Download 240420: Introduction to Artificial Intelligence

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
240420: Introduction to Artificial Intelligence
Wed 16.00-17.30,
5306, Thu 16.00-17.30,
5406
Instructor:
Amarin Deemagarn (อ.
อัมริ นทร์ ดีมะการ)
Office hours: Mon, Tue and Fri 10.00 – 11:00, or by appointment
Office: 1405
Phone: +66 816968415
Email: [email protected]
Web site: fivedots.coe.psu.ac.th/~amarin/240420
Check the web site regularly, as assignments and announcements will be
posted here.
Objectives:
1. Introduce the foundations of Artificial Intelligence (including search, logical
induction, and different approaches to automated learning).
2. Demonstrate how these concepts are applied to practical problems, such as game
playing, expert systems, planning, language understanding, pattern recognition,
and robotics.
Prerequisites:
The official prerequisite is 240-204. As far as content, the knowledge that you
will need coming into this course is (1) the ability to write data-structure level
programs, and (2) a good understanding of propositional logic and trees.
Course Description (in Thai):
การสารวจแนวคิดและการประยุกต์ใช้ปัญญาประดิษฐ์ในด้านหลัก ๆ ภาษาที่ใช้เพื่อสร้างระบบปั ญญาประดิษฐ์ (เช่น
ภาษาลิสหรื อโปรลอก) ซอฟต์แวร์เอเจ็นต์สามารถใช้เป็ นแกนรวมในการประยุกต์ใช้เทคนิคของปัญญาประดิษฐ์เพื่อสร้างระบบชาญฉลาด
การแทนความรู ้ ตรรกศาสตร์ประพจน์ ขอบข่ายของสถานะและการค้นหาสถานะ การค้นหาโดยใช้ฮิวริ สติก ระบบผูช้ านาญการ
แบบจาลองการเรี ยนรู้และการรับรู้ การประมวลผลภาษาธรรมชาติ การคานวณเชิงวิวฒั นาการ และการมองเห็น
วิธีการสร้าง แก้ไข หรื อขยายความสามารถของระบบปั ญญาประดิษฐ์หลายระบบ โดยใช้ภาษาโปรแกรมและเครื่ องมือประกอบ (เช่น
เชลล์ของระบบผูช้ านาญการ เครื่ องมือสร้างฐานความรู้)
Textbook:
Required textbook:
1. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach,
Prentice Hall 2003. 2nd Edition.
2. Ben Coppin, Artificial Intelligence Illuminated. Jones and Barlett 2004.
- For Expert system, Python programmingand Prolog programming, I will provide these
materials in the class.
Grading
Class participation
10% quiz and attendance *
Writing Homework
10 %
Programming assignments
20 %
Midterm Exam
25% 28 July-5 Aug
Final Exam
35%
8-19 Oct
* Students have to attend the class at least 80%. It means that you can absence AT
MOST 6 times.
if (exam_grade > 25) then
final_grade = 0.6*exam_grade + 0.4*hw_grade
else
final_grade = exam_grade
// exam_grade = Midterm exam + Final exam
/ hw_grade = Programming assignments + Writing Homework
Homework Assignments:
The homework assignments may involve a combination of written problems and some
programming (Python, Prolog) related to the application of core AI concepts. These will
possibly include: Designing an evaluation heuristic for an AI game Simple applications
in areas such as logic/learning/
Schedule:
Date
Topic
Reading
15
26 July
16
17
18
19
20
21
22
23
24
8 Aug
9 Aug
15 Aug
16 Aug
22 Aug
23 Aug
29 Aug
30 Aug
5 Sept
Introduction to AI
Intelligence Agents
Uninformed Search I
No Class
Introduction to Python Programming
Uninformed Search II
Informed Search: Heuristic function
Informed Search: Local Search
Constraint Satisfaction Problems
Games Playing
Propositional logic
Propositional logic + First-Order Logic
First-Order Logic
Inference in First-Order Logic
Inference in First-Order Logic, Intro. to
Prolog
Intro. to Prolog
Midterm Examination
Intro. to Prolog
Knowledge Representation
Planning I
Planning II
Uncertainty (Probability)
Bayesian Networks
Inference in Bayesian Networks
AI and Expert System
Natural Language Processing I
Ch. 1 R&N
Ch. 2 R&N
Ch. 3 R&N
4
5
6
7
8
9
10
11
12
13
14
5 June
6 June
13 June
14 June
20 June
21 June
27 June
28 June
4 July
5 July
11 July
12 July
18 July
19 July
25 July
25
26
27
6 Sept
12 Sept
13 Sept
Natural Language Processing II
Introduction to Machine Learning
Neural Networks
Ch. 20 BC
Ch. 10 BC
Ch. 11 BC
28
19 Sept
Neural Networks II
Ch. 11 BC
29
20 Sept
Neural Networks III
Ch. 11 BC
30
26 Sept
Genetic Algorithm I
Ch. 14 BC
31
27 Sept
Genetic Algorithm II
Ch. 14 BC
32
3 Oct
Summary
33
4 Oct
Review
1
2
3
Ch. 3 R&N
Ch. 4 R&N
Ch. 4 R&N
Ch. 5 R&N
Ch. 6 R&N
Ch. 7 R&N
Ch.7- 8 R&N
Ch. 8 R&N
Ch. 9 R&N
Ch. 9 R&N
Ch.3 &1 7 BC
Ch. 11 R&N
Ch. 11 R&N
Ch. 13 R&N
Ch. 14 BC
Ch. 14 BC
Ch. 20 BC
Ch. 27 R&N
-
Writing Assignments (10)
Time Reading
1
Ch.1-2
2
Ch.3-4
3
Ch.7-9
4.
Machine Learning
Marks
2
3
3
2
Programming Assignments (20)
Time Topic
1
Python
2
Searching
3
Game
4.
Prolog
5
Natural Language
Processing
Release
9 June
28 June
26 July
20 Sept
Marks
2
4
5
3
6
Release
21 June
27 June
11 July
8 Aug
5 Sept
Due
18 June
5 July
15 Aug
2 Oct
Due
28 June
12 July
25 July
22 Aug
20 Sept
Related documents