Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MATH 135: PRECALCULUS TRIGONOMETRIC IDENTITES Establish the following identities. 1. cot ϑ sec ϑ = csc ϑ A good strategy here is to write every function in terms of sine and cosine. This illuminates cancellations we may not have seen otherwise. cot ϑ sec ϑ = 2. cos ϑ 1 1 = = csc ϑ. sin ϑ cos ϑ sin ϑ 1 1 + = 2 csc2 ϑ 1 − cos ϑ 1 + cos ϑ This time, get common denominators. 1 1 1 + cos ϑ 1 − cos ϑ 2 + = − = . 1 − cos ϑ 1 + cos ϑ 1 − cos2 ϑ 1 − cos2 ϑ 1 − cos2 ϑ Recall from the Pythagorean identity that cos2 ϑ + sin2 ϑ = 1. Then, we have 2 2 = = 2 csc2 ϑ. 1 − cos2 ϑ sin2 ϑ 3. cos ϑ = tan ϑ(1 + sin ϑ) csc ϑ − 1 Multiply and and divide the left side by the conjugate csc ϑ + 1. cos ϑ cos ϑ csc ϑ + 1 cos ϑ(csc ϑ + 1) = = . csc ϑ − 1 csc ϑ − 1 csc ϑ + 1 csc2 ϑ − 1 Addition or subtraction in the denominator is bad. Use the Pythagorean theorem: csc2 ϑ − 1 = cot2 ϑ. Then, write everything with sines and cosines. cos ϑ sin2 ϑ sin1 ϑ + 1 cos ϑ sin1 ϑ + 1 cos ϑ(csc ϑ + 1) = = . cos2 ϑ csc2 ϑ − 1 cos2 ϑ sin2 ϑ Keeping in mind you want a tan ϑ in your result, cancel and distribute accordingly. cos ϑ sin2 ϑ sin1 ϑ + 1 sin ϑ = (1 + sin ϑ) = tan ϑ(1 + sin ϑ). 2 cos ϑ cos ϑ 4. sec ϑ − 1 tan ϑ − = −2 cot ϑ tan ϑ sec ϑ − 1 Get common denominators. sec ϑ − 1 tan ϑ (sec ϑ − 1)2 tan2 ϑ − = − tan ϑ sec ϑ − 1 tan ϑ(sec ϑ − 1) tan ϑ(sec ϑ − 1) Simplify the numerator. tan2 ϑ sec2 ϑ − 2 sec ϑ + 1 − tan2 ϑ (sec ϑ − 1)2 − = tan ϑ(sec ϑ − 1) tan ϑ(sec ϑ − 1) tan ϑ(sec ϑ − 1) Use the Pythagorean identity to get sec2 ϑ − tan2 ϑ = 1. Tip: if you see a sum or difference of squares but are unsure which Pythagorean identity to use, start with sin2 ϑ + cos2 ϑ = 1 and massage it until you get the one you want (in this case, divide by cos2 ϑ and subtract tan2 ϑ). sec2 ϑ − 2 sec ϑ + 1 − tan2 ϑ 2 − 2 sec ϑ 2 = =− = −2 cot ϑ. tan ϑ(sec ϑ − 1) tan ϑ(sec ϑ − 1) tan ϑ