Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigonometric Equations I By Mr Porter Basic Knowledge 1 1: Students need a basic understanding of solving a) Linear type equations: 3x + 1 = - 17 b) Quadratic Equations: 2x2 – 3x + 1 = 0 2: Students need a basic understanding of trigonometric identities: cos2 q + sin 2 q = 1 cos (a - b ) = cos a cos b + sin a sin b 1+ tan 2 q = sec2 q sin (a - b ) = sin a cos b - sin b cos a cot 2 q +1 = cosec2 q tan (a - b ) = cos (a + b ) = cos a cos b - sin a sin b sin (a + b ) = sin a cos b + sin b cos a tan a + tan b tan (a + b ) = 1- tan a tan b tan a - tan b 1+ tan a tan b tan 2a = 2 tan a 1- tan 2 a sin2a = 2sin a cos a cos2a = cos2 a - sin 2 a Basic Knowledge 2 1: Students must know the exact values triangles used in trigonometry. 30° 2 3 1 1 60 ° 45 ° 2 1 45 ° 2: Students must know the acute angle equivalent of angles of any magnitude in trigonometry 90 ° Sin(+) 180 ° All (+) 180° — θ° 180° + θ° Tan(+) θ 0°(36 ° 360° — 0°) θ° Cos(+) 270 ° Radian Angles Radian Angles are part of the HSC course, but some questions are written in radians. Radian Conversion Degrees (θ) to Radians (x) x =q ´ 30° : p q = x´ 180 x = 30 ´ x= π radians = 180° Radian (x) to Degrees (θ) p 5p : 6 p 180 2 1 4 2 p p 4 3 1 5p 180 ´ 6 p q = 150° q= p 2 Sin(+) p p 6 p 6 Exact Values Triangles in Radians 3 180 p All (+) π—x Note the following angles: x 0 or 2π π +x 2π – x Tan(+) Cos(+) 1 3p 2 30° = p 6 45° = p 4 60° = p 3 If you have a single trigonometric function, make it the subject of the equation. Example 1: Solve 2 sin θ – 1 = 0, for 0° ≤ θ ≤ 360° Solution: 2sinq -1 = 0 2sinq = 1 1 sinq = 2 So, the solutions are We can use the degree exact values triangles (or calculator) to find an angle that gives ½. Sin(+) 2 1 sin A = 60 ° 1 2 æ 1ö A = sin -1 ç ÷ è 2ø A = 30° θ = 30° or θ = 150° 90 ° 30° 3 Degrees should be used in the solution. 180 ° All (+) 180° — θ° 180° + θ° Tan(+) θ 0°(36 ° 360° — 0°) θ° Cos(+) 270 ° The trigonometric angle circle, tells us there are two possible POSITIVE sine angle ratios A and 180 - A A = 30° or A = 180° - 30° A = 150° Always check your answer(s) using a calculator! If you have a single trigonometric function, make it the subject of the equation. Example 2: Solve 3 cos θ + 1 = 0, for 0° ≤ θ ≤ 360° Solution: 3cosq +1 = 0 3cosq = -1 1 cosq = 3 So, the solutions are Note: 1/ 3 givens us the acute angle required. – tells us which Quadrant to look in. 1 cos A = 3 90 ° Sin(+) æ 1ö A = cos -1 ç ÷ è 3ø A = 70°32 ' Degrees should be used in the solution. 180 ° θ = 109°28’ or θ = 250°32’ All (+) 180° — θ° 180° + θ° Tan(+) θ 0°(36 ° 360° — 0°) θ° Cos(+) 270 ° The trigonometric angle circle, tells us there are two possible NEGATIVE cosine angle ratios 180 – A and 180 + A A = 180° - 70°32' or A = 109°28' A = 180° + 70°32' A = 250°32' Always check your answer(s) using a calculator! If you have a single trigonometric function, make it the subject of the equation. Example 3: Radians should be used in the solution. Solve 6 sin 2θ = 3, for 0 £ q £ 2p Note: Original domain 0 ≤ θ ≤ 2π then for 2θ, domain is 0 ≤ 2θ ≤ 4π Solution: 6sin2q = 3 1 sin 2q = 2 1 sin A = 2 p -1 æ 1 ö 6 A = sin ç ÷ 3 è 2ø A= p Note: 1/ 2 givens us the acute angle required. + tells us which Quadrant to look in. p 2 Sin(+) 2 p p π—x x 0 or 2π 2π – x Tan(+) 6 3p 2 p 6 or A=p A= 5p 6 p 6 q= 6 ,p - p , 2p + p , 3p - p 6 p 5p 13p 17p , 12 12 , 12 , 12 Cos(+) The trigonometric angle circle, tells us there are two possible POSITIVE sine angle ratios A and π – A in 0 ≤ A ≤ 2π. A= p 6 6 p 5p 13p 17p = , , , 6 6 6 6 So, the solutions are All (+) π +x 3 1 2q = Always check your answer(s) using a calculator! If you have a single trigonometric function, make it the subject of the equation. Example 4: æx ö Solve 4 sin ç + 30°÷ = 3 , for 0° £ x £ 360° è2 ø Solution: æx ö 4 sin ç + 30°÷ = 3 è2 ø æx ö 3 sin ç + 30°÷ = è2 ø 4 sin A = 90 ° 3 4 æ 3ö A = sin -1 ç ÷ è 4ø Note: 3/ 4 givens us the acute angle required. + tells us which Quadrant to look in. Sin(+) 180 ° All (+) 180° — θ° 180° + θ° Tan(+) θ 0°(36 ° 360° — 0°) θ° Cos(+) 270 ° A = 48°35 ' The trigonometric angle circle, tells us there are two possible POSITIVE sine angle ratios A and 180° – A in 0° ≤ A ≤ 360°. So, A = 48°35 or A = 131°25’ Degrees should be used in the solution. Note: Original domain 0° ≤ x ≤ 360° then for ˆx/2, domain is 0° ≤ ˆx/2 ≤ 180° x + 30° = 48°35, 131°25' 2 So, subtracting 30° x = 18°35, 101°25' 2 x = 37°10, 202°50' Always check your answer(s) using a calculator! If you have a single trigonometric function, make it the subject of the equation. Example 5: 1 , for 2 Solve cos 2x ³ 0 £ x £ 2p Solution: Solve for the equals case. 1 Note: cos 2x = 1/ √2 givens us the acute angle 2 required. + tells us which Quadrant to look in. 1 cos A = 2 æ 1 ö A = cos -1 ç è 2 ÷ø A= Note: Original domain 0 ≤ x ≤ 2π then for 2x, domain is 0 ≤ 2x ≤ 4π p 7p 9p 15p 2x = , , , 4 4 4 4 p 7p 9p 15p x= , , , 8 8 8 8 To solve the inequality, you need to test in-between the above boundary points plus x = 0 and x = 2π OR use a neat sketch. p 2 Sin(+) p 1 p Radians should be used in the solution. 4 2 p p 4 4 1 All (+) π—x x 0 or 2π π +x 2π – x Tan(+) Cos(+) 3p 2 The trigonometric angle circle, tells us there are two possible POSITIVE cosine angle ratios A and 2π – A in 0 ≤ A ≤ 2π. So, A = p 4 or A= 7p 4 Solutions are: 0£x£ p 8 , 7p 9p 15p £x£ , £ x £ 2p 8 8 8