Download STUDY GUIDE FOR CHAPTER 6

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
STUDY GUIDE FOR CHAPTER 6
6.1. Systems of Linear Equations


In this section student should be bale to solve linear equations in two and three variables using:
 Addition – elimination method
 Substitution
 Using graphing calculator
Student should be able to recognize consistent, inconsistent and dependent system
Practice: Q. 23 on page 436 – use the elimination method
x y
 4
2 3
Multiply first eq. by (- 3)
3x 3 y

 15
2
2
3x
 y  12
2
Add two eq’s.
3x 3 y

 15
2
2

1
y  3 y  6
2
x 6
 4 x4
2 3
Practice – Use substitution and elimination method.
2 x  3 y  10
7x  2 y  3
1.
2.
 3x  y  18
6x  y  3
4.
3 x  2 y  6
4 x  y  14
5.
3.
3x  7 y  10
18 x  42 y  50
5 x  2 y  11
10 x  4 y  22
Practice: Q. 32 on page 436 – [System is Inconsistent]
3x  2 y  5
6x  4 y  8
Practice: Q. 33 on page 436 – [System is Dependent]
4x  y  9
 8 x  2 y  18
Practice: Q. 62 on page 438
3
p q
3
3
2
q  81  q

2
4
3
p  81  q
4
1
2 q  81
q  36


4

p
3
3
q  q  81 
2
4
3
3
q  36  54
2
4
1
Solving linear equations in three variables
Practice: Q. 40 on page 436 – Use substitution method.
4 x  y  3 z  2
3x  5 y  z  15
{(-1, 4, 2)}
Ordered triple
 2 x  y  4 z  14
3x  2 y  z  1
x  y  2 z  3
Use graphing calculator to solve the system.
2 x  3 y  z  8
Practice: Q. 55 on page 437
(2,3)
y  ax 2  bx  c
(-1,0) (-2,2)
Solution:
(2,3)
3  a  22  b  2  c
3  4 a  2b  c
(-1,0) 0  a  b  c
Use graphing calculator to solve the system
(-2,2) 2  4a  2b  c
Practice: Q. 56 on page 437
Practice: Q. 69 on page 439
6.2. Matrix Solution of Linear Systems

In this section student should be able to solve systems of linear equations in two and three variables using
Gauss-Jordan method.
Example:
1 x  2 y  5
2 x  1  y  2
Form the augmented matrix from variable coefficients:
1
2
5
2
1 2
Gauss-Jordan method requires writing the matrix in the following form:
1 0 a
Then a, and b are the solution of the system
0 1 b
Or for the system of three equations:
1 0 0 a
0 1 0 b
0 0 1 c
2
Matrix Row Transformation:
1. Any two rows can be interchanged.
2. The elements of nay row may be multiplied by a nonzero real number.
3. Any row may be changed by adding to its elements a multiple of elements of another row.
1x  2 y  5
Practice: Solve the system of equations by performing raw transformation:
2 x  y  2
1 2 5
2 1 2
1 2
5
0  3  22
Change R2 with following (-2R1+R2)
1 2 5
0 1 4
1 0 3
Change R1 with following [-2R2+R1]
0 1 4
Practice:
3x  4 y  1
2 x  3 y  10
5 x  2 y  19
2x  2 y  5
Change R2 with following [R2/(-3)]
 x  3
 y4
4 x  2 y  3z  4
3x  5 y  z  7
5x  y  4 z  7
6.3. DETERMINAT SOLUTION OF LINEAR SYSTEMS

Students should be able to evaluate 2 x 2 and 3 x 3 determinant.
Determinant of a matrix is used to determine whether a system of equations has a single solution, and if so, find
the solution.
Evaluating (2 x 2) determinant:
a11 a12
 a11a22  a21a12
a21 a22
Practice:
y
8
3 1

6 2
2
 y 2  16  ( y  4)( y  4)
y
3 1

2 0
y 3

2 x
Evaluating (3 x 3) matrix
a11 a12
a21 a22
a31 a32
a13
a23  ( a11a22a33  a12a23a31  a13a21a32 )  ( a31a22a13  a32a23a11   a33a21a12 )
a33
3
Practice on evaluating determinants:
3
2
1
0 
3
6
5 6
2
0 0 0
3 1 5 
6 7 9
4 2 1
3 0 5 
1 4 2
CRAMER’S RULE
For a system:
a1 x  b1 y  c1
a 2 x  b2 y  c2
The three determinants are:
D
a1
a2
b1
b2
Dx 
c1
c2
b1
b2
Dy 
a1
a2
c1
c2
If D = 0, Cramer’s rule does not apply – use other method.
The solution for the system is:
Dy
D
x x
y
D
D
Practice:
5 x  4 y  10
3 x  7 y  6
D
5 4
 94
3 7
Dx 
10 4
0
6 7
Dz 
5 10
3 6
x=2
y=0
Practice:
x yz4
2 x  y  3z  4
nx  ( n  1) y  ( n  2
( n  3) x  ( n  4) y  ( n  5)
4 x  2 y  z  15
4
6.4. Partial Fractions
6.5. Nonlinear Systems of Equations
In this section student should be able to solve the system with on linear and one nonlinear equation (Fe. straight
line and parabola)
y  x2  2
Practice:
Use substitution method to find the interception and check your
x y0
work with graphing calculator.
Solution: Solve second equation for y and substitute in the first equation.
x  x2  2
x2  x  2  0
( x  2)( x  1)  0
x   2  y  2
x 1 y 1
( 2,2)
(1,1)
Graphical representation of the solution:
-4
-3
4
3
y=-x 2+2 2
1
0
-2
-1 -1 0
-2
-3
-4
x-y=0
1
2
3
4
The coordinates of two points of intercept are the solution of the nonlinear system
Practice:
x  y 1
y  x2  1
y  ( x  3) 2
x  2 y  2
y  x2  4x
2 x  y  8
y  x 2  6x
3x  2 y  10
6.6. SYSTEM OF INEQUALITIES – LINEAR PROGRAMING
Solve the system of inequalities:
x  2 y  10
y  x2  1
The intersection of a solution sets of the two inequalities is the solution of the both inequalities. To obtain the
solution graph both inequalities in the same coordinate system:
5
If P =2x + 3y, find the maximum value of P subject to given constrains:
x>0
y>0
x+y<4
2x + y < 6
Procedure:
1.
2.
3.
4.
5.
Graph each inequality
Find the region of feasible solution – region that contain solution for each inequality
Find the coordinates of vertices of the region of feasible solution
Calculate P for the coordinates of each vertices
One of the vertices will generate maximum P
6.7. Properties of Matrices

Student should be able to add, subtract, and multiply matrices manually and using graphing calculator.
Equivalent matrices – Corresponding elements are equal
x z
1 c

y 1
0 a


x  1
y0
zc
a 1
Adding two matrices – if they are of same size.
9 4
3 2
6
6


8 2
4 7
 12 9
If

3
A
4
and
1
B 2
3
Then A + B – never exist
Definition of Zero matrix – All elements are zero.
A+(-A)=0
3 1
 3 1
0 0


4 2
 4 1
0 0

Subtracting matrices – if they are of same size.
Practice: Solve for all variables:
2k  8 y
5k  6 y
 3k  2 y


6 z  3x
2 z  5x
4z  2x

2k  8 y  (5k  6 y )  3k  2 y
 Solve the system
6 z  3x  ( 2 z  5 x )  4 z  2 x
6
Practice: Solve for all variables
x  2 1
2 x 10
10 9


 Generate two equations
2
y
2 8
4 5y
Multiplication of matrices

By the definition the product of (m x n) matrix and (n x p) matrix is said to exist because “the # of columns
in first matrix is equal to the # of rows in second matrix”
Matrix A
Matrix B
(3x2)
(2x 4)
Must match
3 x 4 is the size of A x B
Practice Q. 35 on page 501.
2 2 1
A
3 0 1
0 2
B  1 4
0 2
c11 c12
 2 10

c21 c22
0 8
A B 
c11  2  0  2  ( 1)  ( 1)  0  2
c21  3  0  0  ( 1)  1  0  0
c12  2  2  2  4  ( 1)  2  10
c22  3  2  0  4  1  2  8
6.8. MATRIX INVERSES

Identity matrix is square matrix with 1’s on a left-to-right diagonal and zero all other elements:
1 0 0
1 0
Example of 2 x 2 identity matrix:
and 3 x 3 identity
0 1 0
0 1
0 0 1

Multiplication property of identity of matrices:
matrix.
A I  A
INVERSE MATRIX A-1 is a matrix such: A  A1  I
and
where A is any matrix and I is identity
A1  A  I
A – matrix
A-1 – inverse of A
I – Identity matrix
Inverse matrix can be found for only square matrices (number of rows equal to number of columns).
7
Procedure for finding inverse matrix:
TO obtain A-1 for any (n x n) matrix, for which A-1 exist, follow the steps:
1. Form an augmented matrix A I n  where In is (n x n) identity matrix.
2. Perform raw transformation on A I n  to get matrix of a form: I n B
3. Matrix B is A-1.
Example: Find the inverse of A:
A
6 4
3 2
3
2 3 1 0
1
1
R1( ) 
2
3 4 0 1
2
3 4
1 3
0
A1 
2
1
1
1
1 3
0
0
2
2
R
2

3

R
1

R 2 /(  1 ) 
2
2
3
1
0

1
0 1
2
2
1 0 4 3
0
2
R1  3 R 2 
2
0 1 3 2
3 2
1
4 3
3 2
Example of solving the system of equations using matrix method.
2 x  3 y  10
2 x  4 y  12
Matrix equation for the system:
2 3
x
 10


3 4
y
 12
A  X   B  X   A1  B
A1  ?
A1 
4 3
3 2
x  A1  B 
4 3
 10
4


3 1
 12
6
Solution of the system:
x = 4, and y = 6.
8
Related documents