* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download proving triangles congruent
Survey
Document related concepts
Transcript
Proving Triangles Congruent The Idea of a Congruence Two geometric figures with exactly the same size and shape. F B A C E D How much do you need to know. . . . . . about two triangles to prove that they are congruent? Corresponding Parts You learned that if all six pairs of corresponding parts (sides and angles) are congruent, then the triangles are congruent. B 1. AB ≅ DE 2. BC ≅ EF 3. AC ≅ DF 4. ∠ A ≅ ∠ D 5. ∠ B ≅ ∠ E A C ΔABC ≅ Δ DEF E F 6. ∠ C ≅ ∠ F D Do you need all six ? NO ! SSS SAS ASA AAS Side-Side-Side (SSS) B E F A C D 1. AB ≅ DE 2. BC ≅ EF 3. AC ≅ DF ΔABC ≅ Δ DEF Side-Angle-Side (SAS) B E F A C D 1. AB ≅ DE 2. ∠A ≅ ∠ D 3. AC ≅ DF ΔABC ≅ Δ DEF included angle Included Angle The angle between two sides ∠G ∠I ∠H Included Angle Name the included angle: E Y S YE and ES ∠E ES and YS ∠S YS and YE ∠Y Angle-Side-Angle (ASA) B E F A C D 1. ∠A ≅ ∠ D 2. AB ≅ DE ΔABC ≅ Δ DEF 3. ∠ B ≅ ∠ E included side Included Side The side between two angles GI HI GH Included Side Name the included side: E Y S ∠Y and ∠E YE ∠E and ∠S ES ∠S and ∠Y SY Angle-Angle-Side (AAS) B E F A C D 1. ∠A ≅ ∠ D 2. ∠ B ≅ ∠ E ΔABC ≅ Δ DEF 3. BC ≅ EF Non-included side Warning: No SSA Postulate There is no such thing as an SSA postulate! E B F A C D NOT CONGRUENT Warning: No AAA Postulate There is no such thing as an AAA postulate! E B A C D NOT CONGRUENT F Name That Postulate (when possible) SAS SSA ASA SSS Name That Postulate (when possible) AAA ASA SAS SSA Things you can mark on a triangle when they aren’t marked. Overlapping sides are congruent in each triangle by the REFLEXIVE property Vertical Angles are congruent Alt Int Angles are congruent given parallel lines Name That Postulate (when possible) Reflexive Property Vertical Angles SAS Vertical Angles SAS SAS Reflexive Property SSA HW: Name That Postulate (when possible) HW: Name That Postulate (when possible) Let’s Practice Indicate the additional information needed to enable us to apply the specified congruence postulate. For ASA: ∠B ≅ ∠D For SAS: AC ≅ FE For AAS: ∠A ≅ ∠F HW Indicate the additional information needed to enable us to apply the specified congruence postulate. For ASA: For SAS: For AAS: Write a congruence statement for each pair of triangles represented. D B A E C F Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. Ex 4 G K I H J ΔGIH ≅ ΔJIK by AAS Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. Ex 5 B A C D E ΔABC ≅ ΔEDC by ASA Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. Ex 6 E A C B D ΔACB ≅ ΔECD by SAS Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. Ex 7 J M K L ΔJMK ≅ ΔLKM by SAS or ASA Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. Ex 8 J T K L V Not possible U (over Lesson 5-5) Slide 1 of 2 (over Lesson 5-5) Slide 1 of 2