Download Building Flood Disaster Resilience of Cities * Meeting Internal and

Document related concepts
no text concepts found
Transcript
Presented at Kaohsiung Water Forum
April 21-25, 2013 – Kaohsiung Taiwan
Climate Risk and
Adaptation Assessment in City Level
Greater Malang, Palembang City and Tarakan Island
Budhi Setiawan
Civil Engineering Department, Sriwijaya University INDONESIA
Senior Technical Advisor on Office for Climate Change Resilience –
Ministry of National Development Planning
Outline
• Climate Risk and Adaptation Assesssment
Framework in Indonesia
• Flood Risk and Adaptation Method
• Landslide Risk and Adaptation Method
• Analysis of Climate Risk and Adaptation in :
– Greater Malang
– Palembang City
– Tarakan Island
CLIMATE RISK AND ADAPTATION
ASSESSMENT IN INDONESIA
Approaches in Research of Climate Change Impact (CCIAVA)
(Modified from IPCC, 2007)
Approach
Impact
Vulnerability
Adaptation
Processes effecting
Processes effecting
Impact and risk under
vulnerability to climate adaptation and adaptive
Scientific Objective
future climate
change
capacity
Practical aims
Actions to reduce risks
Action to reduce
vulnerability
Action to improve
adaptation
Vulnerability indicators and profiles
Standard approach to
Past and present climate risk
CCIAV
Livelihood analysis
Driver-pressure-stateAgent-based methods
Narrative methods
Research methods impact-response
(DPSIR) methods
Risk perception including critical threshold
Hazard-driven risk Development/sustainability policy performance
assessment
Relationship of adaptive capacity to sustainable
development
Motivation
Research Driven
Research/Stakeholders Driven
RISK
Risk and Policy
Response
Assessment
Integrated
Interaction and feedbacks
between multiple driver
and impacts
Mainstreaming into Global policy options and
Policy Making
costs
Risk Assessment
Procedures
Risk composes of
Hazards and
Vulnerability
Integrated assessment
modeling
Cross-sectoral interactions
Integration of climate with
other drivers
Stakeholder discussions
linking models across types
and scales
Combining assessment
approaches/methods
Policy Driven
Research/
Stakeholders Driven
Risk Assessment Approach
Climate stimuli
• Temperature
• Rainfall
• Sea level
IPCC
AR4
Projected
changes in :
• mean
• variability
• extremes
Surface
condition :
• topography
• land cover
• etc
Additional analysis/
modeling
CC Hazards (by sectors)
• Water resources
• availability ()
• flood & drought ()
• Agricultural
• production ()
 planting failure
 harvest failure
 lower productivity
• Health
• incidence rate ()
DBD
Malaria
Diarrhea
• Coastal
• inundated area ()
 SLR
 Extreme events
Elements of Built Environment
Bio-Physical
• # Houses
• Cultivated area
• etc
Vulnerability
Components
• (E)xposure
• (S)ensitivity
• (A)daptive(C)apacity
V
E S
AC
Social
• Population density
• # Vulnerable group
• etc
Economic
• # Assets
• GDP growth
• etc
(R) isk = H×V
H = F(f,M,p)
Pseudo Equation (Wisner et al., 2004)
Adaptation Planning with DRR Framework
(1)Understand the
climatic hazard
uncertainty
past
proxy data
present obs. data
future
climate
model
Climate scientists
(2)Assess Risks
• Hazard Assessments
• Vulnerability Assessments
• Risk Maps
• Potential Impact Assess.
Macro-scale :
• National scale
• Policy & Laws
• Long-term planning
Meso-scale :
• Province & Municipality
• Policy / Strategy
• Mid-term Planning
Micro-scale :
• Municipality
• Spatial planning
• Adaptation action
Climate scientists, engineers,
economic & policy analysts
(3)Reduce Risks
• Reduce Hazard Level
• Reduce Vulnerability Level
• Structural
• Technological
• Socio-cultural
• etc. measures
• To save human lives
• To save investments
(4)Transfer Risks
• Financial instruments
• Reduce economic loss
• Accelerate recovery
Planners, Decision makers
(1)Science Basis
Vulnerability Analysis :
• Bio-Physic, Social, Economic
• Baseline
• Dynamic Vulnerability
(2) Risk Analysis
ClimatevAnalysis &
Projection
Rainfall and
temperature in
baseline and
projection
Hazard Analysis :
• Water shortage/drought
• Flood
• Landslide
Hazard Map
Vulnerability Map
Risk Map as Impact of Climate
Change
(3) Adaptation Policy
• Identify of risk area
• Prioritize of adaptation program
• Recommendation
General Method
Hazard Stimulation
(climatic driven)
H / V Components (nonclimatic driven)
Vulnerabilities (V)
GIS
R : H x V (E,S,AC)
H, V & R Analysis
(Baseline/B &
Projection/P)
Hazards (H)
Risks (R)
Adaptation Measures (Programs &
Activities)
Adaptation
Analysis (B &
P)
Adaptation Policy & Strategy
FLOOD RISK AND ADAPTATION
ASSESSMENT
Swamp and river
Drainage
Infrastructure
Inundation
Building
Land Use and RTRW
PDA Statistic
Administrative
Boundary
Data Process
Vulnerability
Hazard
Risk analysis
Adaptation
strategy
LANDSLIDE RISK AND ADAPTATION
ASSESSMENT
Triggering Factor
STEP I
Environmental Factor
Landuse
Geology
Soil Type
Slope
Rainfall
Landslide Occurences
CRD
Building
Density
Infrastructure
IDF
STEP II
Ground water
Table Recharge
STEP III
Soil Strength
Decreases
Landslide Hazard
Analysis
Vulnerability Analysis
(Map of Landslide Vulnerability)
(Map of Hazard)
STEP IV
Risk= Hazard x Vulnerability
(Map of Landslide Risk)
STEP V
Adaptation Strategy
ANALYSIS OF CLIMATE RISK AND ADAPTATION ASSESSMENT
IN GREATER MALANG (FLOOD AND
LANDSLIDE)
Climate condition in Greater Malang
1
0.9
1 yr
5 yr
Probability of Exceedence
0.8
2 yr
0.7
0.6
0.5
10 yr
0.4
0.3
0.2
0.1
0
0
50
100
150
200
Rainfall (mm/day)
250
300
Probability of exceedence rainfall with return
periods 1, 2, 5, and 10 years
Relationship between monthly rainfall
and probability of extreme rainfall
Hazard Potential of Flood in Greater Malang
Baseline
Projection
16
Flood vulnerability in Greater Malang
Baseline
Projection
Flood Risk in Baru City
Baseline
Projection
Flood Risk in Malang City
Baseline
Projection
Flood Risk in Malang Regency
Baseline
Projection
Kurva IDF (Intensity-Duration Frequency)
300.0
intensitas
250.0
200.0
150.0
100.0
50.0
0.0
5
10
20
kurva-basis 280.0 200.6 128.0
30
94.0
40
74.2
durasi
kurvabasis
Slope stability analysis based on
climate change hazard
50
61.4
60
52.3
Landslide Hazard in Greater Malang
Hazard Baseline Map of December 2006,
as the most wet month
Hazard Baseline Map of December 2007
as the most dry month
Landslide Vulnerability in Greater Malang
Components
Exposure
Sensitivity
Adaptive Capacity
baseline
Indicators
Population density
Sub-indicators
Population and population
growth per sub-district
Weighting
0.54
Landuse
Landuse as in regional planning
0.22
Role of infrastructure
Population Welfare
Road infrastructure
Population’s income
0.18
0.06
projection
Landslide risk map for baseline condition
(Observation data)
Landslide risk map for baseline condition
(Simulation data)
Risk Area (m2)
Risk Level
Baseline
Observation
Very Low
Low
Moderate
High
Very High
Landslide risk map for projection condition
Projection
Simulation
Simulation
760.260.000
792.590.000
2.141.700.000
1.639.880.000
1.657.270.000
328.540.000
152.550.000
115.720.000
56.510.000
33.440.000
20.620.000
54.200.000
250.000
190.000
880.000
Landslide Risk Area of Great Malang
ANALYSIS OF CLIMATE RISK AND ADAPTATION ASSESSMENT
IN PALEMBANG CITY (FLOOD)
Palembang
City
Palembang in
Coastal Area, Swamp Area, River and Lowland
The Development in
Swamp Area
= River
Regional Climate
Aldrian and Susanto (2003)
(Curah Hujan di Asia Tenggara
 peta awal 1900-an,
Broek, 1944)
Sumsel beriklim basah;
batas antara tipe monsunal
(satu puncak) dan
ekuatorial (dua puncak) ?
Past Local Climate in Palembang
Equatorial
Monsunal
Limit of dry/wet
month from
Indonesian Agency
for Meteorology,
Climatology and
Geophysics
Ekuatorial in
dry season
De gemiddelde jaartemperaturen op de kustplaatsen verschillen minder dan l°C. en bewegen zich, voor zoover bekend,
tusschen 26.6 en 27.3° C. ; het gemiddelde verschil tusschen dag- en nachttemperatuur is 5 a 6° C. ; dat tusschen de
warmste en de koudste maand iets meer dan 1° C.
TEMPERATURE
Temperature :
•
Monthly mean temperature has two peaks that seems
to lag about one month or more from the equinoxes
with an average value of slightly above 27° C. It is of
interest to note that the temperature difference
between warmest (May) and coolest (January) months
is about 1° C. (C. Lekkerkerker, 1916).
Source : Hadi, 2011
Figure below shows Baseline condition of
temperature for baseline (1955-1999) and
projection of temperature (2009-2099).
Development
The trend of temperature does not show significant
increasing from year of 1951 to 2030.
From the 3 scenarios SRES  the temperature increase
to 1° C relative to (1961-1990)
Verification  weighting
Projection
Source : Hadi, 2011
RAINFALL
Source : Hadi, 2011
Source : Hadi, 2011
Slightly different in the mountains area
on the North West  it becomes unclear
in dry season (rainfall is relatively higher)
Rainfall analysis are using some scenarios of IPCC, although the models
show large discrepancy from observations, the increase of rainfall
during the last decade was obtained from the results from A1B and A2
scenarios. In general, results from these two scenarios produce similar
rainfall variations at least until early 2030s.
Source : Hadi, 2011
The models shows the spatial
variability of rainfall for
baseline condition (1951-1990)
by using Observation data
(left) and SRA1B scenarios of
IPCC.
Hazard analysis
Baseline (2010)
Projection (2030)
Vulnerability
Baseline (2010)
Projection (2030)
Difference Analysis Level of Vulnerability
Messo
Micro
Local
Baseline
Baseline
Baseline
Projection
Projection
Projection
Risk Analysis
• R= H x V
Baseline (2010)
Projection (2030)
Adaptation Strategy/Action
Land use type
Short-term
Long term
Increasing level of road surface
Road
Drainage normalisation
Increasing level of pavement
Bio-pore
Housing and building
Drainage normalisation
Increasing the amount of
farming
Watershed area
River normalisation
Pumping
Swamp area
Drainage normalisation
Industry, office, trade and
Infiltration Measure
service area
(permeable paving)
Infiltration Measure
Other landuse type
(permeable paving)
Drainage normalisation
Install embankment
Monitoring to the
regulation
Bio-pore
Detention
Canalisation
Green space
ANALYSIS OF CLIMATE RISK AND ADAPTATION ASSESSMENT
IN TARAKAN ISLAND (LANDSLIDE)
Tarakan Island
• On east-side of Kalimantan, Indonesia
• Located at 3o14'23"-3o26'37" Northern
Latitude and 117o30'50"-117o40'12“
Eastern Longitude
• 61 Landslide occurences until 2010
• Slope 0-15%
• Extreme scenario of rainfall intensity is
100 mm/Hours (with the longest
duration is 2 hours)
• Annual rainfall has two peak; on April
(338 mm with average monthly
temperature) and November, 360 mm
mmt), meanwhile the most dry is on
February (252 mm mmt)
• The estimation of temperature
increasing is higher than
0,5 degree C/100 years
Annual pattern of climate
Rainfall
Temperatur
Projection of climate
Survey lokasi longsor
Hazard Components:
•
•
•
•
Landslide occurence
Slope
Geology
Ground Water Recharge
Stabiliy modelling
Modelling
Kelurahan
Kampung Enam 1
Kampung Enam 2
Pamusian (Ladang dalam)
Kampung Baru 1
Kampung Baru 2
Kampung Baru 3
Pamusian (Markoni dalam)
Gunung Lingkas (Jl.TMD)
Sebengkok 7
Sebengkok 8
Sebengkok 9
Sebengkok 10
Kampung Satu Skip 1
Kampung Satu Skip 2
Kampung Satu Skip 3
Kampung Satu Skip 4
Kampung Satu Skip 5
Kampung Satu Skip 6
Kampung Satu Skip 7
Karanganyar 1
Karanganyar 2
Karanganyar 3
Karanganyar 4
karang anyar 5
Karanganyar 6
Karanganyar 7
Karanganyar 8
Juata Permai 1
Juata Permai 2
Karang Balik 1
X_coord Y_coord
Kelurahan
X_coord Y_coord
569047 365608 Karang Balik 2
565467 365390
569439 366217 Karang Balik 3
565526 365380
566939 366518 Karang Balik 4
565182 365781
569581 361431
566233 366429 Mamburungan Timur
560885 380305
566273 366198 Juata Laut 1
561024 380413
566506 366206 Juata Laut 2
561763 380233
566662 365150 Juata Laut 3
563223 370499
566369 364409 karang harapan 1
563569 369782
566377 364453 karang harapan 2
571892 364062
566034 364745 pantai amal 1
571835 364144
565766 365248 pantai amal 2
569838 366204
565817 364186 pantai amal 3
569316 365575
565648 367837 kampung enam 3
565428 365739
565730 367939 Karang Balik 1
565611 365728
565924 368020 Karang Balik 2
565882 365505
565861 367787 Sebengkok 1
565892 365396
567049 367541 Sebengkok 2
565871 365463
567535 367070 Sebengkok 3
565945 365619
567391 366852 Sebengkok 4
565945 365491
565197 367188 Sebengkok 5
565992 365463
565114 367103 Sebengkok 6
565704 364833
565141 367188 Selumit 1
565710 364987
565078 366936 Selumit 2
565433 364782
564499 367360 Selumit 3
565538 363812
565260 366824 Gn. Lingkas ujung
566319 364375
566021 367099 Gn.Lingkas 1
566394 364447
566456 367367 Gn.Lingkas 2
566516 364805
560370 371544 Gn.Lingkas 3
566137 367079
560377 371540 Kampung Bugis
564366 367152
565484 365358 Perumnas
Landslide existing map
Probability index
Hazard Components :
380000
•
•
•
•
Landslide occurence
Slope
Geology
N
Ground Water Recharge
555000
560000
565000
570000
No
575000
1
2
3
4
5
6
Steepness
Flat
Gently Sloping
Sloping
Steep
Very steep
Extremely steep
580000
380000
375000
375000
370000
370000
365000
Index :
1
2
3
4
5
360000
Skala :
3
0
365000
3
360000
6
KM
555000
560000
565000
570000
575000
580000
Slope
0-2 %
3-7 %
8-13 %
14-20 %
21-55 %
>56%
555000
560000
565000
570000
575000
580000
380000
380000
Hazard Components:
N
•
•
•
•
Landslide occurence
Slope
Geology
Ground water recharge
375000
375000
370000
370000
365000
360000
Indeks :
1
2
3
4
365000
Skala :
3
0
3
360000
6
KM
555000
No
1
2
3
4
5
6
7
Geology
Clayey sand
Monmorilonit
Conglomerate
Quarter
Sediment
Coal
Sandstone
Claystone
560000
565000
570000
575000
580000
Grain size
Texture
Cohession
Phi
Consolidation
Total
Index
3
1
4
2
1
1
2
4
1
3
3
4
2
1
1
12
10
11
4
1
2
1
1
3
2
3
10
1
4
3
1
3
3
3
2
1
4
3
4
1
1
1
3
13
12
12
3
4
4
Rainfall - Recharge
Hazard Components:
•
•
•
•
Rainfall
Landslide occurence
Slope
Geologi
Ground Water Recharge
Using Cummulative Rainfall Departure Method (CRD)
Ground Water Recharge Modelling in Tarakan Island
600
20000
15000
500
10000
400
5000
300
0
-5000
200
-10000
100
-15000
0
Rainfall (mm)
-20000
Water Level (mm)
Januari
Februari
Maret
April
Mei
Juni
Juli
Agustus
September
Oktober
November
Desember
Kurva IDF (Intensity-Duration Frequency)
300.0
intensitas
250.0
200.0
150.0
100.0
50.0
0.0
5
10
20
kurva-basis 280.0 200.6 128.0
30
94.0
40
74.2
50
61.4
durasi
kurvabasis
Modelling process of
slope stability using
input of soil strength
decrease
60
52.3
Slope Stability Modelling using input of Soil Strength Decrease
Landslide Hazard (2020) In Tarakan Island
Januari
Februari
Maret
April
Juli
Agustus
September
Oktober
Mei
November
Juni
Desember
Landslide Hazard Area in Tarakan Island
Hazard
Very Low
Low
Moderate
High
Very High
January
May
June
66,52
84,56
66,57
66,52
43,34
66,57
111,55
122,52
128,81
111,55
61,35
111,62
57,34
39,43
48,24
57,30
119,29
65,43
14,38
3,30
6,18
14,39
25,14
6,18
0,03
0,00
0,02
0,05
0,70
0,02
July
Very Low
Low
Moderate
High
Very High
February
Area (KM2)
March
April
August
September
October
November December
66,57
66,57
84,56
66,52
51,45
51,45
128,81
128,81
122,52
111,55
105,05
73,06
48,24
48,24
39,40
57,30
67,60
99,60
6,18
6,18
3,32
14,39
25,02
25,02
0,02
0,02
0,01
0,05
0,69
0,69
Landslide Vulnerability
Peta
Building
Indeks
0,3
Population density
0,25
Slope
0,23
Infrastructure and public
facilities
0,12
Landuse
0,1
Landslide Risk (2020) in Tarakan Island
Januari
Februari
Maret
April
Juli
Agustus
September
Oktober
Mei
November
Juni
Desember
Landslide Adaptatation Assessment
Refferring :
• Australian Geomechanics Society (AGS)
• Landslide Risk Assessment and Mitigation
(LARAM-2000) Describe 4 typical works, i.e : Drainage
installation, Slope modification, Retaining Wall, and Internal Slope
Reinforcement
Risk
Design phase
Evaluation
Reconsider
Conceptual design
Client/Owner/Regulator to
decide to accept or treat
technical specialist to advise
Design to implement
preferred site
Review preliminary design and
select optimum method of
stabilising landslide
Feedback
Specify any special measures
specific to construction through
landslide zone
Detailed design of short and
long term monitoring system
Construction phase
Install monitoring
system
Monitoring
Maintenance phase
Construct
Revised
design
No
Is project performing
satisfactory ?
Feedback
Feedback
Yes
Continue periodic monitoring
Feedback
Phase of Location Assessment
Landuse in High Risk Landslide
Tata Guna Lahan
Hutan Lebat
Jalan
Kawasan Terbangun
Kebun Campuran
Kilang Minyak
Kolam
Kuburan
Lapangan Olahraga
Mangrove
Perkebunan
Pertanian Lahan Kering
Rawa
Semak Belukar
Tambak
Tanah Kosong/Tegalan
Tubuh Air
Map of landslide Adaptation
High Risk (m2)
Desain
Non-Desain
13.056,98
9.530,95
55.804,71
555000
560000
565000
570000
575000
565000
570000
575000
380000
341.448,53
81,49
107,32
9.714,04
0,06
24,81
N
375000
51,08
64.510,56
401,48
191.261,46
1.851,31
370000
30.250,18
2.823,97
365000
Lok as i Desain
Penanggulangan Longsor
Adaptation and non-adaptation
area
360000
Skala :
3
0
6
KM
555000
Evaluation of Landslide Risk
3
560000
Assessment of Landslide Location
Adaptation
Modelling Process
561200
561600
562000
2 Ground Survey
562400
3 80600
Peta Lokasi Desain
Penanggulangan Longsor
3 80200
1 Risk Analysis
Keterangan :
Resiko Tinggi
Bahaya Sangat Tinggi
Bangunan
Elevas i
97.222 - 110
84.444 - 97.222
71.667 - 84.444
58.889 - 71.667
46.111 - 58.889
33.333 - 46.111
20.556 - 33.333
7.7 78 - 2 0.5 56
-5 - 7.7 78
3 Collecting Data
3 79800
N
Skala :
0.1
0
0.1
•Lokasi longsor berada pada Kecamatan Tarakan
Utara, Kelurahan juata laut,
•Slope 21-40%
•Geologi batu pasir
•Tata guna lahan berada di pinggir laut dengan
kawasan terbangun
•Vegetasi rapat
•Safety factor 0,79
•kejadian longsor 3 titik (56173,380233),
(561024,380413), (560885,380305)
0.2
0.3
0.4
KM
4 Adaptation Measurement
Kondisi awal dengan FK = 0,790
(tidak stabil)
Desain kestabilan lereng menghasilkan FK
= 1,649 (stabil)
Thank you for your attention
[email protected]
[email protected]