Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
It’s Happening: The Cost of Convenience Phenology Phenology is the study of the timing of natural events in the biological world (“What is Phenology”). These events include everything from what time flowers bloom during the year to the timing of whale migrations. Organisms often align themselves with phenological events in order to interact with one another through predation or symbiosis. Ecosystems are heavily reliant on events working time in order to function smoothly. There are three major abiotic factors that affect phenology. The first is precipitation, or the amount of rain that an area receives. Plants rely on water to further their life cycles, while some insects use pools of water to breed and lay eggs. Precipitation rates often vary throughout the year, signaling changes in organisms which are rainfall-dependent. The second abiotic factor is the amount of sunlight an area receives. In the northern hemisphere, spring and summer occur when the Earth is farthest from the sun but receives more Figure 1: An example of precipitation. radiation due to the tilt of the Earth’s axis. During this time, days are longer and nights shorter. Fall and winter occur when the Earth is closest to the sun, but receives less radiation because the Earth is tilting away from the sun. Nights grow longer during this period and the days shorter. This is reversed in the southern hemisphere. Plants and other organisms that photosynthesize need sunlight to complete their metabolic cycles. When days grow shorter and the amount of light increases, plants will revert to anaerobic respiration and often go into a dormant stage. For example, trees will lose their leaves during fall and winter. When the amount of light increases, the plants will grow leaves to capture the light for photosynthesis again. The final abiotic factor that affects phenology is the temperature of an area. Organisms often have temperature-specific gene and behavioral responses which are triggered by an increase or decrease in temperature. For example, dogwood trees begin to bloom once the area reaches a certain temperature which corresponds with spring in most areas, and many animals begin to lose winter molts after temperatures increase and snow would no longer be present. Temperature also dictates the length of time an organism may survive in a certain area. Mosquitoes and many other insects begin to breed as the temperatures grow warmer and them die off or hibernate as cooler temperatures approach, creating a natural cycle of life and death. Check This Video: http://www.youtube.com/watch?v=RNs3XpRmRfI for more on how phenology is defined and how it works. Of the three factors, temperature and precipitation are the two which are most affected by climate change. Human actions which cause an increase in greenhouse gases not only result in a warmer overall temperature, but more specifically affects the established climate in certain areas with dramatically different results. Locations that have historically been arid could become more inhospitable, perhaps becoming colder and receiving less rainfall. Areas that are warm and wet could become warmer and receive more violent storms. This change in precipitation and temperature could affect the phenological cycles of some organisms and not others, throwing off the delicate timing that the organisms have established over thousands of years. Additionally, humans change the environment through urbanization and deforestation. In urban areas, temperatures can deviate from unaltered landscape due to changes in albedo and result in 1 It’s Happening: The Cost of Convenience some species receiving warmer or cooler temperatures than on average. Once again, phenological cycles that depend on temperature would be altered by this urbanization effort. Climate change’s impact on phenology is indirect. Overall, the changing climate affects the three factors that affect phenology directly. Climate is the composite or generally prevailing weather conditions of a region, such as temperature, air pressure, humidity, precipitation, sunshine, cloudiness, and winds, throughout the year, averaged over a series of years. As these factors are changing the phenology in different environments changes as well. For example, take a flower that blossoms when the temperature is between 50 and 65 degrees Fahrenheit. If the temperature in a specific town begins to grow warmer earlier over a few years, the blooming date of the species will move forward in response. This could be potentially harmful for animals or insects that are dependent on this species. Case Study: Edith’s checkerspot butterfly (Adapted from Hannah 9) The Edith’s checkerspot butterfly of the Nymphalidae family lives in the northwestern United States, particularly along the Sierra Mountains. These butterflies fed primarily upon the nectar of the blueeyed Mary, whose blossoms while the larvae pupated and the adults emerged, around March to June (“Butterflies and Moths”). However, warmer temperatures have caused the blue-eyed Mary to bloom earlier than the adults emerged. The checkerspot has recently begun to feed upon the English plantain more frequently as a result, or have moved to higher elevations where the blooming of the Mary matched the butterfly’s normal flight time. The blue-eyed Mary now lacks a primary pollinator, which the English plantain has gained, and is now less capable of Figure 2: The English Plaintain reproducing. Figure 3: The Edith’s Checkerspot Butterfly Figure 4: The Blue Eyed Mary As climate change alters the timing of phenological events, organisms that rely on one another can no longer depend on their relationships to occurs at the same time. As with the case of the Edith’s checkerspot and the blue-eyed Mary, organisms that have a symbiotic relationship might find one partner arriving too early or too late, which could result in starvation or other undesirable effects among one or both of the partners. Conversely, other less-desirable organisms might benefit from the change in phenological events which could cause considerable damage. As the weather grows warmer and wetter in some parts of the world, insects are breeding and developing at a more aggressive rate, and staying around 2 It’s Happening: The Cost of Convenience for longer than before. When this occurs with disease vectors, such as the mosquito, the rate of deadly infections could increase exponentially (USA NPN). Lab: A potential lab that could be performed to show the effects of a changing climate is to change the different amounts of sunlight and water that plants are receiving. This will effectively demonstrate the responses plants can have to a climate that is constantly changing. To perform this lab you will need: 4 cosmos flowers, 2 heat lamps and access to water. 1. Place the first flower under a heat lamp. For this flower you will maintain the same amount of heat, representing an increase in temperature. You must also provide the cosmo with 300 mL of water each day to represent normal water amounts. 2. Place the second flower in sunlight and give the flower 300 mL of water a day. This is your control plant. 3. Place the third flower under a heat lamp. This plant will recieve 600 mL of water daily. The increase in water as well as the extra heat represents a climate where an increase in heat and water has happened. 4. Place the fourth flower into sunlight and give the plant 600 mL of water a day. This plant represents an environment where no change has taken place in the temperature, but the amount of water has increased dramatically. 5. Observe the plants daily. Record any observations about the plants including, which plant blooms first, which plant blooms last, and which factor has the greatest impact on the change in timing patterns for the plant. 3 It’s Happening: The Cost of Convenience Figure 5: Four examples of cosmos To further study the effect of climate change on phenology satellite data is a very useful tool. Satellites have an ability that humans themselves do not have, to scope out changes in phenology in large areas over large amounts of time. This allows satellites to map the overall effect of climate change on phenology with ease. As an example below is included photos taken from space of the Southeast United States. Figure 6: The above data is from 2001. Figure 7: This above data is from 2012. 4 It’s Happening: The Cost of Convenience In these satellite images the maximum NDVI is represented. NDVI stands for the normalized difference vegetation index, which is a graphical indication to analyze whether an area contains live green vegetation. When viewing these images make sure to ask yourself things like how have the max NDVI months changed for the Southeastern USA between 2001 and 2012. What are some factors that could account for this change? What consequences could this change create? Keep in mind that climate change can have both negative and positive effects in different areas. In addition to ecological damage, changes in phenological events could also cause financial damage. Insects that develop more quickly and remain for longer periods of time could cause more damage to crops and affect the size of harvests. This could be even more devastating if helpful creatures, such as pollinators and natural pest control species, are not available to tend to the crops because of the changing climate. Additionally, several festivals around the world depend on phenological events. The cherry blossoms in Washington D.C. bring many tourists in from around the world, who are now often disappointed to find that the time for the blossoming already passed (USA NPN). Mathematical Model: http://www.regional.org.au/au/asa/2010/climatechange/futurefarming/7018_griffithsw.htm This model is a representation of the overall changes of climate change on phenology in grain yield. The model takes into account the predicted change in climate in Australia and its potential effects on CO2 levels, temperature and rainfall amounts and frequency. The biophysical processes in the model are driven by the climatic inputs of daily rainfall, minimum and maximum temperature, solar radiation, humidity and wind run. Glossary Phenology-the study of the timing of natural events in the biological world Abiotic-non-living and not from living organism Climate-composite or generally prevailing weather conditions of a region, such as temperature, air pressure, humidity, precipitation, sunshine, cloudiness, and winds, throughout the year, averaged over a series of years Symbiosis-a relationship between two different organisms that benefits at least one of the organisms Vector- an organism that carries a disease Normalized Difference Vegetation Index-a graphical indication to analyze whether an area contains live green vegetation Works Cited "Butterflies and Moths of North America | Collecting and Sharing Data about Lepidoptera." Butterflies and Moths of North America | Collecting and Sharing Data about Lepidoptera. Web. Hannah, Lee Jay. Climate Change Biology. Burlington, MA: Academic, 2011. Print. "What Is Phenology? - National Wildlife Federation." What Is Phenology? - National Wildlife Federation. Web. "USA NPN National Phenology Network." Why Phenology? Web. 19 May 2014. cosmos-montage-flowers.jpg 5 It’s Happening: The Cost of Convenience http://www.questionsonislam.com/article/miracle-rain http://phenology.cr.usgs.gov/get_data_250e.php 6