Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Lesson Objective Understand the meaning of the words: Be able to simplify polynomials, extend to adding, subtracting, multiplying and dividing them Expression Term Equation Coefficient Identity Function Polynomial Root Expression Term An algebraic statement made up of variables and numbers with their respective powers along with a some mathematical operations of any type Equation An statement consisting of variables and numbers with their respective powers that are only multiplied or divided Coefficient An expression that contains an equals sign Identity The number part of a term Function Polynomial A statement of equivalence between two expressions that is always true for the same inputted value Root Another name for a formula Expressions, Terms, Coefficients and Polynomials An expression is a mathematical ‘sentence’. It contains terms that are separated by + and – signs. A term is a ‘word’ in the ‘sentence’. 3x Eg 3x2 – 4y + 2x + 3xy – 4x2y + 2y + 2y Expressions that are of the form: a0xn + a1xn-1+ a2xn-2 + a3xn-3 + ………….. + an-1x + anx0 are called polynomials 2 2 x y 3x2 + 2xy – 3y + - 2xy2 + 3z y x2 - 0.7 How many terms? What is the coefficient in x2? What is the coefficient in y? x2 y What is the coefficient in ? z What is the constant term? Which of the following expressions are polynomials? a) 2x3 + x2 + x 2 x4 d) 3x + x-5 g) x7 + 1/ 2 x5 - 3x b) 3x + 1 c) 6 e) sin(x) + 2 f) x3 h) i) π y x2 Lesson Objectives: Be able to simplify polynomial expressions Be able to add, subtract and multiply polynomial expressions Simplify: 3x + 4x2 – 2y + 3y -4x + 5x2 + 2xy – 3yx + 5x2y Expressions are simplified by collecting together ‘like terms’ ‘Like terms’ are those that contain exactly the same letters and powers Eg Simplify 3x + 2xy + 4x + 3yx + 2x2 Simplify 5xy2 + 3xy + 2yx + 2x2y + 3xy2 Simplify 3x + 2y – 4x + 3 – 5x2 – 3x2 + 4y + 7 Simplify: 1) 3x + 4y - 2x + 6y 2) 3 – 4x + 6 + 2x 3) 2x + 3x2 – 3x – x2 4) 2y + 3y – 4x – 5y + x 5) 3xy + 2yx + 3x – 5y – 6x – 2yx 6) 7x2 + 3x + 4x – 5x2 + 2x 7) 2x2 – 3x + 2x2y + 3xy – 4yx2 – 2x2 – 5yx 8) 3x + 2x2 – 4x + 3x2 – 2x + x 9) -5xy + 3yx + 2xy – xy + x + 3x 10) 2x2 + 3x – 4x2 – 3x + x2 – 2x + 3x2 Multiplying Polynomials A= 2x + 3 C = 3x - 5 B = 3x2 – 2x – 5 D = 2x2 + x – 4 Find: a) A + C b) A + B c) A – B d) AC e) A2 f) C2 g) D - B h) 2A - C i) BC j) BD k) A + BD l) B2 m) A3 n) AD – BC o) A ÷ D Multiplying Polynomials A= 2x + 3 C = 3x - 5 B = 3x2 – 2x – 5 D = 2x2 + x – 4 Find: 3x2 - 2 5x - 2 a) A + C d) AC b) A + B 6x2 – 9x - 15 g) D - B -x2 + 3x + 1 e) A2 4x2 + 12x + 9 h) 2A - C X + 11 -3x2 + 4x + 8 c) A – B f) C2 9x2 – 30x + 25 i) BC 9x3- 21x2- 5x+ 25 j) BD k) A4 +3 BD2 l) B2 m) A3 n) AD – BC o) A ÷ D 15x4- x3- 24x2 + 3x +20 8x3 + 36x2 + 54x + 27 6x - x - 24x + 5x +23 -5x3 + 29x2 - 37 9x4- 12x3- 26x2 + 20x + 25 Lesson Objectives: Dividing polynomials Common misconceptions: Dividing Polynomials Find 65325 ÷ 4 What about ( 5x . 2 4x 1) ÷ (x 1)? 1) Find: x 4 5 x3 2 x 2 25 x 3 x 3 4 2 2) Find the missing factor if: 4 x 11x 15x 18 (2 x 3)(.....) 3) Divide 3x 4 8 x3 10 x 2 18 x 14 by x 2 4) Divide x 5x 2 4 2 by x 2 3x 1 . We need to be able to accurately add, subtract, multiply and divide expressions: x2+5x - 6 x+3 2x3- x2 x-1 3x2+8x+4 x2 + x x3+ 2x2- 4x + 1 x2 + 4x + 3 x3+ 3x2+ 3x + 1 x+1 + - × ÷ Lesson Objective Factorising single and double brackets Find 1) (x + 2)(x + 5) 2) (2x + 1)(x + 4) 3) (x2 – 3)(x2 + 2x + 4) 4) (x + y)(2x – 3y + 4) 5) (2x4 – 2x2 + 3x – 5) ÷ (2x + 1) 1) 4x – 6 2) 9x + 12 3) 8x – 12 4) 12x – 9 5) 4x2 + 2x 6) 9x2 – 6x 7) 12x2 + 15x 8) 12x + 8x2 9) 20x – 15x2 10) 8xy + 12x2y 11) 8x2y – 6xy2 12) 9x2 – 27x + 12 13) x2 + 7x + 12 14) x2 + 9x + 20 15) x2 – 7x – 30 16) x2 + 3x – 18 17) x2 – 9 18) x2 + 7x – 18 19) x2 + x – 12 20) x2 - 64 21) 2x2 + 5x + 3 22) 3x2 + 5x + 2 23) 2x2 + 9x + 10 24) 5x2 + 6x + 1 25) 2x2 + 7x + 3 26) 3x2 + 9x + 20 27) 3x2 + 10x + 7 28) 7x2 + 23x + 6 29) 4x2 + 4x + 1 30) 4x2 + 5x + 1 31) 4x2 – 25 32) 16x2 - 100 Lesson Objective the Remainder Theorem 3x + 4 = 2x – 6 2(3x + 1) = 6 + 2(x – 1) ½(x + 6) = x + 1/3(2x – 5) Page 10 and 11 Exercise Book