuminated. Jones and Barlett 2004. - For Expert system, Python programmingand Prolog programming, I will provide these materials in the class. Grading Class participation 10% quiz and attendance * Writing Homework 10 % Programming assignments 20 % Midterm Exam 25% 28 July-5 Aug Final Exam 35% 8-19 Oct * Students have to attend the class at least 80%. It means that you can absence AT MOST 6 times. if (exam_grade > 25) then final_grade = 0.6*exam_grade + 0.4*hw_grade else final_grade = exam_grade // exam_grade = Midterm exam + Final exam / hw_grade = Programming assignments + Writing Homework Homework Assignments: The homework assignments may involve a combination of written problems and some programming (Python, Prolog) related to the application of core AI concepts. These will possibly include: Designing an evaluation heuristic for an AI game Simple applications in areas such as logic/learning/ Schedule: Date Topic Reading 15 26 July 16 17 18 19 20 21 22 23 24 8 Aug 9 Aug 15 Aug 16 Aug 22 Aug 23 Aug 29 Aug 30 Aug 5 Sept Introduction to AI Intelligence Agents Uninformed Search I No Class Introduction to Python Programming Uninformed Search II Informed Search: Heuristic function Informed Search: Local Search Constraint Satisfaction Problems Games Playing Propositional logic Propositional logic + First-Order Logic First-Order Logic Inference in First-Order Logic Inference in First-Order Logic, Intro. to Prolog Intro. to Prolog Midterm Examination Intro. to Prolog Knowledge Representation Planning I Planning II Uncertainty (Probability) Bayesian Networks Inference in Bayesian Networks AI and Expert System Natural Language Processing I Ch. 1 R&N Ch. 2 R&N Ch. 3 R&N 4 5 6 7 8 9 10 11 12 13 14 5 June 6 June 13 June 14 June 20 June 21 June 27 June 28 June 4 July 5 July 11 July 12 July 18 July 19 July 25 July 25 26 27 6 Sept 12 Sept 13 Sept Natural Language Processing II Introduction to Machine Learning Neural Networks Ch. 20 BC Ch. 10 BC Ch. 11 BC 28 19 Sept Neural Networks II Ch. 11 BC 29 20 Sept Neural Networks III Ch. 11 BC 30 26 Sept Genetic Algorithm I Ch. 14 BC 31 27 Sept Genetic Algorithm II Ch. 14 BC 32 3 Oct Summary 33 4 Oct Review 1 2 3 Ch. 3 R&N Ch. 4 R&N Ch. 4 R&N Ch. 5 R&N Ch. 6 R&N Ch. 7 R&N Ch.7- 8 R&N Ch. 8 R&N Ch. 9 R&N Ch. 9 R&N Ch.3 &1 7 BC Ch. 11 R&N Ch. 11 R&N Ch. 13 R&N Ch. 14 BC Ch. 14 BC Ch. 20 BC Ch. 27 R&N - Writing Assignments (10) Time Reading 1 Ch.1-2 2 Ch.3-4 3 Ch.7-9 4. Machine Learning Marks 2 3 3 2 Programming Assignments (20) Time Topic 1 Python 2 Searching 3 Game 4. Prolog 5 Natural Language Processing Release 9 June 28 June 26 July 20 Sept Marks 2 4 5 3 6 Release 21 June 27 June 11 July 8 Aug 5 Sept Due 18 June 5 July 15 Aug 2 Oct Due 28 June 12 July 25 July 22 Aug 20 Sept