Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Lecture 2:
Geometry vs Linear Algebra
Points-Vectors and Distance-Norm
Shang-Hua Teng
2D Geometry: Points
2D Geometry: Cartesian Coordinates
y
(a,b)
x
2D Linear Algebra: Vectors
y
(a,b)
0
x
2D Geometry and Linear Algebra
• Points
• Cartesian Coordinates
• Vectors
2D Geometry: Distance
2D Geometry: Distance
How to express distance algebraically using coordinates???
Algebra: Vector Operations
• Vector Addition
v1
w1
v1 w1
v and w then v w
v
w
v
w
2
2
2
2
• Scalar Multiplication
3v1
v1
3v and v
3
v
v
2
2
Geometry of Vector Operations
• Vector Addition: v + w
v+w
v
w
Geometry of Vector Operations
• -v
2v
v
-v
Linear Combination
Linear combination of v and w
{cv + d w : c, d are real numbers}
Geometry of Vector Operations
• Vector Subtraction: v - w
v+w
v
v-w
w
Norm: Distance to the Origin
• Norm of a vector:
|| v || v1 v2
2
2
v1
v
v2
Distance of Between Two Points
dist( v, w) || v w ||
v1 w1 v2 w2
2
2
v
v-w
w
Dot-Product (Inner Product)
and Norm
v w v1w1 v2 w2
|| v || v v
Angle Between Two Vectors
v
w
Polar Coordinate
r
v
v (r cos , r sin ) r (cos , sin )
Dot Product: Angle and Length
• Cosine Formula
v rv (cos , sin ) and w rw (cos , sin )
v w rv rw cos cos sin sin
rv rw cos( )
||v||||w| | cos
v
w
Perpendicular Vectors
• v is perpendicular to w if and only if
vw 0
Vector Inequalities
• Triangle Inequality
|| v w || ||v|| ||w||
• Schwarz Inequality
| v w | ||v||||w||
Proof:
| v w | |v||||w|| | cos ||| v |||| w ||
3D Points
z
y
x
3D Vector
z
v (v1 , v2 , v3 )
y
x
Row and Column Representation
v (v1 , v2 , v3 )
v1
v v2
v3
Algebra: Vector Operations
• Vector Addition
v1
w1
v1 w1
v v2 and w w2 then v w v2 w2
v3
w3
v3 w3
• Scalar Multiplication
3v1
v1
3v 3v2 and v v2
3v3
v3
Linear Combination
• Linear combination of v (line)
{cv : c is a real number}
• Linear combination of v and w (plane)
{cv + d w : c, d are real numbers}
• Linear combination of u, v and w (3 Space)
{bu +cv + d w : b, c, d are real numbers}
Geometry of Linear Combination
u
v
u
Norm and Distance
• Norm of a vector:
z
|| v || v1 v2 v3
2
2
2
v (v1 , v2 , v3 )
y
x
• Distance
dist( v, w) || v w ||
v1 w1 v2 w2 v3 w3
2
2
2
Dot-Product (Inner Product)
and Norm
v w v1w1 v2 w2 v3 w3
|| v || v v
v w ||v||||w| | cos
Vector Inequalities
• Triangle Inequality
|| v w || ||v|| ||w||
• Schwarz Inequality
| v w | ||v||||w||
Proof:
| v w | |v||||w|| | cos ||| v |||| w ||
Dimensions
• One Dimensional Geometry
• Two Dimensional Geometry
• Three Dimensional Geometry
• High Dimensional Geometry
n-Dimensional Vectors and Points
v (v1 , v2 ,, vn )
v1
v2
v'
vn
Transpose of vectors
High Dimensional Geometry
• Vector Addition and Scalar Multiplication
n
• Dot-product v w vk wk
k 1
• Norm
|| v || v v
n
vk
2
k 1
• Cosine Formula v w ||v||||w| | cos
High Dimensional Linear Combination
• Linear combination of v1 (line)
{c v1 : c is a real number}
• Linear combination of v1 and v2 (plane)
{c1 v1 + c2 v2 : c1 ,c2 are real numbers}
• Linear combination of d vectors v1 , v2 ,…, vd
(d Space)
{c1v1 +c2v2+…+ cdvd : c1,c2 ,…,cd are real numbers}
High Dimensional Algebra and
Geometry
• Triangle Inequality
|| v w || ||v|| ||w||
• Schwarz Inequality
| v w | ||v||||w||
Basic Notations
• Unit vector ||v||=1
• v/||v|| is a unit vector
• Row times a column vector = dot product
n
v w vk wk v1 v2
k 1
w1
w
vn 2
wn
Basic Geometric Shapes:
Circles (Spheres), Disks (Balls)
x c x c r
2
x c x c r
2