Download AP 9 images - Hialeah Senior High School

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 9
Cellular Respiration:
Harvesting Chemical Energy
PowerPoint Lectures for
Biology, Seventh Edition
Neil Campbell and Jane Reece
Lectures by Chris Romero
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Energy
– Flows into an ecosystem as sunlight and
leaves as heat
Light energy
ECOSYSTEM
Photosynthesis
in chloroplasts
Organic
CO2 + H2O
+ O2
Cellular
molecules
respiration
in mitochondria
ATP
powers most cellular work
Figure 9.2
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Heat
energy
Glucose
CYTOSOL
Pyruvate
No O2 present
Fermentation
O2 present
Cellular respiration
MITOCHONDRION
Ethanol
or
lactate
Acetyl CoA
Citric
acid
cycle
Figure 9.18
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Electrons carried
via NADH and
FADH2
Electrons
carried
via NADH
Citric
acid
cycle
Glycolsis
Pyruvate
Glucose
Cytosol
Mitochondrion
ATP
Figure 9.6
Oxidative
phosphorylation:
electron
transport and
chemiosmosis
Substrate-level
phosphorylation
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
ATP
Substrate-level
phosphorylation
ATP
Oxidative
phosphorylation
The Stages of Cellular Respiration: A Preview
• Respiration is a cumulative function of three
metabolic stages
– Glycolysis
– The citric acid cycle (Krebs Cycle)
– Oxidative phosphorylation (Electron Transport)
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Glycolysis
– Breaks down glucose into two molecules of
pyruvate
• The citric acid cycle
– Completes the breakdown of glucose
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Oxidative phosphorylation
– Is driven by the electron transport chain
– Generates ATP
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• An overview of cellular respiration
Electrons carried
via NADH and
FADH2
Electrons
carried
via NADH
Citric
acid
cycle
Glycolsis
Pyruvate
Glucose
Cytosol
Mitochondrion
ATP
Figure 9.6
Oxidative
phosphorylation:
electron
transport and
chemiosmosis
Substrate-level
phosphorylation
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
ATP
Substrate-level
phosphorylation
ATP
Oxidative
phosphorylation
• Both glycolysis and the citric acid cycle
– Can generate ATP by substrate-level
phosphorylation
Enzyme
Enzyme
ADP
P
Substrate
+
Figure 9.7
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Product
ATP
• Concept 9.2: Glycolysis harvests energy by
oxidizing glucose to pyruvate
• Glycolysis
– Means “splitting of sugar”
– Breaks down glucose into pyruvate
– Occurs in the cytoplasm of the cell
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Glycolysis consists of two major phases
– Energy investment phase
– Energy payoff phase
Citric
acid
cycle
Glycolysis
Oxidative
phosphorylation
ATP
ATP
ATP
Energy investment phase
Glucose
2 ATP + 2 P
2 ATP
used
Energy payoff phase
4 ADP + 4 P
2 NAD+ + 4 e- + 4 H
+
4 ATP formed
2 NADH + 2 H+
2 Pyruvate + 2 H2O
Glucose
4 ATP formed – 2 ATP used
Figure 9.8
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
2 NAD+ + 4 e– + 4 H
+
2 Pyruvate + 2 H2O
2 ATP + 2 H+
2 NADH
CH2OH
HH
H
HO H
HO
OH
H OH
Glycolysis
Glucose
ATP
1
Hexokinase
ADP
CH2OH P
HH OH
OH H
HO
H OH
Glucose-6-phosphate
2
Phosphoglucoisomerase
CH2O P
O CH2OH
H HO
HO
H
HO H
Fructose-6-phosphate
ATP
3
Phosphofructokinase
ADP
P O CH2 O CH2 O P
HO
H
OH
HO H
Fructose1, 6-bisphosphate
4
Aldolase
5
H
P O CH2 Isomerase
C O
C O
CHOH
CH2OH
CH2 O P
Figure 9.9 A
Dihydroxyacetone
phosphate
Glyceraldehyde3-phosphate
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Citric
Oxidative
acid
cycle phosphorylation
6
Triose phosphate
dehydrogenase
2 NAD+
2 Pi
2 NADH
+ 2 H+
2
P
O C O
CHOH
CH2 O P
1, 3-Bisphosphoglycerate
2 ADP
7
Phosphoglycerokinase
2 ATP
O–
2
C
CHOH
CH2 O P
3-Phosphoglycerate
8
Phosphoglyceromutase
2
O–
C
O
H C O
P
CH2OH
2-Phosphoglycerate
9
Enolase
2H O
2
2
O–
C O
C O
P
CH2
Phosphoenolpyruvate
2 ADP
10
Pyruvate kinase
2 ATP
2
O–
C O
C O
Figure 9.8 B
CH3
Pyruvate
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Before the citric acid cycle can begin
– Pyruvate must first be converted to acetyl CoA,
which links the cycle to glycolysis
CYTOSOL
MITOCHONDRION
NAD+
NADH
+ H+
O–
S
CoA
C
O
2
C
C
O
O
1
3
CH3
Pyruvate
Transport protein
Figure 9.10
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
CH3
Acetyle CoA
CO2
Coenzyme A
• An overview of the citric acid cycle
Pyruvate
(from glycolysis,
2 molecules per glucose)
Glycolysis
Citric
acid
cycle
ATP
ATP
Oxidative
phosphorylatio
n
ATP
CO2
CoA
NADH
+ 3 H+ Acetyle CoA
CoA
CoA
Citric
acid
cycle
2 CO2
3 NAD+
FADH2
FAD
3 NADH
+ 3 H+
ADP + P i
ATP
Figure 9.11
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Glycolysis
Citric
Oxidative
acid phosphorylation
cycle
S
CoA
C
O
CH3
Acetyl CoA
CoA SH
O
NADH
+ H+
C COO–
COO–
1
CH2
COO–
NAD+
8 Oxaloacetate
HO C
COO–
COO–
CH2
COO–
HO CH
H2O
CH2
CH2
2
HC COO–
COO–
Malate
Figure
CH2
HO
Citrate
9.12
COO–
Isocitrate
COO–
H2O
COO–
CH
CO2
Citric
acid
cycle
7
3
NAD+
COO–
Fumarate
HC
CH
CH2
CoA SH
6
CoA SH
COO–
FAD
CH2
CH2
COO–
C O
Succinate
Pi
S
CoA
GTP GDP Succinyl
CoA
ADP
ATP
Figure 9.12
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
4
C O
COO–
CH2
5
CH2
FADH2
COO–
NAD+
NADH
+ H+
+ H+
a-Ketoglutarate
CH2
COO–
NADH
CO2
• At the end of the chain
– Electrons are passed to oxygen, forming water
NADH
50
Free energy (G) relative to O2 (kcl/mol)
FADH2
40
FMN
I
Fe•S
Fe•S II
O
30
Multiprotein
complexes
FAD
III
Cyt b
Fe•S
20
Cyt c1
IV
Cyt c
Cyt a
Cyt a3
10
0
Figure 9.13
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
2 H + + 12 O2
H2 O
Chemiosmosis: The Energy-Coupling Mechanism
• ATP synthase
– Is the enzyme that actually makes ATP
INTERMEMBRANE SPACE
H+
H+
H+
H+
H+
H+
H+
A rotor within the
membrane spins
clockwise when
H+ flows past
it down the H+
gradient.
A stator anchored
in the membrane
holds the knob
stationary.
H+
ADP
+
Pi
Figure 9.14
MITOCHONDRIAL MATRIX
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
ATP
A rod (for “stalk”)
extending into
the knob also
spins, activating
catalytic sites in
the knob.
Three catalytic
sites in the
stationary knob
join inorganic
Phosphate to ADP
to make ATP.
• Chemiosmosis
– Is an energy-coupling mechanism that uses
energy in the form of a H+ gradient across a
membrane to drive cellular work
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Chemiosmosis and the electron transport chain
Oxidative
phosphorylation.
electron transport
and chemiosmosis
Glycolysis
ATP
Inner
Mitochondrial
membrane
ATP
ATP
H+
H+
H+
Intermembrane
space
Protein complex
of electron
carners
Q
I
Inner
mitochondrial
membrane
IV
III
ATP
synthase
II
FADH2
NADH+
Mitochondrial
matrix
H+
Cyt c
FAD+
NAD+
2 H+ + 1/2 O2
H2O
ADP +
(Carrying electrons
from, food)
ATP
Pi
H+
Chemiosmosis
Electron transport chain
+
ATP
synthesis
powered by the flow
Electron transport and pumping of protons (H ),
+
+
which create an H gradient across the membrane Of H back across the membrane
Figure 9.15
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Oxidative phosphorylation
• There are three main processes in this
metabolic enterprise
Electron shuttles
span membrane
CYTOSOL
MITOCHONDRION
2 NADH
or
2 FADH2
2 NADH
2 NADH
Glycolysis
Glucose
2
Pyruvate
6 NADH
Citric
acid
cycle
2
Acetyl
CoA
+ 2 ATP
by substrate-level
phosphorylation
Maximum per glucose:
+ 2 ATP
2 FADH2
Oxidative
phosphorylation:
electron transport
and
chemiosmosis
+ about 32 or 34 ATP
by substrate-level by oxidative phosphorylation, depending
on which shuttle transports electrons
phosphorylation
from NADH in cytosol
About
36 or 38 ATP
Figure 9.16
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Types of Fermentation
• Fermentation consists of
– Glycolysis plus reactions that regenerate
NAD+, which can be reused by glyocolysis
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• In alcohol fermentation
– Pyruvate is converted to ethanol in two steps,
one of which releases CO2
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• During lactic acid fermentation
– Pyruvate is reduced directly to NADH to form
lactate as a waste product
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
2 ADP + 2
P1
2 ATP
O–
C O
Glucose
Glycolysis
C O
CH3
2 Pyruvate
2 NADH
2 NAD+
H
2 CO2
H
H C OH
C O
CH3
CH3
2 Ethanol
2 Acetaldehyde
(a) Alcohol fermentation
2 ADP + 2
Glucose
P1
2 ATP
Glycolysis
O–
C O
C O
O
2 NAD+
2 NADH
C O
H
C OH
CH3
2 Lactate
Figure 9.17
(b) Lactic acid fermentation
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
CH3
Fermentation and Cellular Respiration Compared
• Both fermentation and cellular respiration
– Use glycolysis to oxidize glucose and other
organic fuels to pyruvate
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Pyruvate is a key juncture in catabolism
Glucose
CYTOSOL
Pyruvate
No O2 present
Fermentation
O2 present
Cellular respiration
MITOCHONDRION
Ethanol
or
lactate
Figure 9.18
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Acetyl CoA
Citric
acid
cycle
• The catabolism of various molecules from food
Proteins
Carbohydrates
Amino
acids
Sugars
Fats
Glycerol
Glycolysis
Glucose
Glyceraldehyde-3- P
NH3
Pyruvate
Acetyl CoA
Citric
acid
cycle
Figure 9.19
Oxidative
phosphorylation
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Fatty
acids
• The control of cellular respiration
Glucose
Glycolysis
Fructose-6-phosphate
–
Inhibits
AMP
Stimulates
+
Phosphofructokinase
–
Fructose-1,6-bisphosphate
Inhibits
Pyruvate
Citrate
ATP
Acetyl CoA
Citric
acid
cycle
Figure 9.20
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Oxidative
phosphorylation
Related documents