Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Elastic Scattering Hans-Jürgen Wollersheim Classification of heavy ion collisions elastic scattering Fresnel & Fraunhofer scattering scattering parameters differential cross section optical model analysis nuclear radius total reaction cross section cross sections at high energy influence of nuclear structure partial cross section vs. angular momentum elastic scattering b elastic scattering b elastic scattering b elastic scattering b nucleon transfer elastic scattering b≈0 nucleon transfer elastic scattering b≈0 nucleon transfer elastic scattering b≈0 compound nucleus formation nucleon transfer Nuclear reaction cross sections Consider a beam of projectiles of intensity Φa particles/sec which hits a thin foil of target nuclei with the result that the beam is attenuated by reactions in the foil such that the transmitted intensity is Φ particles/sec. The fraction of the incident particles disappear from the beam, i.e. react, in passing through the foil is given by A d va 𝑑Φ = −Φ ∙ 𝑛𝑏 ∙ 𝜎 ∙ 𝑑𝑥 The number of reactions that are occurring is the difference between the initial and transmitted flux Φ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − Φ𝑡𝑟𝑎𝑛𝑠 = Φ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 1 − 𝑒𝑥𝑝 −𝑛𝑏 ∙ 𝑑 ∙ 𝜎 ≈ Φ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙ 𝑁𝑏 ∙ 𝜎 (for thin target) Φa = na·va Example: A particle current of 1 pnA consists of 6·109 projectiles/s. A 132Sn target (1 mg/cm2) consists of 5·1018 nuclei/cm2 6 ∙ 1023 ∙ 10−3 𝑔 𝑐𝑚2 = 4.5 ∙ 1018 132𝑔 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑢𝑐𝑙𝑒𝑖 𝑐𝑚2 Luminosity = projectiles [s-1] · target nuclei [cm-2] Luminosity (projectile → 132Sn) = 3·1028 [s-1cm-2] Reaction rate [s-1] = luminosity · cross section [cm2] = projectiles [s-1] · target nuclei [cm-2] · cross section [cm2] Nb = nb·A·d Elastic Scattering Fraunhofer (left) and Fresnel (right) diffraction 12C + 16O 16O η=2 + 208Pb η = 32 Born approximation (quantum description) or classical description: half distance of closest approach for head-on collision wave length of projectile ƛ = (k∞)-1 0.72 ∙ 𝑍1 𝑍2 𝐴1 + 𝐴2 ∙ 𝑓𝑚 𝑇𝑙𝑎𝑏 𝐴2 𝐴2 = 0.219 ∙ ∙ 𝐴1 ∙ 𝑇𝑙𝑎𝑏 𝐴1 + 𝐴2 𝑎 𝜆ƛ 𝜂 = 𝑘∞ ∙ 𝑎 = 0.157 ∙ 𝑍1 𝑍2 ∙ 𝑎= 𝑘∞ 𝜂= 𝑓𝑚−1 𝐴1 𝑇𝑙𝑎𝑏 Elastic Scattering 4He + 209Bi Elab = 69.5 MeV 4He + 209Bi Elab = 12 MeV Rutherford scattering η = 15 4He + 209Bi Elab = 22 MeV Fresnel scattering η = 11 Fraunhofer scattering η=6 Transition from classical (optical) picture to quantum picture Elastic Scattering 6Li elastic scattering @ 88 MeV particle η = 2.5 η = 10 η = 1.5 η = 3.3 Fraunhofer scattering (η<10) wave Oscillation in angular distribution → good angular resolution required S. Hossain et al. Phys. Scr. 87 (2013) 015201 Fresnel scattering (η≥10) Scattering parameters D impact parameter: 𝜃𝑐𝑚 𝑏 = 𝑎 ∙ 𝑐𝑜𝑡 2 distance of closest approach: θcm b D center of mass system 𝜃𝑐𝑚 𝐷 = 𝑎 ∙ 𝑠𝑖𝑛−1 +1 2 orbital angular momentum: 𝜃𝑐𝑚 ℓ = 𝑘∞ ∙ 𝑏 = 𝜂 ∙ 𝑐𝑜𝑡 2 half distance of closest approach in a head-on collision (θcm=1800): 𝑎= 0.72 ∙ 𝑍1 𝑍2 𝐴1 + 𝐴2 ∙ 𝑇𝑙𝑎𝑏 𝐴2 𝑓𝑚 asymptotic wave number: 𝐴2 𝑘∞ = 0.219 ∙ ∙ 𝐴1 ∙ 𝑇𝑙𝑎𝑏 𝐴1 + 𝐴2 Sommerfeld parameter: 𝜂 = 𝑘∞ ∙ 𝑎 = 0.157 ∙ 𝑍1 𝑍2 ∙ 𝐴1 𝑇𝑙𝑎𝑏 𝑓𝑚−1 Scattering theory Particles from the ring defined by the impact parameter b and b+db scatter between angle θ and θ+dθ 𝑗 ∙ 2𝜋 ∙ 𝑏 ∙ 𝑑𝑏 = 𝑗 ∙ 2𝜋 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑑𝜎 𝑑Ω 𝑑𝜎 𝑏 𝑑𝑏 = 𝑑Ω 𝑠𝑖𝑛𝜃 𝑑𝜃 impact parameter: 𝑏 = 𝑎 ∙ 𝑐𝑜𝑡 ring area: 2πb db solid angle: 2π sinθ dθ 𝜃 2 𝜃 𝜃 𝜃 𝜃 𝑑𝑏 𝑎 −𝑠𝑖𝑛 2 ∙ 𝑠𝑖𝑛 2 − 𝑐𝑜𝑠 2 ∙ 𝑐𝑜𝑠 2 𝑎 1 = ∙ = ∙ 𝜃 𝑑𝜃 2 2 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛2 2 2 𝜃 𝑐𝑜𝑠 𝑑𝜎 1 𝑎 2∙ =𝑎∙ ∙ 𝜃 𝜃 𝜃 𝜃 𝑑Ω 𝑠𝑖𝑛 2 ∙ 𝑐𝑜𝑠 ∙ 𝑠𝑖𝑛 2 ∙ 𝑠𝑖𝑛2 2 2 2 2 𝑑𝜎 𝑎2 𝜃 = ∙ 𝑠𝑖𝑛−4 𝑑Ω 4 2 Scattering theory ring area: 2πb db solid angle: 2π sinθ dθ 𝑑𝜎 𝑎2 𝜃 −4 = ∙ 𝑠𝑖𝑛 𝑑Ω 4 2 Scattering theory angular momentum and scattering angle: ℓ=𝑏∙𝑝=𝑏∙ 2∙𝑚∙𝑇 ℓ = 𝜂 ∙ 𝑐𝑜𝑡 𝜃 2 𝑘∞ = 2∙𝑚∙𝑇 ℏ 𝜂 = 𝑘∞ ∙ 𝑎 𝑑𝜎 𝑑𝜎 𝑑Ω 𝑎2 𝜃 𝑑Ω = ∙ = ∙ 𝑠𝑖𝑛−4 ∙ 𝑑ℓ 𝑑Ω 𝑑ℓ 4 2 𝑑ℓ 𝑑Ω 𝑑𝜃 = 2𝜋 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑑ℓ 𝑑ℓ 2𝜃 𝑑Ω 𝜃 𝜃 2 ∙ 𝑠𝑖𝑛 2 = 2𝜋 ∙ 2 ∙ 𝑐𝑜𝑠 ∙ 𝑠𝑖𝑛 ∙ 𝑑ℓ 2 2 𝜂 𝑑𝜎 𝑎2 𝜃 8𝜋 ∙ ℓ 𝜃 = ∙ 𝑠𝑖𝑛−4 ∙ 2 ∙ 𝑠𝑖𝑛4 𝑑ℓ 4 2 𝜂 2 𝑑𝜎 2𝜋 = 2 ∙ℓ 𝑑ℓ 𝑘∞ 𝑑ℓ 𝜂 𝜃 = ∙ 𝑠𝑖𝑛−2 𝑑𝜃 2 2 𝑐𝑜𝑠 𝜃 ℓ 𝜃 = ∙ 𝑠𝑖𝑛 2 𝜂 2 Scattering theory distance of closest approach and scattering angle: 𝐷 = 𝑎 ∙ 𝑠𝑖𝑛−1 𝜃 +1 2 𝑠𝑖𝑛 𝜃 𝑎 = 2 𝐷−𝑎 𝑑𝜎 𝑑𝜎 𝑑Ω 𝑎2 𝜃 𝑑Ω = ∙ = ∙ 𝑠𝑖𝑛−4 ∙ 𝑑𝐷 𝑑Ω 𝑑𝐷 4 2 𝑑𝐷 𝑑Ω 𝑑𝜃 = 2𝜋 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑑𝐷 𝑑𝐷 2𝜃 𝑑Ω 𝜃 𝜃 2 𝑠𝑖𝑛 2 = 2𝜋 ∙ 2 ∙ 𝑐𝑜𝑠 ∙ 𝑠𝑖𝑛 ∙ ∙ 𝑑𝐷 2 2 𝑎 𝑐𝑜𝑠 𝜃 2 𝑑Ω 8𝜋 𝜃 = ∙ 𝑠𝑖𝑛3 𝑑𝐷 𝑎 2 𝑑𝜎 𝑎2 𝜃 8𝜋 𝜃 2𝜋 ∙ 𝑎 = ∙ 𝑠𝑖𝑛−4 ∙ ∙ 𝑠𝑖𝑛3 = 𝑑𝐷 4 2 𝑎 2 𝑠𝑖𝑛 𝜃 2 𝑑𝜎 = 2𝜋 ∙ 𝐷 − 𝑎 𝑑𝐷 𝜃 𝑑𝐷 𝑎 −𝑐𝑜𝑠 2 = ∙ 𝑑𝜃 2 𝑠𝑖𝑛2 𝜃 2 Summary impact parameter and scattering angle: 𝜃 𝑍𝑝 ∙ 𝑍𝑡 ∙ 𝑒 2 𝑏 = 𝑎 ∙ 𝑐𝑜𝑡 𝑎= 2 2 ∙ 𝐸𝑐𝑚 𝑑𝜎 𝑎2 𝜃 = ∙ 𝑠𝑖𝑛−4 𝑑Ω 4 2 angular momentum and scattering angle: 𝜃 𝜂 = 𝑘∞ ∙ 𝑎 ℓ = 𝜂 ∙ 𝑐𝑜𝑡 2 𝑘∞ = 𝑑𝜎 2𝜋 = 2 ∙ℓ 𝑑ℓ 𝑘∞ distance of closest approach and scattering angle: 𝐷 = 𝑎 ∙ 𝑠𝑖𝑛−1 𝜃 +1 2 𝑑𝜎 = 2𝜋 ∙ 𝐷 − 𝑎 𝑑𝐷 2 ∙ 𝑚 ∙ 𝐸𝑐𝑚 ℏ Summary impact parameter and scattering angle: 𝜃 𝑏 = 𝑎 ∙ 𝑐𝑜𝑡 2 𝑑𝜎 𝑎2 𝜃 = ∙ 𝑠𝑖𝑛−4 𝑑Ω 4 2 angular momentum and scattering angle: 𝜃 ℓ = 𝜂 ∙ 𝑐𝑜𝑡 2 𝑑𝜎 2𝜋 = 2 ∙ℓ 𝑑ℓ 𝑘∞ distance of closest approach and scattering angle: 𝐷 = 𝑎 ∙ 𝑠𝑖𝑛−1 𝜃 +1 2 𝑑𝜎 = 2𝜋 ∙ 𝐷 − 𝑎 𝑑𝐷 Nuclear Reactions elastic scattering deviates from Rutherford scattering scattering angle angular momentum distance of closest approach Ratio of the elastic scattering and Rutherford scattering (nuclear reactions) is only independent of the bombarding energy when plotted versus the distance of closest approach D. Data are from Coulomb excitation experiments: The excitation probability P8(exp) of the low-lying rotational state Iπ = 8+ is not only excited directly but also fed from higher-lying states and is therefore a measure of the elastic scattering. When comparing with Coulomb excitation calculations P8(theo), which corresponds to the Rutherford scattering, the observed deviations are a clear indication of nuclear interactions (nuclear reactions). Heavy-ion elastic scattering energy and angular distributions determine elastic energy = f(θ), fit standard line shape, determine elastic cross section σel(θ) plot ratio elastic/Rutherford cross section = f(θ), determine quarter-point θ1/4 → total integrated reaction cross section σR J.R. Birkelund et al., Phys.Rev.C13 (1976), 133 (600 MeV) + 209Bi: θ = 66.70 → ℓgr = 268 ħ, Rint = 14.2 fm, σR = 1.9 b 84Kr Heavy-ion elastic scattering and the optical model V 𝑽𝑪 𝒓 = 1cm/ 4 𝑽𝒏𝒖𝒄𝒍 𝒁𝟏 𝒁𝟐 𝒆𝟐 𝒓𝟐 𝟑− 𝟐 𝟐 ∙ 𝑹𝑪 𝑹𝑪 𝒁𝟏 𝒁𝟐 𝒆𝟐 𝒓 −𝑽𝟎 𝒓 = 𝒓−𝒓 𝟏 + 𝒆𝒙𝒑 𝒂 𝑹 𝑹 𝑽𝒊𝒎𝒂𝒈 𝒓 = J.R. Birkelund et al., Phys.Rev.C13 (1976), 133 −𝑾𝟎 𝒓−𝒓 𝟏 + 𝒆𝒙𝒑 𝒂 𝑰 𝑰 𝒓 < 𝑹𝑪 𝒓 ≥ 𝑹𝑪 r r Heavy-ion elastic scattering and the optical model V 𝑽𝑪 𝒓 = 1cm/ 4 𝑽𝒏𝒖𝒄𝒍 𝒁𝟏 𝒁𝟐 𝒆𝟐 𝒓𝟐 𝟑− 𝟐 𝟐 ∙ 𝑹𝑪 𝑹𝑪 𝒁𝟏 𝒁𝟐 𝒆𝟐 𝒓 −𝑽𝟎 𝒓 = 𝒓−𝒓 𝟏 + 𝒆𝒙𝒑 𝒂 𝑹 𝑹 𝑽𝒊𝒎𝒂𝒈 𝒓 = 𝒓 < 𝑹𝑪 𝒓 ≥ 𝑹𝑪 r −𝑾𝟎 𝒓−𝒓 𝟏 + 𝒆𝒙𝒑 𝒂 𝑰 𝑰 Parameters of the optical model fit: θ1/4 = 600 → Rint = 13.4 [fm] → ℓgr = 152 [ħ] J.R. Birkelund et al., Phys.Rev.C13 (1976), 133 V0 (MeV) rR (fm) aR (fm) W0 (MeV) rI (fm) aI (fm) ℓ (ħ) σR (mb) 68.0 1.167 0.540 83.9 1.167 0.540 150 1937 214.5 1.104 0.536 261.1 1.104 0.536 149 1902 43.2 1.196 0.529 56.0 1.196 0.529 150 1939 Elastic scattering and nuclear radius Nuclear interaction radius: (distance of closest approach) 𝑅𝑖𝑛𝑡 = 𝐷 = 𝑎 ∙ 𝑠𝑖𝑛−1 cm 1/ 4 𝜃1/4 +1 2 𝑅𝑖𝑛𝑡 = 𝐶𝑝 + 𝐶𝑡 + 4.49 − 𝐶𝑖 = 𝑅𝑖 ∙ 1 − 𝑅𝑖−2 𝑓𝑚 𝐶𝑝 + 𝐶𝑡 6.35 1/3 𝑅𝑖 = 1.28 ∙ 𝐴𝑖 𝑓𝑚 −1/3 − 0.76 + 0.8 ∙ 𝐴𝑖 Nuclear density distributions at the nuclear interaction radius θ1/4 = 600 → Rint = 13.4 [fm] → ℓgr = 152 [ħ] J.R. Birkelund et al., Phys.Rev.C13 (1976), 133 𝑓𝑚 Nuclear radius ρ/ρ0 1.0 0.9 0.5 ρ/ρ0 C 0.1 R nuclear radius of a homogenous charge distribution: 1/3 𝑅𝑖 = 1.28 ∙ 𝐴𝑖 −1/3 − 0.76 + 0.8 ∙ 𝐴𝑖 nuclear radius of a Fermi charge distribution: r 𝐶𝑖 = 𝑅𝑖 ∙ 1 − 𝑅𝑖−2 𝑓𝑚 𝑓𝑚 Elastic scattering – nuclear reactions impact parameter and scattering angle: 𝜃 𝑏 = 𝑎 ∙ 𝑐𝑜𝑡 2 𝑑𝜎 𝑎2 𝜃 = ∙ 𝑠𝑖𝑛−4 𝑑Ω 4 2 θ1/4 = 1320 angular momentum and scattering angle: 𝜃 ℓ = 𝜂 ∙ 𝑐𝑜𝑡 2 𝑑𝜎 2𝜋 = 2 ∙ℓ 𝑑ℓ 𝑘∞ distance of closest approach and scattering angle: 𝐷 = 𝑎 ∙ 𝑠𝑖𝑛−1 ℓgr = 206 ħ 𝜃 +1 2 𝑑𝜎 = 2𝜋 ∙ 𝐷 − 𝑎 𝑑𝐷 Rint = 16.2 fm Total reaction cross section impact parameter and scattering angle: 𝜃 𝑏 = 𝑎 ∙ 𝑐𝑜𝑡 2 𝜎𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 2𝜋𝑎2 ∙ 𝑐𝑚 1 − 𝑐𝑜𝑠 𝜃1/4 −1 − 0.5 θ1/4 = 1320 a = 7.73 fm ℓgr = 206 ħ k∞ = 59.9 fm-1 Rint = 16.2 fm VC(Rint) = 656 MeV angular momentum and scattering angle: 𝜃 ℓ = 𝜂 ∙ 𝑐𝑜𝑡 2 𝜎𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 𝜋 2 ∙ ℓ𝑔𝑟 ℓ𝑔𝑟 + 1 𝑘∞ distance of closest approach and scattering angle: 𝐷 = 𝑎 ∙ 𝑠𝑖𝑛−1 𝜃 +1 2 2 𝜎𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 𝜋 ∙ 𝑅𝑖𝑛𝑡 ∙ 1− 𝑉𝐶 𝑅𝑖𝑛𝑡 𝐸𝑐𝑚 Scattering theory – nuclear absorption elastic cross section: 𝑑𝜎𝑒𝑙 𝑑𝜎𝑅𝑢𝑡ℎ = 1 − 𝑃𝑎𝑏𝑠 𝐷 𝑑𝐷 𝑑𝐷 attenuation coefficient: 1 − 𝑃𝑎𝑏𝑠 𝐷 2 = 𝑒𝑥𝑝 − ℏ +∞ 𝑊 𝑟 𝑡 𝑑𝑡 −∞ proximity potential: 𝑊𝑟 𝑡 = 𝑊0 ∙ 𝑒𝑥𝑝 − 𝑟 𝑡 − 𝐶1 − 𝐶2 𝑎𝐼 attenuation coefficient: 1 − 𝑃𝑎𝑏𝑠 𝐷 2 𝐷 − 𝐶1 − 𝐶2 𝐷 = 𝑒𝑥𝑝 − ∙ 𝑊0 ∙ 𝑒𝑥𝑝 − ∙ ℏ 𝑎𝐼 𝑣 High-energy Coulomb excitation grazing angle 136Xe on 208Pb at 700 MeV/u excitation of giant dipole resonance Coulomb ex. Rint 15.0 fm 1/ 4 5.7 mrad Protons For relativistic projectiles ( cm lab): π ν A.Grünschloß et al., Phys. Rev. C60 051601 (1999) 2 Z P ZT e 2 1 D m0 c 2 2 Neutrons High-energy Coulomb excitation grazing angle 136Xe on 208Pb at 700 MeV/u excitation of giant dipole resonance Coulomb ex. Rint 15.0 fm 1/ 4 5.7 mrad Protons For relativistic projectiles ( cm lab): π ν A.Grünschloß et al., Phys. Rev. C60 051601 (1999) 2 Z P ZT e 2 1 D m0 c 2 2 Neutrons Effect of nuclear structure on elastic scattering 9,10Be+64Zn elastic scattering angular distributions @ 29MeV 9Be Sn=1.665 MeV 10Be Sn=6.88 MeV A. Di Pietro et al. Phys. Rev. Lett. 105, 022701(2010) Effect of nuclear structure on elastic scattering 11Be 10,11Be+64Zn @ Rex-Isolde, CERN 10Be+64Zn 11Be+64Zn Optical Model analysis: Volume potential responsible for the core-target interaction obtained from the 10Be+64Zn elastic scattering fit. plus a complex surface DPP having the shape of a W-S derivative with a very large diffuseness. Very large diffuseness: ai = 3.5 fm similar to what found in A. Bonaccrso, NP A706 (2002), 322 Reaction cross-sections sR(9Be) ≈ 1.1b sR(10Be) ≈ 1.2b sR(11Be) ≈ 2.7b A. Di Pietro et al. Phys. Rev. Lett. 105, 022701(2010)