Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
TWO-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO A HALF-SINE PULSE FORCE Revision A By Tom Irvine Email: [email protected] March 21, 2014 _______________________________________________________________________ Two-degree-of-freedom System The method of generalized coordinates is demonstrated by an example. Consider the system in Figure 1. f2(t) k3 x2 m2 k2 f1(t) x1 m1 k1 Figure 1. A free-body diagram of mass 1 is given in Figure 2. A free-body diagram of mass 2 is given in Figure 3. 1 k2 (x2-x1) f1(t) x1 m1 k1x1 Figure 2. Determine the equation of motion for mass 1. F m1 x1 (1) m1x1 f1(t) k 2 (x 2 x1) k1x1 (2) m1x1 k 2 (x 2 x1) k1x1 f1(t) (3) m1x1 k 2 (x 2 x1) k1x1 f1(t) (4) m1x1 (k1 k 2 )x1 k 2 x 2 f1(t) (5) 2 f2(t) k3 x2 x2 m2 k2 (x2-x1) Figure 3. Derive the equation of motion for mass 2. F m2 x 2 (6) m 2 x 2 f 2 (t ) k 2 (x 2 x1 ) k 3 x 2 (7) m 2 x 2 k 2 (x 2 x1 ) k 3 x 2 f 2 (t ) (8) m 2 x 2 (k 2 k 3 )x 2 k 2 x1 f 2 (t ) (9) Assemble the equations in matrix form. m1 0 x1 k1 k 2 0 m x k 2 2 2 k 2 x1 f1 (t ) k 2 k 3 x 2 f 2 (t ) (10) Decoupling Equation (10) is coupled via the stiffness matrix. An intermediate goal is to decouple the equation. 3 Simplify, M x K x F (11) where 0 m M 1 0 m2 (12) k k 2 K 1 k2 (13) k2 k 2 k 3 x x 1 x 2 (14) f (t) F 1 f 2 ( t ) (15) Consider the homogeneous form of equation (11). M x K x 0 (16) Seek a solution of the form x q exp( jt ) (17) The q vector is the generalized coordinate vector. Note that x j q exp( jt ) (18) x 2 q exp( jt ) (19) 4 Substitute equations (17) through (19) into equation (16). 2 M q exp( jt ) K q exp( jt ) 0 (20) 2 M q K q exp( jt) 0 (21) 2 M q K q 0 (22) 2 M Kq 0 K 2 Mq 0 (23) (24) Equation (24) is an example of a generalized eigenvalue problem. The eigenvalues can be found by setting the determinant equal to zero. det K 2 M 0 k k 2 det 1 k 2 (25) k2 0 2 m1 0 m 0 k 2 k 3 2 k k 2 2 m1 det 1 k2 0 k 2 k 3 2 m 2 k2 k1 k 2 2m1 k 2 k 3 2m 2 k 22 0 (26) (27) (28) 5 k1 k 2 k 2 k 3 2 m1 k 2 k 3 2 m 2 k1 k 2 4 m1m 2 k 2 2 0 (29) m1m 2 4 m1 k 2 k 3 m 2 k1 k 2 2 k1k 3 k1 k 3 k 2 k 2 2 k 2 2 0 (30) m1m 2 4 m1 k 2 k 3 m 2 k1 k 2 2 k1k 3 k1k 2 k 2 k 3 0 (31) The eigenvalues are the roots of the polynomial. b b 2 4ac 2a (32) 2 2 b b 4ac 2 2a (33) 2 1 where a m1m 2 (34) b m1 k 2 k 3 m 2 k1 k 2 (35) c k1k 2 k1k 3 k 2 k 3 (36) The eigenvectors are found via the following equations. K 12 Mq1 0 (37) K 22 Mq2 0 (38) 6 where v q1 1 v 2 (39) w q2 1 w 2 (40) An eigenvector matrix Q can be formed. The eigenvectors are inserted in column format. Q q1 q 2 v Q 1 v 2 w1 w 2 (41) (42) The eigenvectors represent orthogonal mode shapes. Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized eigenvector matrix Q̂ can be obtained such that the following orthogonality relations are obtained. Q̂ T M Q̂ I (43) and Q̂ T K Q̂ (44) where I is the identity matrix is a diagonal matrix of eigenvalues The superscript T represents transpose. 7 Note the mass-normalized forms v̂ Q̂ 1 v̂ 2 ŵ1 ŵ 2 v̂ 2 v̂ Q̂ T 1 ŵ1 ŵ 2 (45) (46) Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial. Further discussion is given in References 1 and 2. Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial. Now define a generalize coordinate ( t ) such that x Q̂ (47) Substitute equation (47) into the equation of motion, equation (11). K Q̂ F M Q̂ (48) Premultiply by the transpose of the normalized eigenvector matrix. Q̂ T K Q̂ Q̂ T F Q̂ T M Q̂ (49) The orthogonality relationships yield Q̂ T F I (50) 8 The equations of motion along with an added damping matrix become 2 1 21 1 0 1 1 1 0 0 1 2 2 2 2 0 2 0 0 1 v̂1 2 2 2 ŵ1 v̂ 2 f1 ( t ) ŵ 2 f 2 ( t ) (51) Note that the two equations are decoupled in terms of the generalized coordinate. Equation (51) yields two equations 1 21 1 1 2 1 v̂1f1 ( t ) v̂ 2 f 2 ( t ) 1 (52) 2 2 2 2 2 2 2 ŵ1f1 ( t ) ŵ 2 f 2 ( t ) 2 (53) The equations can be solved in terms of Laplace transforms, or some other differential equation solution method. Now consider the initial conditions. Recall x Q̂ (54) Thus x (0) Q̂ (0) (55) Premultiply by Q̂ T M. Q̂ T M x (0) Q̂ T MQ̂ (0) (56) Recall Q̂ T M Q̂ I (57) 9 Q̂ T M x (0) I (0) (58) Q̂ T M x(0) (0) (59) Finally, the transformed initial displacement is (0) Q̂ T M x(0) (60) Similarly, the transformed initial velocity is (0) Q̂ T M x (0) (61) A basis for a solution is thus derived. Half-Sine Force Now consider the special case of a half-sine force applied to mass 2. f1(t ) 0 f 2 (t ) B2 sin t , (62) for t < T (63) where /T Thus, 1 21 1 1 2 1 v̂ 2 B 2 sin t 1 (64) 2 2 2 2 2 2 2 ŵ 2 B 2 sin t 2 (65) Take the Laplace transform of equation (64). 1 21 1 1 2 1 v̂ 2 B 2 sin t 1 (66) 10 1 21 1 1 1 L{v̂ 2 B 2 sin t } L 1 2 (67) s 2 ˆ 1(s) s1 (0) 1(0) 21 1sˆ 1(s) 21 11 (0) 2 1 ˆ 1 (s) v̂ 2 B 2 s 2 2 (68) s 2 2 s 2 1(0) 1 1 n ˆ 1 (s) s 21 11(0) v̂ 2 B 2 s 2 2 (69) s 2 2 s 2 1 (0) s 21 11 (0) 1 1 n ˆ 1 (s) v̂ 2 B 2 2 2 s ˆ 1 (s) s 21 11 (0) 1 (0) 2 s 2 2 2 s 2 21 1s n s 2 21 1s n v̂ 2 B 2 (70) (71) 11 The solution is found via References 3 and 4. The inverse Laplace transform for the first modal coordinate is 1( t ) 2 cost 2 2 sin t 1 1 1 21 1 2 v̂ 2 B 2 2 2 2 1 v̂ 2 B 2 exp 11t 2 d,1 2 2 211 d,1 cos d,1t 1 1 21 2 2 2 2 1 21 1 (0) 1 1 1(0) exp 11t 1(0) cos d,1t 1 sin d,1t d,1 sin d,1t , for t < T (72) 12 Similarly, 2 (t) 1 2 2 2 2 2 cost 2 sin t ŵ 2 B 2 2 2 2 2 2 2 2 2 ŵ 2 B 2 exp 2 2 t d,2 2 2 2 2 2 2 d,2 cos d,2 t 2 1 2 2 2 2 2 2 2 2 2 2 (0) 2 2 2 (0) exp 2 2 t 2 (0) cos d,2 t 2 sin d,2 t d,2 sin d,2 t for t < T (73) The physical displacements are found via x Q̂ (74) Free Vibration For t > T and = t-T (T) 11 1(T) 1( t ) exp 11 1(T) cos d,1 1 sin d,1 d,1 (75) (T) 2 2 2 (T) 2 ( t ) exp 2 2 2 (T) cos d,2 2 sin d,2 d, 2 (76) 13 References 1. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey, 1982. Section 12.3.1. 2. Weaver and Johnston, Structural Dynamics by Finite Elements, Prentice-Hall, New Jersey, 1987. Chapter 4. 3. T. Irvine, Table of Laplace Transforms, Vibrationdata, 2000. 4. T. Irvine, Partial Fraction Expansion, Rev F, Vibrationdata, 2010. 14 APPENDIX A Example Consider the system in Figure 1 with the values in Table A-1. Assume 5% damping for each mode. Assume zero initial conditions. Table A-1. Parameters Variable Value Unit m1 m2 k1 k2 k3 3.0 lbf sec^2/in 2.0 lbf sec^2/in 400,000 lbf/in 300,000 lbf/in 100,000 lbf/in 100 lbf 0.011 sec B2 The mass matrix is 0 3 0 m M 1 0 m 2 0 2 (A-1) The stiffness matrix is k k 2 K 1 k2 k 2 700,000 300,000 k 2 k 3 300,000 400,000 (A-2) The analysis is performed using a Matlab script. 15 >> twodof_half_sine_force twodof_half_sine_force.m ver 1.0 January 18, 2012 by Tom Irvine Email: [email protected] This script calculates the response of a two-degree-of-freedom system to a half-sine force excitation at dof 2. Enter the units system 1=English 2=metric 1 Assume symmetric mass and stiffness matrices. Select input mass unit 1=lbm 2=lbf sec^2/in 2 stiffness unit = lbf/in Select file input method 1=file preloaded into Matlab 2=Excel file 1 Mass Matrix Enter the matrix name: Stiffness Matrix Enter the matrix name: Input Matrices m_two k_two mass = 3 0 0 2 stiff = 700000 -300000 -300000 400000 Natural Frequencies No. f(Hz) 1. 48.552 2. 92.839 Modes Shapes (column format) ModeShapes = 0.3797 0.5326 -0.4349 0.4651 16 Enter the damping ratio for mode 1 0.05 Enter the damping ratio for mode 2 0.05 Particpation Factors = 2.204 -0.3746 Enter the force amplitude (lbf) 100 Enter the half-sine pulse duration (sec) 0.011 Enter the first initial displacement (in) Enter the second initial displacement (in) 0 0 Enter the first initial velocity (in/sec) Enter the second initial velocity (in/sec) 0 0 Enter the sample rate (samples/sec) 10000 Enter the analysis duration (sec) 0.15 dof 1 displacement (in) max= 0.0003287 min= -0.0003149 dof 2 displacement (in) max= 0.0005005 min= -0.0003728 17 DISPLACEMENT 0.0010 Mass 2 Mass 1 DISP (INCH) 0.0005 0 -0.0005 -0.0010 0 0.05 0.10 0.15 TIME (SEC) Figure A-1. 18 RELATIVE DISPLACEMENT (MASS 2 - MASS 1) 0.0004 0.0003 REL DISP (INCH) 0.0002 0.0001 0 -0.0001 -0.0002 -0.0003 -0.0004 0 0.05 0.10 0.15 TIME (SEC) Figure A-2. 19 VELOCITY 0.15 Mass 2 Mass 1 0.10 VEL (IN/SEC) 0.05 0 -0.05 -0.10 -0.15 0 0.05 0.10 0.15 TIME (SEC) Figure A-3. 20 ACCELERATION 0.15 Mass 2 Mass 1 0.10 ACCEL (G) 0.05 0 -0.05 -0.10 -0.15 0 0.05 0.10 0.15 TIME (SEC) Figure A-4. 21