Download Lecture 21

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lecture 21
Network Function
and s-domain Analysis
Hung-yi Lee
Outline
• Chapter 10 (Out of the scope)
• Frequency (chapter 6) → Complex Frequency (sdomain)
• Impedance (chapter 6) → Generalized
Impedance
• Network function
What are we considering?
Final target
Chapter 6
and 7
Complete
Response
Chapter 5 and 9
What really
observed
Zero State
Response
Zero Input
Response
Forced
Response
Natural
Response
Steady State
Response
Transient
Response
x(t )  A cost   
What are we considering?
Final target
Complete
Response
Chapter 5 and 9
What really
observed
Zero State
Response
Zero Input
Response
Forced
Response
Natural
Response
Steady State
Response
Transient
Response
This lecture
x(t )  Aet cost   
Complex Frequency
Complex Frequency
In Chapter 6
Current or Voltage Sources
x(t )  A cost   
Currents or Voltages in the circuit
x(t )  A cost   
 The same frequency
 Different magnitude and phase
In Chapter 10
Current or Voltage Sources
Currents or Voltages in the circuit
t
t

x
(
t
)

A
e
cost   
x(t )  Ae cost   
 The same frequency and exponential term
 Different magnitude and phase
You can observe the results from differential equation.
Complex Frequency
s plane
x(t )  Aet cost   
Phasor:
X  A
Complex
Frequency:
s    j
Generalized Impedance
Complex Frequency - Inductor
For AC Analysis
(Chapter 6)
iL (t )  I m cost  i 
iL (t )
vL (t )  LI m sin t  i 
vL (t )

 LI m cos t  i  90
I L  I m i

Impedance of inductor
vL (t )  L
diL (t )
dt


VL  LI m  i  90
LI m i  90 
ZL 

 L90  jL
IL
I m i
VL

Complex Frequency - Inductor
x(t ) 
Aet cost   
iL (t )  I m et cost  i 
vL (t )  LI met cost  i   LI m et sin t  i 
 LI m et  cost  i    sin t  i 
iL (t )
vL (t )
vL (t )  L
diL (t )
dt


 LI m e    
cost  i 
2
2
  



sin t  i 
2
2
 

t
2
2


 LI m et  2   2 cos t  i  tan 1 


Complex Frequency - Inductor
iL (t )  I m et cost  i 
I L  I m i


VL  LI m  2   2  i  tan 1 


vL t   LI m et  2   2

1  
cos t  i  tan



Generalized Impedance of inductor
ZL 
VL
IL

LI m

1  
    i  tan

   L  2   2  tan 1  



I m i
2
2



 L    
j
2
2
 2 2
  
2
2

    j L  sL


s    j
Generalized Impedance
• Generalized Impedance (Table 10.1)
Element
Impedance
Generalized
Impedance
Resistor
Inductor
R
j L
R
sL
Capacitor
1 / j C
1 / sC
Special case:
s  j
The circuit analysis for DC circuits can be used.
Example 10.2
1
F
10
v(t )  20e  2t cos(4t  90 )V
L  1H, R  5, C 
1 
R

Z ( s )  sL   R //

sL


sC
sCR  1


 2.5143
s domain
diagram
V  2090 V
s  2  j 4
V
2090

I


8


53
Z ( s ) 2.5143
i (t )  8e 2t cos(4t  53 )A
Network Function
Network Function / Transfer
Function
• Given the phasors of two branch variables, the ratio of the
two phasors is the network function/transfer function
Y
Hs  
X
phasors of current or voltage
Complex number
The ratio depends on complex frequency
Y  Hs X
X : input
Y : output
Network Function / Transfer
Function
• Network Function/Transfer Function is not new
idea
I
V
Impedance: Zs  
I
1
I
Admittance: Ys  

Z s  V
V
Y
Hs  
X
Impedance and admittance are
special cases for network function
Network Function / Transfer
Function
Y
Hs  
X
Current or voltage
Current or voltage
In general, network function can have four meaning
Hs  
V2
Hs  
I2
V1
I1
Voltage Gain
V
Hs  
I
“Impedance”
Current Gain
I
Hs  
V
“Admittance”
Example 10.5
VL
Vs
I L sL
VR
R IC
1
sC
H1 ( s ) 
H1 s  
1 

Vs  I L  sL  R 

sC 

IL
Vs
IL
Vs
VC
Polynomial of s

1
sL  R 
1
sC

sC
s 2 LC  sRC  1
Polynomial of s
Example 10.5
VL
Vs
I L sL
VR
R IC
1
sC
H 2 (s) 
VL
Vs

VC
sL
1
sL  R 
sC
Polynomial of s
s 2 LC
 2
s LC  sRC  1
Polynomial of s
Network Function / Transfer
Function
Y  Hs X
| Y || Hs  || X | Y   Hs   X 
|H(s)| is complex
frequency
dependent
 4  j7
s    j
s  0 represents dc
H (0) is the dc gain
Output will be
very large when
x(t )  Ae 4 t cos7t   
Example 10.5 –
Check your results by DC Gain
VL
Vs
I L sL
VR
R IC
1
sC
VC
For DC
IL
sC
s 2 LC  sRC  1
H1 0   0
Capacitor =
open circuit
2
s
LC
H 2 (s) 
 2
Vs
s LC  sRC  1
H 2 0   0
Inductor =
short circuit
H1 ( s ) 
Vs
VL

Example 10.5 –
Check your results by Units
VL
VR
R IC
I L sL
Vs
1
sC
A
C:F  t
V
A
V
L:H  t
A
V
R : 
A
1 A
t
t V
V
IL
sC
H1 ( s ) 
 2
Vs
s LC  sRC  1
V
2
 1   V  A 
   t  t 
 t   A  V 
1V A
t
t A V
1
s:?
t
VC
2
 1   V  A 
   t  t 
 t   A  V 
VL
2
s
LC
H 2 (s) 
 2
Vs
s LC  sRC  1
V
1
 
t
2
 V  A 
 t  t 
 A  V 
1V A
t
t A V
Zeros/Poles
Poles/Zeros
• General form of network function
bm s m  bm 1s m 1    b1s  b0 Ns 
H (s) 

n
n 1
an s  an 1s    a1s  a0 Ds 
The “zeros” is the root of N(s).
If z is a zero, H(z) is zero.
The “poles” is the root of D(s).
If p is a pole, H(s) is infinite.
Poles/Zeros
• General form of network function
bm s m  bm 1s m 1    b1s  b0
H (s) 
an s n  an 1s n 1    a1s  a0
bm 1 m 1
b0
b1
s 
s  s 
bm
bm
bm
bm

s  z1 s  z 2  s  z m 

K
a
a
a
an s n  n 1 s n 1    1 s  0
s  p1 s  p2  s  pn 
an
an
a1
m
bm
K
an
m zeros: z1, z2, … ,zm
n poles: p1, p2, … ,pn
Example 10.8
s 4  16s 3  164s 2
H (s)  5
s  32 s 2  36 s 2  40s  400


Denominator:
Numerator:
s 4  16 s 3  164 s 2

 s  s  s  16s  164
2

Find its zeros and poles

 s  0s  0s  z3 s  z 4 
z3 and z4 are the two
roots of s2+16s+164
Zeros:
z1=0, z2=0,
z3=-8+j10, z4=-8-j10
s  32  p1  32
s 2  36  p2 , p3   j 6
s 2  40 s  400  p4  p5  20
Poles:
p1=-32, p2=j6, p3=-6j,
p4=-20, p5=-20
Example 10.8
s 4  16s 3  164s 2
Find its zeros and poles
H (s)  5
2
2
s  32 s  36 s  40s  400
Zeros:
Poles:
z1=0, z2=0,
p1=-32, p2=j6, p3=-6j,
z3=-8+j10, z4=-8-j10 p4=-20, p5=-20


Pole and Zero Diagram
Zero (O), pole (X)
We can read the characteristics of the
network function from this diagram
For example, stability of network

Stability
• A network is stable when all of its poles fall within
the left half of the s plane
Y  Hs X
If p = σp + jωp is a pole
H(p)=∞
If the output is y t   Ae cos p   
p
Y
Y
X
 0
H p  
Complex
frequency is p
No input ……
The waveforms corresponding to the complex
frequencies of the poles can appear without input.
Stability
• A network is stable when all of its poles fall within
the left half of the s plane
The poles are at
the right plane.
Appear
automatically
Unstable
The poles are at
the left plane.
Appear
automatically
Stable
Stability
• A network is stable when all of its poles fall within
the left half of the s plane
σp = 0
The poles are on
the jω axis.
Appear
automatically
Marginally stable
oscillator
Thank you!
Acknowledgement
• 感謝 趙祐毅(b02)
• 在上課時指出投影片中的錯誤
Appendix
What is Network/Transfer
Function considered?
Input
Output
Natural
Response
Forced
Response
Network
Function H(s)
Natural Response
• It is also possible to observe natural response from
network function.
Y  Hs X
Differential Equation
Fix ω0, decrease α
1 , 2     2  02
The position of the two roots λ1 and λ2.
α=0
Undamped
Time-Domain Response of a
System Versus Position of Poles
(unstable)
(constant magnitude
Oscillation)
(exponential decay)
The location of the
poles of a closed
Loop system is shown.
Cancellation
Example 10.3 - Miller Effect
Vin
Vin
Zin 

Vin  Vout
I1
1
sC
Vin

sC Vin  Vout


Vin

sC Vin   AVin

1
sC 1  A


Capacitor with
capacitance C(1+A)
Example 10.3 - Miller Effect
Vout
Vout
Zout 

Vout  Vin
I2
1
sC
Vout

sC Vout  Vin


 AVin

sC  AVin  Vin 

A

sC 1  A
1
 1
sC 1  
 A
Capacitor with C 1  1 


capacitance
 A
Example 10.3 - Miller Effect
Related documents