Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Selected Problems in Dynamics: Stability of a Spinning Body -and- Derivation of the Lagrange Points John F. Fay June 24, 2014 Outline Stability of a Spinning Body Derivation of the Lagrange Points TEAS Employees: Please log this time on the Training Tracker Stability of a Spinning Body Euler’s Second Law: Moments of Torque d M I dt Angular Velocity Inertia Matrix (good for an inertial coordinate system) Problem: Inertia matrix “I” of a rotating body changes in an inertial coordinate system Euler’s Second Law (2) In a body-fixed coordinate system: Moments of Torque d M I body I dt Angular Velocity Inertia Matrix Inertia Matrix: I xx Describes distribution I I xy of mass on the body I xz I xy I yy I yz I xz I yz I zz Euler’s Second Law (3) Planes of Symmetry: x-y plane: Ixz = Iyz = 0 x-z plane: Ixy = Iyz = 0 y-z plane: Ixz = Ixz = 0 For I xx I 0 0 a freely-spinning body: M 0 d I body I 0 dt 0 I yy 0 0 0 I zz Euler’s Second Law (4) Rigid body: “I” Do d I body I 0 dt matrix is constant in body coordinates d I I 0 dt the matrix multiplication: I xx I 0 0 0 I yy 0 0 x I xx x 0 y I yy y I zz z I zz z Euler’s Second Law (5) Do the cross product: x I xx x y I zz z z I yy y I y I yy y z I xx x x I zz z z I zz z x I yy y y I xx x Result: I xx 0 0 0 I yy 0 0 x y I zz z z I yy y d 0 y z I xx x x I zz z 0 dt I zz z x I yy y y I xx x Euler’s Second Law (6) I xx 0 0 As 0 I yy 0 0 x y I zz z z I yy y d 0 y z I xx x x I zz z 0 dt I zz z x I yy y y I xx x scalar equations: d x I xx I zz I yy y z 0 dt d y I yy I xx I zz z x 0 dt d z I zz I yy I xx x y 0 dt Small Perturbations: Assume axis: a primary rotation about one Remaining angular velocities are small x 'x y 'y z ' z ' x , ' y , ' z Small Perturbations (2) Equations: d ' x I xx I zz I yy ' y ' z 0 dt d ' y I yy I xx I zz ' z ' x 0 dt d ' z I zz I yy I xx ' x ' y 0 dt Small Perturbations (3) Linearize: Neglect products of small quantities d ' x I xx 0 dt d ' y I yy I xx I zz ' z 0 dt d ' z I zz I yy I xx ' y 0 dt Small Perturbations (4) Combine I yy d ' y the last two equations: I xx I zz ' z 0 dt d ' z I zz I yy I xx ' y 0 dt d ' y I xx I zz 'z dt I yy switched I xx I yy d ' z 'y dt I zz Small Perturbations (4) Combine I yy d ' y the last two equations: I xx I zz ' z 0 dt d ' z I zz I yy I xx ' y 0 dt d 2 ' y I xx I zz d ' z 2 dt I yy dt I xx I yy d ' y d 2 ' z 2 dt I zz dt Small Perturbations (4) Combine I yy d ' y the last two equations: I xx I zz ' z 0 dt d ' z I zz I yy I xx ' y 0 dt I xx I zz I xx I yy d 2 ' y 2 ' y 0 2 dt I yy I zz I xx I zz I xx I yy d 2 ' z 2 'z 0 2 dt I yy I zz Small Perturbations (5) d 2 ' y dt 2 2 I xx I zz I xx I yy I yy I zz ' y 0 I xx I zz I xx I yy d 2 ' z 2 'z 0 2 dt I yy I zz Case 1: Ixx > Iyy, Izz or Ixx < Iyy, Izz: 2 I xx I zz I xx I yy Sinusoidal I yy I zz solutions for Rotation is stable 0 ' y , 'z Small Perturbations (6) d 2 ' y dt 2 2 I xx I zz I xx I yy I yy I zz ' y 0 I xx I zz I xx I yy d 2 ' z 2 'z 0 2 dt I yy I zz Case 2: Izz > Ixx > Iyy or Izz < Ixx < Iyy: 2 I xx I zz I xx I yy I yy I zz 0 solutions for ' y , ' z Rotation is unstable Hyperbolic Numerical Solution Ixx = 1.0 Iyy = 0.5 Izz = 0.7 Body Coordinates Numerical Solution (2) Ixx = 1.0 Iyy = 0.5 Izz = 0.7 Global Coordinates Numerical Solution (3) Ixx = 1.0 Iyy = 1.2 Izz = 2.0 Body Coordinates Numerical Solution (4) Ixx = 1.0 Iyy = 1.2 Izz = 2.0 Global Coordinates Numerical Solution (5) Ixx = 1.0 Iyy = 0.8 Izz = 1.2 Body Coordinates Numerical Solution (6) Ixx = 1.0 Iyy = 0.8 Izz = 1.2 Global Coordinates Spinning Body: Summary Rotation about axis with largest inertia: Rotation about axis with smallest inertia: Rotation about axis with in-between inertia: Stable Stable Unstable Derivation of the Lagrange Points Two-Body Lighter Problem: body orbiting around a heavier body (Let’s stick with a circular orbit) Actually both bodies orbit around the barycenter y D M m x Two-Body Problem (2) Rotating reference frame: Origin at barycenter of two-body system Angular velocity matches orbital velocity of bodies Bodies are stationary in the rotating reference frame y D M m x Two-Body Problem (3) Force Balance: Body “M” Body “m” GMm Mx M 0 2 D GMm mxm 0 2 D 2 y xM(<0) 2 Centrifugal Force Gravitational Force xm D M D xm xM m x Two-Body Problem (4) GMm Mx M 0 Parameters: 2 D M – mass of large body GMm 2 m – mass of small body mxm 0 2 D D – distance between bodies D xm xM 2 Unknowns: xM – x-coordinate of large body xm – x-coordinate of small body – angular velocity of coordinate system Three equations, three unknowns In case anybody wants to see the GMm math … Mx 0 D 2 M 2 GM GMm 2 Gm mx 0 x 0 xM 2 0 m 2 D D D D x x Gm GM 2 2 M xM D xm D 2 xm D M m m m M x D M mxm MxM M m x M xm 2 2 m 2 m m M m D xm xm xm M M GM G M m 2 xm D D3 2 M Two-Body Problem (5) Solutions: G M m D3 M xm D M m m xM D M m 2 y xM(<0) xm D M m x Lagrange Points Points at which net gravitational and centrifugal forces are zero Gravitational attraction to body “M” Gravitational attraction to body “m” Centrifugal force caused by rotating coordinate system y (x,y) M m x Lagrange Points (2) Sum of Forces: particle at (x,y) of mass “m ” x-direction: GMm x xM x x M 2 y 2 x x 3 2 y-direction: GMmy x x M 2 y 2 Gmm x xm 2 y 2 Gmmy x x 3 m 2 m 2 y 2 3 3 mx 2 0 2 my 2 0 2 Lagrange Points (3) Simplifications: by mass “m” of particle Substitute for “2” and divide by “G” Divide M x xM x x 2 M y 2 My x x 2 M y 2 mx xm x x 3 m x x 3 y 2 2 2 my 2 m 2 y 2 3 3 M m x 0 2 D3 M m y 0 2 D3 Lagrange Points (4) Qualitative considerations: Far enough from the system, centrifugal force will overwhelm everything else Net force will be away from the origin Close enough to “M”, gravitational attraction to that body will overwhelm everything else Close enough to “m”, gravitational attraction to that body will overwhelm everything else M m Lagrange Points (5) Qualitative considerations (2) Close to “m” but beyond it, the attraction to “m” will balance the centrifugal force search for a Lagrange point there On the side of “M” opposite “m”, the attraction to “M” will balance the centrifugal force search for a Lagrange point there Between “M” and “m” their gravitational attractions will balance search for a Lagrange point there M m Lagrange Points (6) Some Solutions: Note that “y” equation is uniquely satisfied if y = 0 (but there may be nonzero solutions also) My x x 2 M y 2 x x 3 my 2 m 2 y 2 3 M m y 0 2 D3 Lagrange Points (7) Some Solutions: “x” equation when “y” is zero: M x xM mx xm x x x x Note: x x x x 2 3 2 2 M 3 M m x 0 D3 2 m 2 M 3 3 2 M x xM ? MD 3 x xm x xm mD3 x xM x xM 3 xM m x xm x xm x xM x xM 0 Lagrange Points (8) M x xM x x M M y My x x 2 2 y Oversimplification: xM x Mx 2 y 2 3 2 2 2 mx xm x x 3 m m 2 x x 3 y my 2 2 2 y 2 2 3 2 2 x 3 M m 0 D3 M m y 0 D3 Let “m” = 0 =0 M x 3 0 D Solutions: x Anywhere 2 y x 2 3 2 My 2 y D3 on the orbit of “m” 2 3 2 M y 3 0 D Lagrange Points (9) MD 3 x xm x xm mD3 x xM x xM xM m x xm x xm x xM x xM 0 Perturbation: For m M 0 1 xM D xm 1 D the y = 0 case: D 3 x 1 D x 1 D D 3 x D x D x1 x 1 D x 1 D x D x D 0 Lagrange Points (10) MD 3 x xm x xm mD3 x xM x xM xM m x xm x xm x xM x xM 0 D 3 x 1 D x 1 D D 3 x D x D x1 x 1 D x 1 D x D x D 0 For the y = 0 case (cont’d): – Lagrange Points L1,L2: near x = D: x D1 D D 1 5 5 2 D 1 1 1 0 5 2 L1, L2: y = 0, x = D(1 + D 5 D 5 1 2 D 5 1 1 1 0 2 Collecting terms: 1 1 1 1 2 1 0 2 Multiplying things out: 3 3 2 3 3 7 5 2 3 2 2 2 2 3 3 3 5 2 1 2 2 2 2 2 L1, L2 (2): y = 0, x = D(1 + Balancing terms: Order of magnitude 3 3 3 2 3 3 7 5 2 3 2 2 2 2 3 3 3 5 2 1 2 2 2 2 2 Order of magnitude Linearizing: 3 3 1 3 3 Lagrange Points (11) D 3 x 1 D x 1 D D 3 x D x D x1 x 1 D x 1 D x D x D 0 Lagrange Point L3: y = 0, near x = –D x D1 2 2 1 1 1 1 2 2 1 1 Since | |, | | << 1 < 2: 2 2 1 2 2 2 1 1 2 1 0 0 L3: y = 0, x = –D(1 + 2 1 2 2 1 1 2 1 0 2 Multiply out and linearize: 2 4 4 4 1 4 4 4 1 2 2 0 4 4 4 4 4 4 4 4 8 8 0 5 12 0 5 12 Lagrange Points (12) Summary for a Small Perturbation and m M 0 1 xM D xm 1 D y = 0: Lagrange L1: Points: 1 x D1 3 3 L2: L3: 5 x D 1 12 1 x D1 3 3 Lagrange Points (13) What if y is not zero? m M 0 1 xM D xm 1 D R D1 y 2q x Lagrange Points (14) Polar m M 0 1 xM D xm 1 D R D1 Coordinates: eq R D cos2q , D sin2q y er FR ,0 R D1 cos2q , D1 sin2q 2q x Lagrange Points (15) Consider From FM From Fm the forces in the R-direction: M: GMm D1 D cos2q D1 D cos2q D sin2q 2 2 3 2 m: Gmm D1 D1 cos2q D1 D1 cos2q D1 sin2q 2 Centrifugal force: 2 3 2 FC m 2 D1 R-direction Forces Simplify: From M: FM From Fm GMm 1 cos2q D 1 cos2q sin 2q 2 2 2 2 2 m: GMm 1 1 cos2q D 1 1 cos2q 1 sin 2q 2 3 Centrifugal 2 force: 2 3 GM 1 m 1 FC 2 D R-direction Forces (2) Linearize in and : From M: From m: GMm 1 cos2q GMm 1 2 2 cos2q FM 2 2 D 1 3 3 cos2q D Fm GMm 1 1 cos2q D 1 2 21 cos2q 1 2 2 3 2 Centrifugal force: GMm 2 2 2D GMm 1 FC 2 D R-direction Forces (3) Balance the Forces: GMm GMm GMm 1 2 2 cos2q 2 1 0 2 2 D D 2 2D 1 2 2 cos2q 2 2 1 0 1 1 2 2 cos2q 3 2 cos2q 2 2 2 2 1 1 2 cos2q 2 2 3 Lagrange Points (16) Consider From FM From Fm the forces in the q-direction: M: GMmD sin 2q D1 D cos2q D sin2q 2 m: 2 3 2 GmmD1 sin 2q D1 D1 cos2q D1 sin2q 2 Centrifugal force is completely radial 2 3 2 FC 0 q-Direction Forces FM Fm GMmD sin 2q D1 D cos2q D sin2q 2 D1 D1 cos2q D1 sin2q 2 2 2 GmmD1 sin 2q 2 Simplify: FM D 2 GMm sin 2q 2 1 cos2q sin2q 2 3 2 GMm 1 sin 2q Fm D 2 3 1 1 cos2q 1 sin2q 2 2 3 2 2 3 q-Direction Forces (2)GMm sin2q FM 1 cos2q sin2q 2 1 1 cos2q 1 sin2q 2 D Fm D Linearize 2 2 2 2 GMm 1 sin 2q 2 2 in and : GMm sin 2q GMm sin 2q FM 2 2 D 1 3 3 cos2q D Fm 3 GMm 1 sin 2q D 1 2 21 cos2q 1 2 2 GMm sin 2q 3 2 D 2 2 2 cos2q 2 3 3 q-Direction Forces (3) Fm Simplifying further: GMm sin 2q FM 2 D GMm sin 2q D 2 2 2 cos2q 2 3 GMm sin 2q FM 2 D GMm sin 2q Fm 3 D 2 2 2 1 cos 2 q sin 2 q 2 GMm sin 2q GMm sin 2q 3 2 3 2 2 8 D sin q D 2 2 2 sin q 2 q-Direction Forces (4) Balance the two forces: GMm sin 2q FM 2 D GMm sin 2q Fm 2 3 8 D sin q GMm sin 2q GMm sin 2q 0 2 2 3 D 8D sin q GMm sin 2q GMm sin 2q 2 2 3 D 8D sin q 8 sin 3 q 1 1 sin q 2 q 30 6 2q 60 3 Lagrange Points (17) Solving for our radius: R D1 1 1 2 cos2q 2 2 3 2q 60 3 1 R D1 1 2 cos2q 3 2 2 8 2 1 1 D1 1 2 D1 2 3 12 2 2 Lagrange Points (13 redux) What if y is not zero? m M 0 1 xM D xm 1 D 8 2 R D1 12 y 2q 60 x Lagrange Points (18): m M 0 1 xM D xm 1 D Summary for zero y: Between On M and m: L1: 1 x D1 3 3 the opposite side of m from M: L2: 1 x D1 3 3 On the opposite side of M from m: L3: 5 x D 1 12 Lagrange Points (19): m M 0 1 xM D xm 1 D Summary Ahead for nonzero y: of m in orbit: L4: 2q 60 Behind m in orbit: L5: 2q 60 8 2 R D1 12 8 2 R D1 12 Summary of Lagrange Points (What is wrong with this picture?) (courtesy of Wikipedia, “Lagrange Points”) Potential Energy Contours Stability of Lagrange Points Requires saving higher-order terms in linearized equations Results: – L1, L2, L3 unstable Body perturbed from the point will move away from the point – L4, L5 neutrally stable Body perturbed from the point will drift around the point Conclusions Stability of Spinning Bodies Derivation of Lagrange Points