Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lesson 2-5 Perpendicular Lines (page 56) Essential Question Can you justify the conclusion of a conditional statement? Perpendicular Lines (⊥-lines): … two lines that intersect to form right angles. Example: m n If m ⊥n, ∠4 then _____, ∠1 _____, ∠2 _____, ∠3 and _____ are right angles. Example: 1 2 4 3 m n How many angles must be right angles in order for the lines to be perpendicular? 1 _____ Theorem 2-4 ⊥-lines ⇒ ≅ adj∠’s If two lines are perpendicular, then they form congruent adjacent angles. Given: l⊥n Prove: ∠1, ∠2, ∠3, & ∠4 are congruent angles. l 2 1 3 4 n l Given: l ⊥ n Prove: ∠1, ∠2, ∠3, & ∠4 are congruent angles. Statements 2 1 3 4 n Reasons 1. ___________________ ___________________ See page 57 2. ___________________ ___________________ Classroom Exercises 3. ___________________ ___________________ #1 for HELP! 4. ___________________ ___________________ l Given: l ⊥ n Prove: ∠1, ∠2, ∠3, & ∠4 are congruent angles. Statements 2 1 3 4 n Reasons 1. ___________________ ___________________ l⊥n Given 2. ∠1, ___________________ ∠2, ∠3, & ∠4 Rt.∠’s ___________________ Def. of ⊥-lines 3. ∠1, ___________________ ∠2, ∠3, & ∠4 90º∠’s ∠2, ∠3, & ∠4 ≅ ∠’s 4. ∠1, ______________________ ___________________ Def. of Rt.∠’s ___________________ Def. of ≅ ∠’s Theorem 2-5 2 lines form ≅ adj∠’s ⇒⊥-lines If two lines form congruent adjacent angles, then they are perpendicular . Given: ∠1 ≅ ∠2 Prove: l ⊥ n l 2 1 n Note: This is the converse of Theorem 2-4. l Given: ∠1 ≅ ∠2 Prove: l ⊥ n Statements 2 1 n Reasons 1. ___________________ ___________________ See page 58 2. ___________________ ___________________ Written 3. ___________________ ___________________ Exercises ___________________ #2 for HELP! 4. ___________________ ___________________ 5. ______________________ ___________________ l Given: ∠1 ≅ ∠2 Prove: l ⊥ n Statements 2 1 n Reasons 1.∠1 ___________________ Given ≅ ∠2, or m∠1 = m∠2 ___________________ 2. ___________________ ___________________ Angle Add. Post. m∠1 + m∠2 = 180º 3. ___________________ ___________________ m∠2 + m∠2 = 180º Substitution Prop. ___________________ ( 2 m∠2 = 180º ) (Distributive Prop.) Division Prop. 4. ___________________ ___________________ m∠2 = 90º 5. ______________________ ___________________ l⊥n Def. of ⊥-lines Theorem 2-6 Ext S 2 adj A∠’s ⊥ ⇒ comp ∠’s If the exterior sides of two adjacent acute angles are perpendicular , then the angles are complementary. Given: Prove: OA ^ OC A • ∠AOB and ∠BOC B are comp. ∠‘s O • • C Given: OA ^ OC Prove: ∠AOB and ∠BOC A • B are comp. ∠‘s • O Statements 1. 2. 3. 4. • C Reasons ___________________ ___________________ See page 59 ___________________ ___________________ Written ___________________ ___________________ Exercises ___________________ ___________________ #13 for HELP! 5. ______________________ ___________________ Given: OA ^ OC Prove: ∠AOB and ∠BOC A • B are comp. ∠‘s • O Statements 1. 2. 3. 4. ___________________ OA ^ OC ___________________ m∠AOC = 90º ___________________ m∠AOB + m∠BOC = m∠AOC ___________________ m∠AOB + m∠BOC = 90º 5. ∠AOB ______________________ & ∠BOC are comp. ∠‘s • C Reasons ___________________ Given ___________________ Def. of ⊥-lines ___________________ Angle Add. Post. ___________________ Substitution Prop. Def. of comp. ∠‘s ___________________ Example: Name the definition or theorem that justifies each statement about the diagram. B 1 2 A 3 5 4 6 C 8 7 D (a) If AB^ BC, then ÐABC is a right angle. Def. of ⊥-lines _________________________________ Example: Name the definition or theorem that justifies each statement about the diagram. B 1 2 A 3 5 4 6 C 8 7 D (b) If BD ^ AC, then Ð3@ Ð4. ⊥-lines ⇒ ≅ adj∠’s _________________________________ Example: Name the definition or theorem that justifies each statement about the diagram. B 1 2 A 3 5 4 6 C 8 7 D (c) If DC ^ DA, then Ð7 and Ð8 are complementary. Ext _________________________________ S 2 adj A∠’s ⊥ ⇒ comp ∠’s Example: Name the definition or theorem that justifies each statement about the diagram. B 1 2 A 3 5 4 6 C 8 7 D (d) If ∠7 & ∠8 are complementary, then m∠7 + m∠8 = 90º. Def. of comp ∠’s _________________________________ Example: Name the definition or theorem that justifies each statement about the diagram. B 1 2 A 3 5 4 6 C 8 7 D (e) If Ð4 @ Ð6, then AC ^ BD. 2 _________________________________ lines form ≅ adj∠’s ⇒⊥-lines Example: Name the definition or theorem that justifies each statement about the diagram. B 1 2 3 5 A 4 6 C 8 7 D (f) ∠4 ≅ ∠5. Vertical ∠’s R ≅ _________________________________ Example: Name the definition or theorem that justifies each statement about the diagram. B 1 2 A 4 6 3 5 C 8 7 D (g) If ∠ABC is a right angle, then m∠ABC = 90º. Def. of Rt. ∠ _________________________________ If ZW ⊥ ZY, m∠1 = 5x, and m∠2 = 2x - 1, find the value of x. Example. 13 x = ______ W• V 1 Z 2 • mÐ1 + mÐ2 = 90º 5x + 2x -1= 90 7x = 91 x =13 mÐ2 = 2x -1 • Y mÐ1= 5x mÐ1= 5(13) mÐ2 = 2(13)-1 65º+25º mÐ1= 65º mÐ2 = 26-1 = 90º mÐ2 = 25º Assignment Written Exercises on pages 58 & 59 RECOMMENDED: 15 & 17 REQUIRED: 3 to 11 odd numbers, 19 to 25 odd numbers Prepare for a Quiz on Lessons 2-2 to 2-5: Justifications Can you justify the conclusion of a conditional statement?