Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name __________________________________________________________________ Date ______________________ Geometry CP Midterm Review #1: Chapter 1 - Tools of Geometry I D Use the figure at the right to answer questions 1-8. A C B G E H F 1. Name the intersection of plane ABFE and plane BCHF. 1. ____________________________ 2. Name the intersection of Μ Μ Μ Μ π΄π΅ and Μ Μ Μ Μ π΅πΆ . 2. ____________________________ 3. Name a pair of perpendicular segments. 3. ____________________________ 4. Name a pair of parallel segments. 4. ____________________________ 5. Name 3 collinear points. 5. ____________________________ 6. Name 4 non-collinear points. 6. ____________________________ 7. Name 4 coplanar points. 7. ____________________________ 8. Name 4 non-coplanar points. 8. ____________________________ Classify each statement as true or false. If false, correct the statement to make it true. 9. Lines extend forever in two directions. 9. ____________________________ 10. Planes have edges. 10. ____________________________ 11. Any three points are collinear. 11. ____________________________ 12. Through any two points, there is exactly one line. 12. ____________________________ 13. Any three points are coplanar. 13. ____________________________ 14. Any four points are coplanar. 14. ____________________________ 15. The intersection of two planes is a point. 15. ____________________________ 16. The intersection of two lines is a point. 16. ____________________________ 17. Two lines that do not intersect are parallel. 17. ____________________________ 18. If π΄π = 4π₯ β 6, solve for x, then find BA and BS. π₯+4 π₯+2 A S B Μ Μ Μ Μ β π΄π Μ Μ Μ Μ and π΄π = 3ππ, what are AC and CT? 19. If π΄πΆ C T A 20. β π΄ and β π΅ are supplementary angles. πβ π΄ = 52°. What is πβ π΅? 21. β π and β π are complementary angles. πβ π = (2π₯ + 5)° and πβ π = (2π₯ + 9)°. What is πβ π? 22. If πβ πΎπΏπ = (5π₯ β 30)° and πβ ππΏπ = (2π₯)°, find the value of x AND the measure of each angle. M K L N KEEP GOING! 23. β πππ and β π ππ are congruent. If πβ π ππ = 43°, what is the measure of β πππ? R P S Q 24. β πππ is a right angle. If πβ πππ = (2π₯)° and πβ πππ = (π₯)°, find the value of x. Then find the measure of each angle. X W Y Z 25. If Q is the midpoint of Μ Μ Μ Μ ππ , and ππ = 16, what is QR? P Q R 26. If πβ 1 = 2π₯ + 10 and πβ 3 = 50, find x and the measures of angles 2 and 4. 3 2 1 4 KEEP GOING! Name __________________________________________________________________ Date ______________________ Geometry CP Midterm Review #2: Chapter 2 β Reasoning and Proof For questions 1-8, match each statement with its appropriate property. _______ 1. If π₯ 3 = 5, then π₯ = 15 A. Addition Property _______ 2. If π₯ + 10 = β21, then π₯ = β31 B. Division Property _______ 3. If β π β β π , then β π β β π C. Symmetric Property _______ 4. If πβ π΄ + πβ π΅ = 180, and πβ π΅ = 30, then πβ π΄ + 30 = 180 D. Subtraction Property _______ 5. If 5π₯ = 10. Then π₯ = 2 E. Reflexive Property _______ 6. β π΅ = β π΅ F. Substitution Property _______ 7. If β 1 β β 2, and β 2 β β 3, then β 1 β β 3 G. Multiplication Property _______ 8. If π§ β 15 = 30, then π§ = 45 H. Transitive Property 9. Solve the following equation and indicate the property that justifies each step. Given: 4π₯ + 13 = 49 Statements Reasons A M 10x 18+x 10. Given: M is the midpoint of AB Solve for x Statements Reasons 1. M is the midpoint of AB 1. 2. AM ο _____ 2. 3. _________=18+x 4. 9x = _____ 5. ___________ B 3. 4. 5. Name __________________________________________________________________ Date ______________________ Geometry CP Midterm Review #3: Chapter 3 β Parallel and Perpendicular Lines l || m 1 4 5 8 2 3 l 6 7 m 1. Name a pair of corresponding angles. 2. Name a pair of same-side interior angles. 3. Name a pair of alternate interior angles. 4. Name a pair of alternate exterior angles. 5. Name a pair of same-side exterior angles. 6. If πβ 1 = 120°, what is the πβ 5? 7. If πβ 3 = 40°, what is the πβ 6? 8. If πβ 4 = 130°, what is the πβ 6? 9. If πβ 2 = 25°, what is the πβ 5? 10. If πβ 3 = 80°, what is the πβ 8? 11. If πβ 1 = (π₯ + 50)°, and the If πβ 8 = (π₯ + 22)°, what is the value of x and all of the angles? 12. If πβ 4 = (3π₯ + 20)°, and the If πβ 6 = (2π₯ + 30)°, what is the value of x and all of the angles? π₯= π₯= πβ 1 = πβ 1 = πβ 2 = πβ 2 = πβ 3 = πβ 3 = πβ 4 = πβ 4 = πβ 5 = πβ 5 = πβ 6 = πβ 6 = πβ 7 = πβ 7 = πβ 8 = πβ 8 = Refer to the diagram on the right for #13-19 1 5 13. Which angles are exterior angles? 14. What are the remote interior angles for β 4? 15. What are the remote interior angles for β 5? 16. What is the relationship between β 2 and β 5? 17. What is the relationship between β 3 and β 4? 18. If πβ 2 = 60° and πβ 1 = 45°, what is the πβ 4? 19. If πβ 3 = 60°, what is the πβ 4? 20. If πβ 5 = 120° and πβ 3 = 75°, what is the πβ 1? 21. Classify the following triangle by its sides and angles. 40° 10 10 70° 70° 2 3 4 Name __________________________________________________________________ Date ______________________ Geometry CP Midterm Review #4: Chapter 4 β Congruent Triangles Determine if you can prove that two triangles congruent from the information given. If you can, say whether you can prove it using SSS, SAS, ASA, AAS, or HL. If not, say it cannot be determined. 1. 2. 3. 4. 5. 6. 7. βπ΄π΅πΆ β βπ·πΈπΉ Μ Μ Μ Μ β __________ π΄π΅ Μ Μ Μ Μ β __________ π΄πΆ Μ Μ Μ Μ β __________ π΅πΆ β π΄ β __________ β π΅ β __________ β πΆ β __________ Solve for x in each of the following triangles. 8. 9. x 5 9 60° x 10. 11. 27° x (3x+5)° Complete the following proofs. Μ Μ Μ Μ β Μ Μ Μ Μ 12. Given: ππ ππ; Μ ππ Μ Μ Μ β π π Μ Μ Μ Μ Prove: βπ ππ β βπππ Statements Reasons Μ Μ Μ Μ β ππ Μ Μ Μ Μ β π π Μ Μ Μ Μ ; ππ Μ Μ Μ Μ 1. ππ 1. Μ Μ Μ Μ β π π Μ Μ Μ Μ 2. π π 2. 3. βπ ππ β βπππ 3. Μ Μ Μ Μ Μ ; 13. Given: N is the midpoint of ππ N is the midpoint of Μ Μ Μ Μ πΏπ Prove: β πΏ β β π Statements 1. N is the midpoint of Μ Μ Μ Μ Μ ππ; Reasons 1. Μ Μ Μ Μ N is the midpoint of πΏπ 2. Μ Μ Μ Μ ππ β Μ Μ Μ Μ Μ ππ 2. 3. Μ Μ Μ Μ πΏπ β Μ Μ Μ Μ ππ 3. 4. β πππΏ β β πππ 4. 5. βπππΏ β βπππ 5. 6. β πΏ β β π 6. Separate and redraw the overlapping triangles. Identify any common angles or sides using tick marks. Name a pair of overlapping congruent triangles in each diagram. State whether the triangles are congruent by SSS, SAS, ASA, AAS, or HL. Μ Μ Μ Μ ; 14. Given: Μ Μ Μ Μ Μ ππ β ππ β πππ and β πππ are right angles. Μ Μ Μ Μ ; Μ Μ Μ Μ β πΏπ 15. Given: πΏπ β πΏππ β β πΏππ