Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MATH 201 - Week 11 Ferenc Balogh Concordia University 2008 Winter Based on the textbook J. Stuart, L. Redlin, S. Watson, Precalculus - Mathematics for Calculus, 5th Edition, Thomson Overview Addition and Subtraction Formulas - Section 7.2 Formulas Applications A sin x + B cos x Double-Angle, Half-Angle and Product-Sum Formulas - Section 7.3 Squares of Trigonometric Functions Half-Angle Formulas Product-Sum Formulas Addition Formulas sin(s + t) = sin s cos t + cos s sin t cos(s + t) = cos s cos t − sin s sin t tan(s + t) = tan s + tan t 1 − tan s tan t Subtraction Formulas sin(s − t) = sin s cos t − cos s sin t cos(s − t) = cos s cos t + sin s sin t tan(s − t) = tan s − tan t 1 + tan s tan t Example. Prove the addition formula for the tangent using the addition formulas for the sine and cosine functions. Solution. tan(s + t) = = = = sin(s + t) cos(s + t) sin s cos t + cos s sin t cos s cos t − sin s sin t cos s cos t tan s + tan t cos s cos t 1 − tan s tan t tan s + tan t . 1 − tan s tan t π Example. Find the exact value of sin 5π 12 and tan 12 . Solution. Since sin 5π 12 5π 12 = = = = Similarly, using π 12 = tan π 3 3π 12 + 2π 12 = π 4 + π 6 we have π + 4 6 π π π π sin cos + cos sin 6 4 6 √4 √ 1 1 1 3 3+1 √ . √ +√ = 2 2 22 2 2 sin − π 4 π we get π = 12 = tan π3 − tan π4 1 + tan π3 tan π4 √ √ 3−1 3−1 √ √ . = 1+ 3·1 1+ 3 Example. Find the exact value of sin 20◦ cos 70◦ + cos 20◦ sin 70◦ . Solution. sin 20◦ cos 70◦ + cos 20◦ sin 70◦ = sin(20◦ + 70◦ ) = sin 90◦ = 1. Example. Prove the cofunction identity π sin − x = cos x. 2 Solution. LHS = sin π −x 2 π π = sin cos x − cos sin x 2 2 = 1 · cos x − 0 · sin x = cos x = RHS. Example. Prove the identity sin(x + y ) − sin(x − y ) = 2 cos x sin y . Solution. LHS = sin(x + y ) − sin(x − y ) = (sin x cos y + cos x sin y ) − (sin x cos y − cos x sin y ) = sin x cos y + cos x sin y − sin x cos y + cos x sin y = 2 cos x sin y = RHS. Example. Write the expression √ 3 1 sin x + cos x 2 2 in terms of sine only. Solution. Notice that √ 3 π , cos = 6 2 sin π 1 = . 6 2 Therefore √ 3 1 sin x + cos x 2 2 π π = cos sin x + sin cos x 6 6 π = sin x + . 6 In general, an expression of the form A sin x + B cos x, where A and B are real numbers and not both of them are zero, can be expressed in terms of sine only. To apply the trick above, we have to find an angle φ such that cos φ = √ A + B2 sin φ = √ A2 B . + B2 A2 Then A sin x + B cos x A B √ sin x + √ cos x 2 2 2 A +B A + B2 = p A2 = p A2 + B 2 (cos φ sin x + sin φ cos x) = p A2 + B 2 sin(x + φ). + B2 A sin x + B cos x A sin x + B cos x = k sin(x + φ), where k= and cos φ = √ p A2 + B 2 A , + B2 A2 sin φ = √ B . + B2 A2 Example. Write the expression 12 sin x + 5 cos x in terms of sine only. What are the period, amplitude and phase shift? Solution. In this example, A = 12, B = 5 and hence p p √ √ k = A2 + B 2 = 122 + 52 = 144 + 25 = 169 = 13. 12 sin x + 5 cos x 12 5 = 13 sin x + cos x 13 13 = 13 sin(x + φ), where 12 5 , sin φ = . 13 13 So the amplitude is 13, the period is 2π and the phase shift is given by cos φ = φ = arccos 12 ≈ 22.62◦ . 13 Double-Angle Formulas sin 2x = 2 sin x cos x cos 2x = cos2 x − sin2 x = 1 − 2 sin2 x = 2 cos2 x − 1 tan 2x = 2 tan x 1 − tan2 x Proofs. We use the addition formulas: sin 2x = sin(x + x) = sin x cos x + cos x sin x = 2 sin x cos x. cos 2x = cos(x + x) = cos x cos x − sin x sin x = cos2 x − sin2 x. tan 2x = tan(x + x) tan x + tan x = 1 − tan x tan x 2 tan x = . 1 − tan2 x Example. Find sin 2x, cos 2x and tan 2x if sin x = − 3 5 and x belongs to the third quadrant. Solution. We have to find the value of cos x first: r r p 9 16 4 2 cos x = ± 1 − sin x = ± 1 − =± =± . 25 25 5 The sign must be negative because x belongs to the third quadrant. Therefore tan x = 43 and 3 4 24 · − = sin 2x = 2 sin x cos x = 2 · − 5 5 25 cos 2x = cos2 x − sin2 x = tan 2x = 16 9 7 − = 25 25 25 2 · 34 2 tan x = 9 = 1 − tan2 x 1 − 16 6 4 7 16 = 6 16 24 · = . 4 7 7 Squares of Trigonometric Functions sin2 x = 1 − cos 2x 2 cos2 x = 1 + cos 2x 2 tan2 x = 1 − cos 2x . 1 + cos 2x These are used to lower the powers of the trigonometric functions in simplifying certain expressions. Example. Lower the powers of the trigonometric functions in the following expression: sin4 x cos2 x. Solution. sin4 x cos2 x = sin2 x = = = = 2 cos2 x 1 − cos 2x 2 2 1 + cos 2x 2 1 − 2 cos 2x + cos2 2x 1 + cos 2x 4 2 1 + cos 4x 1 1 − 2 cos 2x + (1 + cos 2x) 8 2 1 (3 − 4 cos 2x + cos 4x) (1 + cos 2x) 16 = 1 3 − 4 cos 2x + cos 4x + 3 cos 2x − 4 cos2 2x + cos 4x cos 2x 16 = 1 (3 − cos 2x + cos 4x − 2(1 + cos 4x) + cos 4x cos 2x) 16 = 1 (1 − cos 2x − cos 4x + cos 4x cos 2x) . 16 Squares of Trigonometric Functions u sin 2 u cos 2 tan u 2 r = ± r = ± 1 − cos u 2 1 + cos u 2 = 1 − cos u sin u = sin u . 1 + cos u The signs are determined by the quadrant in which the terminal point of u2 lies. Example. Find the exact value of sin 9π 8 . Solution. s sin The angle 9π 8 9π 8 = ± 1 − cos 9π 4 . 2 is in the third quadrant so its sine is negative and cos π 9π π 1 = cos + 2π = cos = √ . 4 4 4 2 Hence sin 9π 8 s 1 − cos 9π 4 2 s 1− = − = − 2 √1 2 s√ =− 2−1 √ 2 2 Product-to-Sum Formulas sin u cos v = cos u sin v = cos u cos v = sin u sin v = 1 sin(u + v ) + sin(u − v ) 2 1 sin(u + v ) − sin(u − v ) 2 1 cos(u + v ) + cos(u − v ) 2 1 cos(u + v ) − cos(u − v ) . 2 Example. Prove the product-to-sum formula cos u sin v = 1 sin(u + v ) − sin(u − v ) . 2 Solution. Using the addition formulas we get RHS = = = = = 1 sin(u + v ) − sin(u − v ) 2 1 (sin u cos v + cos u sin v ) − (sin u cos v − cos u sin v ) 2 1 sin u cos v + cos u sin v − sin u cos v + cos u sin v 2 1 2 cos u sin v 2 cos u sin v = LHS. Example. Write sin 2x cos 3x as a sum of trigonometric functions. Solution. Using the first product-to-sum formula with u = 2x, v = 3x we have 1 sin 2x cos 3x = sin(2x + 3x) + sin(2x − 3x) 2 1 = sin 5x + sin(−x) 2 1 sin 5x − sin x . = 2 Product-to-Sum Formulas sin u + sin v = 2 sin u+v u−v cos 2 2 sin u − sin v = 2 cos u+v u−v sin 2 2 cos u + cos v = 2 cos u−v u+v cos 2 2 cos u − cos v = −2 sin u+v u−v sin . 2 2 Example. Write sin 2x − sin 7x as a product of trigonometric functions. Solution. Using the second sum-to-product formula with u = 2x, v = 7x we have sin 2x − sin 7x = 2 cos 2x − 7x 2x + 7x sin 2 2 = 2 cos 9x −5x sin 2 2 = −2 cos 5x 9x sin . 2 2