Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Switched-Capacitor Circuits –1– Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Continuous-Time Integrator C2 1 vo t R1 C2 R1 Vi H s Vo Vi SC v d in 1 1 Vo s Vi R C 1 2 s R1 C2 C2 Goal: t Vo Approach: emulating resistors with switched capacitors –2– Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Concept of Switched Capacitor Ф2 R VA VB Non-overlapping two-phase clock Ф2 VA VB Ф1 i i C <i> Ф1 Ф1 1 VA VB R i Req T C q C VA VB T T so, Req ,1 C2 Ф2 T C C2 T 2 C1 C1 • A switched capacitor is a discrete-time “resistor” • RC time constant set by capacitor ratio C2/C1 (match considerably better than R and C) and clock period T (flexibility) –3– Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Switched Capacitors Shunt-type Ф1 Series-type Ф2 VA Ф1 VB C VA VB Ф2 C Ф2(Ф1) C Ф1 Ф2 Ф1 Ф2 Ф1 Ф2 Ф2 VA VB Ф1(Ф2) 2-phase clock Stray-insensitive Ф1 • Shunt- and series-type SCs are simple and cheap to implement • Stray-insensitive SC requires 2 more switches, what’s the advantage besides being more flexible (i.e., w/ or w/o the T/2 delay)? –4– Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Discrete-Time Integrator (DTI) Shunt-type Series-type C2 Ф1 Ф2 Ф2 Ф1 Vi Vo C2 C1 Vi Vo C1 2-phase clock Ф1 Ф2 Ф1 Ф2 Ф1 Ф2 What are the VTFs (z-domain) of these DTIs, assuming no parasitic capacitance is present? –5– Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Shunt-Type DTI Ф1 (sample) T C2 Ф1 Vi Vo C1 vi(t) (n-1) 0 Ф2 Ф1 Ф2 Ф1 (n) Ф2 t (n+1) Ф2 (update) C2 vo(t) (n+1) (n) Vi Vo C1 0 t (n-1) Charge conservation law (ideal): Total charge on C1 and C2 during Ф1→ Ф2 transition must remain unchanged! –6– Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Shunt-Type DTI Ф1 (sample) Ф2 (update) C2 Vi Vo C1 Q V n C V n C 1 i 1 o Q Q 1 2 C2 Vi Vo C1 Q 0 C V n 1 C 2 2 1 o Vi n C1 Vo n C2 0 C1 Vo n 1 C2 Vi z C1 Vo z C2 z Vo z C2 Vo z C1 z 1 C1 z 1/2 H z or Vi z C2 1 z 1 C2 1 z 1 –7– 2 Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Series-Type DTI T Ф1 (sample/update) Ф2 (reset C1) Ф1 vi(t) Ф2 (n-1) 0 Ф2 Ф1 Ф2 Ф1 (n) Ф2 t C2 (n+1) Ф1 C1 Vi vo(t) Vo (n) (n-1) 0 t (n+1) VTF: H z Vo z C 1 1 Vi z C2 1 z 1 –8– Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Stray Capacitance Shunt-type Ф1 Series-type Ф2 C2 Ф2 C2 Ф1 A C1 Vi Vo Vi C1 A C2 4 C1 Cu Cu Cu • Strays derive from D/S diodes and wiring capacitance • VTF is modified due to strays Cu C1 Vo Cu • Strays at the summing node is of no significance (virtual ground) C2 –9– Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Stray-Insensitive SC Integrator C2 Ф2(Ф1) A C1 Ф2 B Vi Vo Ф1(Ф2) Ф1 “Inverting” VTF: C 1 H z 1 C2 1 z 1 “Non-inverting” VTF: C1 z 1 H z C2 1 z 1 • Capacitors can be significantly sized down to save power/area • Sizes are eventually limited by kT/C noise, mismatch, etc. – 10 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 SC Amplifier Ф1 C2 Ф1 Vi C1 VTF: H z Vo Ф2 • Non-integrating, memoryless (less the delay) • Used in many applications of parametric amplification – 11 – C1 1 z C2 Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits SC Applications – 12 – Professor Y. Chiu Fall 2009 Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 CT Filter R L Vi C RLC prototype Vo R2 R4 CA R1 R R CB R3 Vi Vo – 13 – Active-RC Tow-Thomas CT biquad Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 SC DT Filter R2 R4 CA R1 R CB R Active-RC Tow-Thomas CT biquad R3 Vi Vo C2 C4 CA Ф2 C1 Ф2 Ф1 Ф1 C3 Ф2 Vi CB Ф2 Ф2 Vo Ф1 Ф1 Ф2 Ф1 – 14 – SC DT biquad Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Sigma-Delta (ΣΔ) Modulator CI Ф1 CS Ф2 Vi Do Ф2 +VR -VR Ф1 1-b DAC DTI + 1-bit comparator + 1-bit DAC = first-order ΣΔ ADC – 15 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Pipelined ADC Φ2 Φ1 C1 Φ1 C2 Vi -VR/4 Vo Φ1 VR/4 -VR 0 VR 1.5-b DAC Φ2 SC amplifier + 2 comparators + 3-level DAC = 1.5-bit pipelined ADC – 16 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Noise in SC Circuits – 17 – Professor Y. Chiu Fall 2009 Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Noise of CT Integrator H1(f) C C VN12 R Vi R Vo Vo VN22 VoN 2 H2(f) 2 2 VN 12 VN 2 2 f H1 f df f H 2 f df f f Noise in CT circuits can be simulated with SPICE (.noise) – 18 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Noise of SC Integrator C2 Ф1 C1 Ф2 Vi Vo Ф2 Ф1 Ф1 Ф2 Ф1 Ф2 Ф1 Ф2 SC circuits are NOT noise-free! Switches and op-amps introduce noise. – 19 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Sampling (Ф1) Ideal Voltage Source VN12 R1 C1 VN22 Vi R2 VN 1 2 0 VN 12 2 VN 2 2 f f H1 f df f f 2 4kTR1 4kTR2 0 1 1 j 2 f R1 R2 C df kT C • Noise is indistinguishable from signal after sampling • The noise acquired by C1 will be amplified in Ф2 just like signal – 20 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Integration (Ф2) H34(f) C2 VN32 C1 VN42 R4 Vo R3 VN52 H5(f) VN 32 2 2 VN 4 2 VN 52 VN 2 f f H 34 f df f H 5 f df f f f 2 2 VoN 2 C 2 2 1 VN 1 VN 2 C2 No simulator can directly simulate the aggregated output noise! – 21 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Sampling (Ф1) Noise – Cascaded Stages C2 Ф2 C1 C2' Ф1 Ф1 C1' Ф2 Ф2 Vi Vo Ф1 Ф2 Ф2 Ф1 C2 VN32 R3 C1 VN42 R4 VN12 VN52 R1 C 1' VN22 R2 • Finite op-amp BW limits the noise bandwidth, resulting in less overall kT/C noise (noise filtering). • But parasitic loop delay may introduce peaking in freq. response, resulting in more integrated noise (noise peaking). – 22 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Sampled Noise Spectrum CT PSD 0 fs 2fs Alias DT PSD 0 fs/2 fs 3/2fs • Total integrated noise power remains constant • SNR remains constant – 23 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Nonideal Effects in SC Circuits – 24 – Professor Y. Chiu Fall 2009 Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Nonideal Effects in SC Circuits • Capacitors (poly-poly, metal-metal, MIM, MOM, sandwich, gate cap, accumulation-mode gate cap, etc.) – PP, MIM, and MOM are linear up to 14-16 bits (nonlinear voltage coefficients negligible for most applications) – Gate caps are typically good for up to 8-10 bits • Switches (MOS transistors) – Nonzero on-resistance (voltage dependent) – (Nonlinear) stray capacitance added (Cgs, Cgd, Cgb, Cdb, Csb) – Switch-induced sampling errors (charge injection, clock feedthrough, junction leakage, drain-source leakage, and gate leakage) • Operational amplifiers – Offset – Finite-gain effects (voltage dependent) – Finite bandwidth and slew rate (measured by settling speed) – 25 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Nonideal Effects of Switches – 26 – Professor Y. Chiu Fall 2009 Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Nonzero On-Resistance C … VGS Ron Ф PMOS NMOS VTp CS Vout VTn CMOS Ф 0 Vout VDD … CS 1 Ron Cox Ф W VDD Vth Vout L • FET channel resistance (thus tracking bandwidth) depends on signal level • Usually (RonCS)-1 ≥ (3-5)·ω-3dB of closed-loop op-amp for settling purpose – 27 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Clock Bootstrapping Ф Ф1 Ф2 … VDD CS In Ф Out M1 CMOS Bootstrapped NMOS • Small on-resistance leads to large switches → large parasitic caps and large clock buffers • Clock bootstrapping keeps VGS of the switch constant → constant onresistance (body effect?) and less parasitics w/o the PMOS – 28 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Simplified Clock Bootstrapper Ф1 Ф2 VDD In Pros Out M1 • Linearity VDD • Bandwidth Ф2 M2 Ф2 Cons • Device reliability Ф2 C Ф1 • Complexity Ф1 Out M1 Ф2 In VSS – 29 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Switch-Induced Errors Ф Zi Cgs Cgd Vout Vin Qch • Clock feedthrough • Charge injection CS Channel charge injection and clock feedthrough (on drain side) result in charge trapped on CS after switch is turned off. – 30 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Clock Feedthrough and Charge Injection Ф VDD Zi Cgs Cgd Ф Vout Vin Qch Vin+Vth 0 CS Switch on Switch off • Both phenomena sensitive to Zi, CS, and clock rise/fall time • Offset, gain error, and nonlinearity introduced to the sampling • Clock feedthrough can be simulated by SPICE, but charge injection cannot be simulated with lumped transistor models – 31 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Clock Rise/Fall-Time Dependence Ф VDD Zi Cgs Cgd Ф Vout Vin Qch 0 CS Switch on Clock feedthrough Fast turn-off Slow turn-off V V C gs C gs C S C gs C gs CS Vin+Vth VDD Vin Vth – 32 – Switch off Charge injection V CoxWLVDD Vth Vin 2Cgs CS V 0 Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Dummy Switch Ф Vin W L Ф W 2L Vout CS • Difficult to achieve precise cancellation due to the nonlinear dependence of ΔV on Zi, CS, and clock rise/fall time • Sensitive to the phase alignment between Ф and Ф_ – 33 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 CMOS Switch Ф Vin Vout Ф CS Same size for P and N FETs • Very sensitive to phase alignment between Ф and Ф_ • Subject to threshold mismatch between PMOS and NMOS • Exact cancellation occurs only for one specific Vin (which one?) – 34 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Differential Signaling Ф Vip Vop M1 CSp Ф Vin Balanced diff. input Von M2 CSn • Signal-independent errors (offset) and even-order distortions cancelled • Gain error and odd-order nonlinearities remain – 35 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Switch Performance On-resistance: Ron L2 L2 W VDD Vth Vi μCox WL VDD Vth Vi μQch μCox L 1 Bandwidth: BW μQ 1 2 ch RonCS L CS Charge injection: ΔV 1 Q ch 2 CS Performance FoM: ΔV 1 Qch L2CS L2 ≈ = BW 2 CS μQch 2μ Technology scaling improves switch performance! – 36 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Leakage in SC Circuits Φ1 = “high”, Φ2 = “low” Ф2 Ф2 C1 Vx Vi Ф1 Ф1 Vo(t) C2 I2 I1 I3 Vo Ф1 A0 Ф1 Ф2 0 VB • • • • Ф2 I1 – diode leakage (existing in the old days too) I2 – sub-threshold drain-source leakage of summing-node switch I3 – gate leakage (FN tunneling) of amplifier input transistors Leakage currents are highly temperature- and process-dependent; the lower limit of clock frequency is often determined by leakage – 37 – t Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Gate Leakage I GS WL exp tox exp VGS • Direct tunneling through the thin gate oxide • Short-channel MOSFET behaves increasingly like BJT’s • Violates the high-impedance assumption of the summing node – 38 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Switch Size Optimization • To minimize switch-induced error voltages, small transistor size, slow turn-off, low source impedance should be used. • For fast settling (high-speed design), large W/L should be used, and errors will be inevitably large as well. Guidelines • Always use minimum channel length for switches as long as leakage allows. • For a given speed, switch sizes can be optimized w/ simulation. • Be aware of the limitations of simulators (SPICE etc.) using lumped device models. – 39 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Nonideal Effects of Op-Amps – 40 – Professor Y. Chiu Fall 2009 Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Nonideal Effects of Op-Amps • Offset • Finite-gain effects (voltage dependent) • Finite bandwidth and slew rate (measured by settling speed) – 41 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Offset Voltage C2 C1 Ф1 Q V nC V n V C Ф2 1 Vi i 1 o os 2 Vo Ф2 Ф1 Q V Vos 2 os C1 Vo n 1 Vos C2 C Vi 0 Vo n 1 Vo n 1 Vos C2 Vo(t) Ф1 Ф2 Ф1 0 C1 z 1 Vo z V z 1 i C2 1 z Ф2 t Vi = 0 – 42 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Autozeroing Q V n V C V Ф1 1 C2 C1 Ф1 Vi Ф2 i Q V Ф1 2 os os 1 Vos H z Vo z C1 Vi z C2 • Also eliminates low-frequency noise, e.g., 1/f noise • A.k.a. correlated double sampling (CDS) – 43 – C2 C1 Vo n Vos C2 Vo Ф2 os Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Chopper Stabilization Vn2 Vi A B A1 A2 Vo fC 1 -1 Ref: K. C. Hsieh, P. R. Gray, D. Senderowicz, and D. G. Messerschmitt, “A low-noise chopper-stabilized differential switched-capacitor filtering technique,” IEEE Journal of Solid-State Circuits, vol. 16, issue 6, pp. 708-715, 1981. – 44 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Chopper Stabilization |Vi|2 Vn2 Vi A 0 B A1 A2 Vo fC f fC f fC f fC f SN(f) fC 1 -1 0 2 |VA| Also eliminates DC offset voltage of A1 0 2 |VB| 0 – 45 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Chopper-Stabilized Differential Op-Amp Ф Vi+ Ф Ф Ф Vo+ Vo- Vi- Ф Ф Ф Ф • Integrators/amplifiers can be built using these op-amps • Some oversampling is useful to facilitate the implementation – 46 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Ideal SC Amplifier Ф1 C2 Ф1 C1 Vi Ф2 X ACL ∞ Vo C1 C2 • Closed-loop gain is determined by the capacitor ratio by design • But this is assuming X is an ideal summing node (the op-amp is ideal) – 47 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Finite-Gain Effect in SC Amplifier Ф1 C2 ACL C1 Ф1 Vi A X Ф2 Vo Q V V C 0 C 1 i 1 x 1 1 2 Vx 1 Vo 1 Vx 1 A Q V C V V C 2 x 2 1 o Vo 2 Vx 2 A Q Q 1 Vo C1 C C C2 1 1 1 1 Vi C2 1 C1 C2 C2 C2 A C2 A 2 Vi C1 Vx C1 Vo Vx C2 Vo Vx A – 48 – 2 x 2 2 Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Practical Issues – 49 – Professor Y. Chiu Fall 2009 Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Analog vs. Digital Supply Lines VL L VA VDD VL VR did dt VR id R id= Pad VDD Analog circuits CBP Digital circuits Pad Sharing sensitive analog supplies with digital ones is a very bad idea. – 50 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Analog vs. Digital Supply Lines id= Pad Pad VDD Analog circuits CBP Digital circuits Pad Pad – 51 – • Dedicated pads for analog and digital supplies • On-chip bypass capacitors help (watch ringing) • Off-chip chokes (large inductors) can stop noise propagation at board level Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 “Supply” Capacitance C2 … VDD Cp M5 Vo V M7 Cgs Ф1 C1 M1 Ф1 C2 S Ф2 Vi Ф2 Cstray M2 Vo X Cgd M3 CC Y M4 M6 VSS • Any summing-node stray capacitance can be a potential coupling path. • VDD, VSS, substrate, clock line, and digital noises, body effect, etc. • Fully differential circuits help to reject common-mode noise and coupling. – 52 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 “Supply” Capacitance C2 Cbot p+ p well n substrate • Avoid connecting bottom-plate parasitics to the summing node • Avoid crossing other signal lines with the summing node • Shielding can mitigate substrate noise coupling – 53 – Advanced Analog IC Design ECE 581 Switched-Capacitor Circuits Professor Y. Chiu Fall 2009 Clock Generation Ф2 CLK Ф1 Ф2 Ф1 • Clock-gated ring structure • Non-overlapping time determined by inverter delays, sensitive to process, voltage, and temperature (PVT) variations • DLL is an alternative, often used in high-speed designs – 54 –